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Abstract: This chapter describes different approaches to test generation, fault simulation 

and fault diagnosis in digital circuits and systems. First, an overview about the 

main techniques of logic level structural test generation for digital circuits is 

given. Then these techniques are explained in terms of graph technique based 

on structurally synthesised BDDs. Differently from the classical BDD-based 

test generation, the emphasis is given here to the topological aspects of test 

generation on SSBDDs in terms of path activation tasks on graphs, similarly to 

path activation in logic level circuits. Such a topological view on SSBDDs  

allows easily to generalise logic level test generation algorithms for higher 

level test generation purposes. In more details, register transfer level test 

generation and instruction set level test generation for microprocessors are 

considered. Several methods of gate-level fault simulation like parallel, 

deductive and critical path tracing methods are discussed. Afterwards macro-

level fault simulation for logic circuits and hierarchical fault simulation for 

digital systems are considered. Advantages and disadvantages of all these 

methods are highlighted. In the subchapter on fault diagnosis, combinational 

and sequential fault localisation procedures are described. Finally, test 

generation methods for RAM are discussed. An overview about traditional 

methods like March, Walkpat, Galpat a.o. is given. In more detail the 

capability of  March test to detect different faults like stuck-at-faults, 

transition, addressing and coupling faults is analysed. Finally, the problems of 

testing pattern sensitivity faults and layout related faults is discussed.    

Keywords: faults, test pattern generation, fault simulation, logical, functional, defect-

oriented, hierarchical test generation techniques, memory faults, March 

algorithms, BDD, fault diagnosis 



2 Chapter 3 

 
3.1 LOGIC-LEVEL TEST GENERATION 

Test generation itself plays a key role in various processes such as logic 

optimisation, verification, design for testability, and built-in self-testing 

where the efficiency of the combinational test pattern generation algorithms 

is an important issue [1], [2], [3]. Frequently, the circuit designer will 

provide a limited subset of the functional test patterns for a device under 

test (DUT), which typically cover only 70 to 75 % of the total number of 

faults. Testing for only 75 % of the modelled defects is not sufficient. Thus, 

the importance of automatic test pattern generation (ATPG) algorithms at 

the structural level is undisputed. ATPG is the application of algorithmic 

based software to generate vectors – test patterns. The traditional goal of 

ATPG algorithms is to achieve high fault coverage by producing a small 

volume of test patterns. Therefore the first step after processing of the design 

description involves establishing the fault model to be used, and the faults 

have to be enumerated. Fault models represent defects and a fault list is 

defined for DUT. Obviously, inputs to ATPG systems consists are a DUT 

netlist (often based on standard cell libraries), a list of targeted faults and 

requirements to test vectors quality [1].   

Historically, the single stuck-at fault model (SAF model; stuck_at 0 – 

SAF0, stuck_at 1 – SAF1) has been widely accepted as a standard fault 

model for the test pattern generation algorithms. The usage of the SAF 

model will continue as long as ATPG exists. Although the SAF model 

cannot guarantee the highest quality of defect testing, especially for CMOS 

integrated circuits [4], [5], [6], it is still the key fault model of the structural 

TPG algorithms. Its importance is due to its simplicity, tractability, logical 

behaviour, measurability and adaptability [6]. Various TPG algorithms 

targeted to other fault models (e.g. bridging faults, delay faults) or other 

testing types (IDDQ and at speed testing) are often based on the structural 

TPG strategies using the SAF model. Each test pattern generation algorithm 

is obviously evaluated by the following measures: 

-  test effectiveness = (detected and proven non testable faults)/total 

faults 

- fault coverage = detected faults/total faults 

- test generation time 

- length of the generated test set (test volume). 

3.1.1 Structural test generation algorithms 

The structural TPG algorithms can be applied for multiple purposes 

because they can [1]: 

- generate test patterns 
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- find redundant or unnecessary logic 

- verify whether one circuit implementation matches another circuit 

implementation.  

     Since the scan-based design techniques are increasingly used for complex 

circuit designs, the structural test generation for combinational circuits 

becomes more important. The test generation problem can be viewed as a 

finite space search problem of finding appropriate logic assignments to the 

primary inputs such that the given fault is detected. The size of the search 

space is exponential in the number of primary inputs and the test generation 

problem is proven to be NP-complete problem. It means that no polynomial 

expression for the computing time function was found, and the problem is 

presumed to have exponential complexity. Therefore it is very important to 

develop efficient techniques to speed up the test generation process 

producing an optimal test set volume.  

Besides of simple test generation algorithms: exhaustive (every possible 

test is applied to the n input ports of DUT – it means 2n logic values), 

pseudo-exhaustive (some portion of all possible 2n logic values), random, 

pseudo-random and deterministic TPG algorithms remain still of great 

interests in the research field. The pseudo-random TPG means that a circuit 

is divided into cones (a cone is a part of DUT with one primary output and 

those primary inputs, which are linked to this primary output) and a test set 

is generated randomly for each cone. If a random or pseudo-random TPG 

technique is used a fault simulator has to be applied for fault coverage 

computation for a defined fault list (see Figure 3-1). 

 

 

Figure 3-1. ATPG with a random TPG and a fault simulator 

 

The random test pattern generation produces test patterns in the shortest 

time but they do not have to achieve sufficient high fault coverage. Thus the 

random TPG effectiveness is not too high for complex circuits in comparison 

with the deterministic TPG algorithms.  

The fault coverage values are effective only at the beginning of the 

random TPG process. After exceeding a specific number of patterns a rise in 

the fault coverage is very slow. Usually the random TPG does not have to 

produce the highest fault coverage value (the standard expectation is 95 % - 
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99,9 % in the semiconductor industry [14]). It is caused by faults due to a 

fault resistant problem. It means that a special pattern inside DUT must be 

assigned.  

An example of the fault resistant problem is given in Figure 3-2 where 

only one out of 232 (4 billion) patterns detects the SAF1 at the output of a 

circuit. Obviously 20 % - 40 % of faults are typically random pattern 

resistant.  

 

Figure 3-2. Fault resistant state (SAF1 at the output) 

 

On the other hand, deterministic TPG algorithms assume that only a 

single fault is injected into the DUT structure for which a test is generated. 

Therefore any deterministic TPG run longer than the random TPG.  

Beside this restriction, another problem in deterministic TPGs is the 

problem of finding right logical values for cells inside the DUT structure that 

cannot be assigned uniquely during the TPG procedures. Selection of the 

values is based on some specific rules or heuristics, and a value conflict can 

be announced during test generation for an injected fault. Each conflict has 

to be solved by returning back to a node where a new value assignment can 

be done – a decision node (point). This step is named backtrack. Then the 

deterministic algorithm speed depends also on the number of backtracks 

during the test generation process. Many algorithmic and heuristic strategies 

have been developed for decreasing the number of backtracks based on 

finding the conflict point in the DUT structure as quickly as possible.  

The deteministic TPG should find a test pattern for a fault if it is 

detectable.  Therefore it is important to use the deterministic TPG, e.g. for 

SAF1 
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hardly detectable faults. Figure 3-3 shows in general the effectiveness of 

random and deterministic TPG algorithms.  

The total number of backtracks can also be reduced by fault simulation 

applied to each new generated deterministic test vector to get he list of 

covered faults, and then test patterns are not generated by the deterministic 

TPG for the faults already covered.  

 

Figure 3-3. Effectiveness of the random and deterministic TPGs 

 

A fault simulator must classify the given target faults in DUT as detected 

or undetected by a given test vector, then all faults covered by the vector are 

deleted from the fault list and the deterministic TPG is applied to other 

uncovered fault. It is known that the fault simulation speed is higher than the 

speed of any deterministic TPG algorithm because the process of finding 

covered faults is performed by tracing the DUT structure only twice (fault-

free simulation, fault lists propagation) for one test vector. Thus, the typical 

and effective ATPG construction is shown in Figure 3-4. It means the 

random TPG is used at the first TPG phase running together with the fault 

simulator and the deterministic TPG phase is used only for hardly detectable 

faults also linked to the fault simulator.  

Both the fault simulator and the deterministic TPG run over the same list 

of faults. The deterministic TPG algorithm is used for hardly detectable 

faults or after a limit of defined fault coverage is achieved by the random 

TPG [1]. Developed TPG algorithms are classified into 5 groups [1]:  

1. TPG based on path sensitisation techniques  

2. Simulation-based TPG methods 

3. TPG using Boolean satisfiability (a Boolean expression or equation) 

4. TPG based on implication graph methods 

5. TPG methods based on genetic algorithms.  
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Figure 3-4. ATPGs  with a fault simulator 

Most of the existing professional and academic ATPG systems use the 

path sensitisation technique; this principle is based on faulty signal 

sensitisation through each cell and on the D-calculus defined by Roth [8]. 

Figure 3-5 presents the path sensitisation through basic gate NOR for fault 

SAF0 propagated from its input to output (logical 1 is forced to the faulty 

input).  

 

Figure 3-5. Path sensitisation through basic cell NOR 

The path sensitisation rules for basic gates – AND, NAND, OR, NOR, 

XOR, XNOR were defined (see Figure 3-6). The sensitive path is always 

created through cells NOT, BUFF, XOR and XNOR. 

Figure 3-6. Path sensitisation through basic cell 
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The path sensitisation through complex cells has to be defined according 

to their structure; an example is shown in Figure 3-7. Three different input 

vectors (1000, 1010, 1001) can sensitise the fault on gate AND.  

 

 

 

 

 

 

 

Figure 3-7. Path sensitisation through a complex cell 

 

The 5-value logic model has been defined using the values 0, 1, x, D, D; 

the value x means don’t care value, and D, D represent faulty signals SAF0 

and SAF1, respectively. The value D represents logical value 1 in the fault 

free state and 0 in the faulty state. An example of the path sensitisation for 

SAF0 is shown on a circuit presented in Figure 3-8. The value D is 

propagated through the sensitive path using the following logic values: 0 on 

gate OR, 1 on gate AND, 0 or 1 on gate XOR. If the sensitive path is found 

from the fault site to a primary output, some values have to be assigned from 

the primary inputs (it means logical value 1 at the input of gate AND and 

logical value 0 at the input of gate XNOR inside the circuit in Figure 3-8).  

Figure 3-8. Path sensitisation using D calculus 

 

Finding the right values at the primary inputs for confirmation of assigned 

values inside the circuit is realised by a backtrace through the circuit 

structure from the node of a non-confirmed value to a primary input. This 

step is named value (line) justification. The logical values 1 and 0 inside the 

circuit presented in Figure 3-8 are justified by the pattern (CD) = (x1). The 

path sensitisation methods at the logical level of circuit representation are 

currently the most preferred ATPG methods and consist of the following 3 

basic steps [1], [2], [9], [15]: 
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1. Fault sensitisation (fault activation, fault excitation), in which a SAF 

is activated by forcing the signal to an opposite value as the fault 

value (ensuring difference between good and faulty circuits).  

2. Fault propagation (using path sensitisation), in which the fault effect 

is propagated through one or more paths to primary output(s) of the 

circuit. In general, the number of paths may rise exponentially with 

the number of logical gates in the circuit.  

3. Line justification, in which the internal signal assignments previously 

used to sensitise a fault or propagate its effect is justified by setting 

the primary inputs of DUT; one example is shown in Figure 3-9, 

where two logical values 1 and 0 have to be justified. The logical 

value 1 on the primary inputs C and D justifies both desired values. 

Figure 3-9. Line justification  

 

Figure 3-10. Conflict situation during the justification step 

 

During the path sensitisation and the line justification some inconsistent 

states can arise and this has to be solved by alternative assignments – a 

backtrack must be used to a node in DUT where a new value assignment can 

be done. An example with two possibilities is shown in Figure 3-10. One 
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is to return to the second fan-out and to change the value for path 

sensitisation through cell XOR (new logical value is 1).  

Many algorithms based on the path sensitisation technique have been 

developed and implemented in various ATPG systems. All these algorithms 

use the mentioned 3 basic steps but their effectiveness depends on different 

heuristics and combinations of the mentioned steps. After the first TPG 

algorithm development – D algorithm [8] and its heuristics successors 

PODEM (1981; the branch and bound search algorithm) [7] and FAN 

(1981; fan-out-oriented algorithm) [9], many other techniques and heuristics 

have been developed improving and speeding up the existing TPG systems. 

They are e.g. SOCRATES (using static and dynamic learning procedures) 

[10], TOPS algorithm (based on the defined signal line as dominators) [11], 

recursive learning algorithm [13], EST (using defined evaluation frontier) 

[12] and some their modifications. In the FAN algorithm several progressive 

concepts were defined for decreasing the number of backtracks:  

- The unique sensitisation procedure – values assignment to signals on 

gates involved in all sensitive paths for an investigated fault – this 

procedure is applied immediately after fault sensitisation. 

- Application of the multiple backtracing procedure to primary inputs. 

- Immediate implications (backward and forward) – values assignment for 

uniquely determined signals, places of backtracks – fan-out nodes of 

DUT [9].  The implication procedures are demonstrated in Figure 3-11 

using c17 ISCAS’85 benchmark circuit. 

 

Figure 3-11. Forward and backward implications on c17 benchmark circuit 
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[18], [19], [20]. Table 3-1 shows the history of accelerating combinational 

ATPG algorithms and systems [1].   

Table 3-1. TPG algorithms progress 

Algorithm Speed evaluation year 

D 1 1966 

PODEM 7 1981 

FAN 23 1983 

TOPS 292 1987 

SOCRATES 1574 1988 

Waicukaiski 2189 1990 

EST 8765 1991 

TRAN 3005 1993 

Recursive learning 485 1995 

Tafertshofer 25057 1997 

 

Nowadays, the following TPG algorithms have been published: SPIRIT 

[15], ATOM [17], STAR-ATPG [18] and some new techniques have been 

developed for speeding up the deterministic TPG process as dynamic 

decision ordering, conflict driven recursive learning and conflict learning 

[19]. The number of backtracks is the key step of the test generation speed.  

The structural TPG algorithms can also be used for defect-oriented 

testing using an implicit fault model. The implicit fault model means that 

some patterns have to be set up on each cell of DUT during testing, e.g. for 

cell NOR (Figure 3-12) it is necessary to apply test patterns – (00, 01, 10). 

The same patterns, named also fault conditions, can be used for gate OR. 

Figure 3-12. Implicit fault model 

 

This fault model is suitable for defect-oriented testing [5] and IDDQ testing 

[21]. In defect-oriented test pattern generation we need information about 

coverage of expected defects by means of specified vectors for each cell 

integrated in DUT. An example is demonstrated in Table 3-2 for gate NOR 

(with two inputs A, B and output Q) where notation A/B means short 

between 2 nodes: A, B; “*” means its coverage by a corresponding vector.  

Table 3-2. Fault table for NOR (Gn – ground node and Vd – power node) 

vector A/B A/Q A/Gn A/Vd B/Q B/ Gn B/Vd Q/ Gn Q/Vd 

00  *  1 1  1 1  

01 1    1 1   1 

10 1 1 1      1 
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Similar strategies based on the path sensitisation methods can be used for 

the test generation process using the implicit fault model. A selected pattern 

for a cell in DUT instead of faulty value D or  D is propagated through 

sensitive paths and justified from primary inputs. An example is shown in 

Figure 3-13; the first pattern (AB) = (00) is selected for test generation. The 

received test vector (ABCDE) = (00011) covers 6 patterns on basic gates in 

the circuit. 

 

Figure 3-13. Test pattern generation using the implicit fault model 

 

If some complex cells are used in a DUT structure, e.g. cell AN1 with 

function: Q = NOR (AND(A,B), AND(C,D)); fault conditions for AN1 

could be defined with regard to stuck_at fault coverage of basic cells (ANDs, 

NOR) or results from defect analysis (described in Chapter 2). An example 

of fault conditions for cell AN1 is shown in Figure 3-14.  

 

 

Figure 3-14. Implicit fault model – test patterns for complex cell AN1 
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because the measured unit is the current at the chip-level. Test pattern 

generation techniques use the following fault models:  

- The pseudo-stuck-at fault model (it means a fault is represented by 

SAF1 or SAF0 injected on a DUT node - but its manifestation has not to 

be propagated to a primary output).  

- The implicit fault model based on the toggle test set (application logical 

1 and logical 0 to all nodes in DUT). 

- The implicit fault model based on specified test patterns = the fault 

conditions described above.  

 

Figure 3-15. Test generation for IDDQ testing using the toggle test set  

 

Test pattern generation for IDDQ testing is simpler than for classical 

voltage testing because the injected fault or a logical value has not to be 

observable on a primary output. It is enough to find a test vector that sets up 

defined values on gates inside DUT. An example for the test pattern 

generation using the toggle test for IDDQ testing is shown in Figure 3-15.  

The test set of 5 patterns is generated for covering all desired values (toggle 

test patterns) on circuit cells.    

Example 3-1: Consider test set generation for circuit c17 (Figure 3-11) by 

the random and deterministic TPG algorithms. There are 34 SAF0 and SAF1 

in the c17 fault list. Their coverage is 100 %, e.g. by 8 random test patterns 

(ABCDE) = (00100, 10010, 00011, 00011, 10100, 11010, 11110, 10111) or 

by 5 deterministic test patterns (ABCDE) = (1x1010, 0110x, 01111, x00x1, 

100x0), x is don’t care value. If IDDQ testing is used for some faults (not 

detected by classical voltage testing), the combined test patterns should be 

applied: e.g. 5 patterns for voltage and current measurements (ABCDE) = 

(100100, 01101, 11111, x10x0, x00x1) and 2 only for voltage testing 

(ABCDE) = (x101x, 001xx).  
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Almost all digital systems are realised as sequential circuits. These 

circuits contain combinational logic and flip-flops. Their testing is more 

complex than combinational circuit testing for two reasons [1]: 

1. Internal memory states. The circuit has internal memory and its state is 

not known at the beginning of testing. A test must, therefore, initialise 

the circuit to a known state. After test inputs are applied, the final state 

of the internal memory must be inferred only indirectly from primary 

outputs. Only in special cases the internal memory can be made 

controllable and observable for testing.  

2. Long test sequences. A test for a fault in the sequential logic essentially 

contains 3 parts:  

(a) Initialisation of the internal memory. 

(b) A combinational test to activate the fault and to bring its effect to the 

boundary of the combinational logic. 

(c) If the fault has affected one or more memory elements, then the state 

observation of one of the affected elements at a primary output.  

The test for a fault in a sequential circuit may be a sequence of several 

vectors that must be applied in the specified order. One simple TPG 

technique applied for synchronous circuits is an iterative (time-frame 

expansion) TPG method using a TPG algorithm for combinational logic. The 

basic idea is to divide the circuit structure to several time frames. It means 

we receive several copies of the same combinational circuit with not only 

primary inputs and outputs but also with pseudo-primary inputs (outputs 

from flip-flops) and pseudo-primary outputs (inputs to flip-flops). The fault 

has to be injected in the same node in all time frames.  

 

Figure 3-16. Sequential circuit for Example 3-2 
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The major problem is that the number of circuit structure copies is not 

known at starting the test generation process. The number of copies depends 

on the FFs states for the fault propagation to a primary output. Test 

generation for complex sequential circuits is a time consuming and memory 

space demanding process. No clock signal faults and internal faults of flip-

flops are modelled in this TPG method.  

Example 3-2: Consider test sequence generation for the sequential circuit 

presented in Figure 3-16 and injected SAF1 with initial FF states (y1y2) = 

(11) using the iterative TPG technique. The circuit structure is divided into 

time frames according to the structure presented in Figure 3-17. The test 

sequence I = (1,1,1) for SAF1 is generated in 3 time frames where q1
+ and 

q2
+ mean the next state of FFs. 

Figure 3-17. One time frame for sequential circuit in Figure 3-16 

 

Other TPG methods are simulation-based methods [1], [2], [15]. 

Nowadays complex sequential circuits are designed by scan design methods 
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based on the principle that test vectors for SAFs can be used for constructing 

the test set for delay faults [2],[14]. 

The efficient TPG algorithms are the central part of each ATPG process. 

The strength of the ATPG rests in its algorithms for tracing through the 

design description and establishing values. Therefore TPG algorithms are 

still one of the hot research tasks. The overall test set preparation includes 

other tasks that have to be done before and after the application of the ATPG 

tool. They include preparing the computer environment for the tool, 

preparing the tool for accepting the design description using during structure 

analysis and test vectors processing and to assign with the data and control 

format of the tester.  

3.1.2 Test generation with BDDs 

As the complexity of digital systems continues to increase, the gate level 

test generation methods become obsolete. Promising approaches are high-

level, multi-level or hierarchical methods which use behavioral, functional or 

multi-level descriptions of systems. Nevertheless a uniform approach to test 

generation at different levels is missing, a lot of different languages, models 

and formalisms depending on the level are used. 

Decision Diagrams (DD) can serve as a basis for a uniform approach to 

test generation for mixed-level representations of systems, similarly as we 

use the Boolean algebra for the plain logic level. In the following we 

describe how the traditional logic level test generation methods can be 

implemented on Binary Decision Diagrams (BDD) [23], [24], [25], [29] as 

a special class of DDs, and then we generalize the procedures developed for 

BDDs for a general class of DDs [27], [28], [31] to handle the test 

generation problems at higher levels of systems. 

Structurally synthesized BDDs. In 1959 C.Y.Lee introduced a method for 

representing digital circuits by Binary Decision Programs [23]. In 1976 the 

same model called alternative graphs [24] was introduced for test generation 

purposes. Independently the same model was introduced into the field of test 

generation by Akers [25] under the name of Binary Decision Diagrams 

(BDD). Today the theory of BDDs is developing quickly [29], [30], [32]. 

In [24], [26], [31], [33], [34] structurally synthesized BDDs (SSBDD) 

as a special class of BDDs was introduced to represent the topology of gate-

level circuits in terms of signal paths. Unlike “traditional” BDDs, SSBDDs  

[29], [30], [32] directly support test generation for gate-level structural faults 

without representing these faults explicitly. The advantage of the SSBDD 

based approach is that the library of components is not needed for structural 

path activization. This is the reason why SSBDD based test generation 

procedures do not depend on whether the circuit is represented on the gate 
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level or on the macro-level whereas the macro means an arbitrary single-

output subcircuit of the whole circuit.  Moreover, the test generation 

procedures developed for SSBDDs can be easily generalized for higher 

level DDs to handle digital systems represented at higher levels [27], [28], 

[31].  

The BDD that represents a Boolean function is a directed noncyclic 

graph with a single root node, where all nonterminal nodes are labelled by 

Boolean variables (arguments of the function) and have always exactly two 

successor-nodes whereas all terminal nodes are labelled by constants 0 or 1. 

For all nonterminal nodes, a one-to-one correspondence exists between the 

values of the label variable of the node and the successors of the node. This 

correspondence is determined by the Boolean function inherent to the graph.  
Denote the variable which labels a node m in a BDD by x(m). We say 

that a value of the node variable activates the node output edge. According 

to the value of x(m), one of two output edges of m will be activated. If 

x(m)=1 we say 1-edge is activated, or if  x(m)=0 we say 0-edge is activated. 

A path in a BDD is activated if all the edges that form this path are 

activated. The BDD is activated to the value 0 (or 1) if there exists an 

activated path which includes both the root node and the terminal node 

labelled by the constant 0 (or 1).  

Definition 3.1. A BDD Gy with nodes labelled by variables x1, x2, ..., xn, 

represents a Boolean function y = f(X) = f(x1, x2, ..., xn), if for each pattern of 

X, the BDD will be activated to the value which is equal to y. 

Important property of SSBDDs. SSBDDs differently from traditional 

BDDs have the following property: each node m in a Gy which describes a 

tree-like subnetwork Ny of the gate-level circuit N, represents a signal path 

l(m) in Ny.  

An example of a combinational circuit with a tree-like macro and 

SSBDD for the macro is presented in Figure 3-18. For simplicity, the values 

of variables on edges of the SSBDD are omitted (by convention, the 1-edge 

is always directed to the right, and the 0-edge is always directed 

downwards). Also, terminal nodes with constants 0 and 1 are omitted 

(leaving the SSBDD to the right corresponds always to y = 1, and down - to 

y = 0). Each node is marked by an input variable of the macro. A node with 

the label xm in the SSBDD represents the signal path through the macro 

which begins with the input variable xm. The node variable is inverted when 

the path consists of odd number of inverters, and not inverted when the 

number of inverters is even. For example, the node x7,1 of SSBDD   

represents the signal path with even number of inverters starting with the 

line x7,1, through the nodes a,d,e to the output y in the macro (the bold lines 

in the circuit). The node x1 in the SSBDD is inverted since the corresponding 

path x1,d,e,y consists of odd number of inverters. The fan-out node x7 in the 
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circuit has three branches, and each branch x7,i, j = 1,2,3 is the beginning of a 

path which is represented by the node x7,i in the SSBDD.   

 

 

 

Figure 3-18. Combinational macro and his SSBDD 

The one-to-one correspondence between nodes m in a SSBDD and paths 

l(m) in the corresponding gate-level circuit is the direct result of the 

synthesis procedure of SSBDDs. 

From the above-described property of the SSBDD, automatic fault 

collapsing results. Assume a node m with label variable x(m) represents a 

signal path l(m) in a circuit. Suppose the path l(m) goes through n gates. 

Then, instead of 2n faults of the path l(m) in the circuit, only 2 faults related 

to the node variable x(m) should be tested when using the SSBDD model. 

Generation of SSBDDs. For synthesis of SSBDDs for a gate network, 

the graph superposition procedure is used [24], [31]. If the label x(m) of a 

node m in the SSBDD Gy is an output of a subnetwork which is represented 

by another SSBDD Gx(m) then the node m in Gy can be substituted by the 

graph Gx(m). In this graph superposition procedure the following changes in 

Gy and Gx(m) are made. 
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Algorithm 3-1. Graph superposition 

1) The node m will be removed from Gy. 

2) All the edges in Gx(m) that were connected to terminal nodes mT,e in 

Gx(m) will be cut and then connected, correspondingly, to the 

successors me of the node m in Gy. Here, mT,e is the terminal node 

labelled by constant e {0,1} 

3) All the incoming edges of m in Gy will be now incoming edges for 

the initial node m0  in Gx(m). 

Consider a gate-level description of a network where each gate is 

represented by a BDD. Starting from the BDD of the output gate, and using 

iteratively the superposition procedure, we can compress the initial model of 

the gate-network (by each substitution we reduce the model by one node and 

by one graph). To reach high compression (to reduce complexity) of the 

model, we generate SSBDDs only for tree-like subnetworks. As the result 

we get a macro network where each macro (a tree-like subcircuit) is 

represented by a SSBDD. 

Figure 3-19. Example of superposition of graphs 

 

Example 3-3 

An example of the graph superposition procedure is shown in Figure 3-

19. We start with the output AND gate, and its BDD Gy which consists of 

two nodes a and b. The input a of the AND gate is simultaneously the output 

of the OR gate represented by the BDD Ga  which consists of the nodes x1 

and x21. First, we substitute the node a in Gy by the graph Ga. Thereafter the 

node b in Gy is substituted by the graph Gb which consists of the nodes x22 

and x3. The final graph which represents the whole circuit consists of the 

nodes x1, x21, x22, and x3. 

Test generation with SSBDDs. Consider a combinational circuit as a 

network of gates, which is partitioned into interconnected tree-like 

subcircuits (macros). This is a new higher level (macro-level) representation 

of the same circuit. Each macro is represented by a SSBDD where each node 

corresponds to an input of the macro. In the tree-like subcircuits only the 



3. TEST GENERATION TECHNIQUES AND ALGORITHMS 19 

 
stuck-at faults at inputs should be tested (see Section 1.2 in Chapter 2). This 

corresponds to testing all the nodes in each SSBDD. 

Test generation for a node m in SSBDD, which represents a function y = 

f(X) of a tree-like subcircuit (macro), is carried out by the following 

procedure [31], [33], [34].  

Figure 3-20. Test generation for the node m with SSBDD 

Algorithm 3-2. Test generation for a node m in the SSBDD Gy, y = f(X)  

1) A path lm from the root node of SSBDD to the node m is activated. 

2) Two paths lm,e consistent with lm, where e{0,1}, from the neighbors 

me of m to the corresponding terminal nodes mT,e should be activated. 

If the node m is directly connected via e-edge to mT,e no path lm,e 

should be activated for this particular value of e. 

3) For generating a test for a particular stuck-at-e fault x(m)  e, 

e{0,1},  the opposite assignment is needed: .)( emx   

4) All the values assigned to node variables (to variables of X) build the 

local test pattern T(X,y) (input pattern of the macro) for testing the 

node m in Gy (for testing the corresponding path l(m) on the output y 

of the given tree-like circuit). 

The paths in the SSBDD activated by the described procedure are 

illustrated in Figure 3-20. 

To create the final test pattern in terms of primary inputs of the circuit for 

the given fault in an embedded macro of the circuit, similar fault propagation 

and line justification procedures are needed as described in Subsection 3.1. 

The difference, however, is that these procedures will be carried out on the 

higher macro (instead of the gate) level whereas the macros of the circuit are 

represented by SSBDDs. The fault propagation through a macro from the 

input x to its output y is carried out similarly to the test generation for the 

node m labelled by x in the corresponding SSBDD Gy as explained in 

Algorithm 3-2. Line justification for the task y = e is carried out by activating 

a path in the graph Gy from the root node to the terminal node mT,e. 

SSBDD

m
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Example 3-4 

Consider test generation for the fault SAF0 on the internal branch (input 

of the macro) x7,1 in the circuit in Figure 3-18. For SSBDD we have to 

generate by Algorithm 3-2 a test for the node x7,1 at the condition x7,1  = 1. 

Activating the path lm through the nodes x6, x1, and x2 gives assignment x6=0, 

x1=1, and x2=1. Activating the path lm,1 through the node x5 gives x5=0. The 

path lm,0  is activated “automatically”, since the 0-edge from the node x7,1 is 

connected directly to the terminal node mT,0. The paths, activated by test 

pattern x1x2x3x4x5 = 11001, are shown by bold lines in Figure 3-18. 

In general we represent a circuit by a network of tree-like subcircuits 

where each subcircuit is represented by a SSBDD. To generate a full test for 

a given circuit, test patterns should be generated for SAF faults of all nodes 

in all SSBDDs. The procedure of test generation for a chosen fault consists 

of three steps - fault senzitization, fault propagation and line justification 

as explained in Section 3.1.1 for the gate-level approach. 

Fault sensitization. Sensitizing a fault on a line means to assign the 

complement of the faulty signal on the line. Since the faulty signal may be 0 

or 1, we distinguish it by denoting the SAF0 (SAF1) fault with D ( D ) 

analogically to the classical D-algorithm where D {0,1}[1], [2]. 

Consider a graph Gy representing a tree-like subcircuit with Boolean 

function y = f(X) where X is the vector of input variables of the subcircuit. 

Choose a node m labelled by an input variable x(m)  X  in Gy for generating 

a test pattern for the fault SAFe, e {0,1}. To sensitize the fault we generate 

a local test pattern for testing m with condition x(m) = e  as explained above. 

Assign to y a symbolic value D if y = 1 in the generated local test pattern 

T(X,y) or D  if y = 0. This symbolic value should be propagated to one of the 

outputs of the circuit. All the generated input values of X should be justified 

by primary input values of the circuit. 

Fault propagation. In general, the fault propagation procedure on 

SSBDDs is similar to the test generation on a single SSBDD. To propagate a 

symbolic value D ( D ) from x to y in a SSBDD Gy where y = f(X) and  x  X 

, we have to find in Gy a node m labelled by x and generate a local test 

pattern for m at the given constraints. The constraints are all the previously 

assigned values of the variables of the circuit.  

The new technique compared to fault sensitization is related to handling 

the symbolic value D when tracing the paths on SSBDDs. Two techniques 

may be used: single path activation, or multiple path activation (similar to 

the well known D-algorithm [1], [2]).  

In single path activation we propagate the value D along a single path in 

a circuit and block its propagation along all other parallel paths. On SSBDDs 

it means that during path activation procedures we have to treat all assigned 

values D as unknown values that should remain unknown. In other words 
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when tracing and activating the paths lm (or lm,e) on a SSBDD through a node 

m’ with symbolic value x(m’) = D we have to reach the target node m (or 

mT,e) from both outputs of the node m’. As the result, the activation of the 

path lm or (lm,e) will not depend on the changing value of x(m’). 

Example 3-5 

Consider a circuit and its SSBDD in Figure 3-21. Let us propagate the 

value D from the input x2 through the branch x2,2 in a circuit, and block its 

propagation through the branches x2,1 and x2,3. On the SSBDD the task is 

equivalent to generation of a test for the node x2,2. When activating the path 

lm,1 we meet a node with unknown value of x2,3. So, we have to reach the 

terminal node 1 for both cases x2,3 = 0, and x2,3 = 1. For that we have to assign 

x3 = 1. On the other hand, when activating the path lm,0 we meet a node with 

unknown value of x2,1. So, we have to reach the terminal node 0 for both 

cases x2,1 = 0, and x2,1 = 1. For that we have to assign x1 = 0. Now the value D 

is propagated from x2 through the circuit to y via a single path (via edge x2,2). 

The resulting test pattern is x1, x2 , x3 = 0D1. 

 

 

Figure 3-21. Multiple path activation by using  SSBDDs 

 

To allow multiple path activation on SSBDDs (more general case) we 

can exploit properly the duality of the symbolic value D  {0,1} in the path 

activation. Suppose the fault should be propagated through the path 

represented on SSBDD by a node m. Let us have x(m) = D (or D ). To 

propagate D via multiple paths through the circuit we will use Algorithm 3-2 

in a slightly modified form: instead of activating the three separate paths  lm, 

lm,1, and lm,0, we will activate now two overlapping composite paths lm.lm,1 

and lm.lm,0. When tracing and activating the path lm.lm,1, the value D is taken 

as 1 (if x(m) = D) or 0 (if x(m) = D ), and in the opposite case, when tracing 

and activating the path lm.lm,0, the value D should be taken as 0 (if x(m) = D) 

or 1 (if x(m) = D ). 

Example 3-6 
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Consider again the circuit and its SSBDD in Figure 3-21. Propagate the 

value D through all the three paths in a circuit. In the SSBDD the task is 

equivalent to generating a test for the node x2,2 with taking D = 1 on the path 

lm,1 and taking D = 0 on the path lm,0. It is easy to see that no additional 

assignments are needed for propagating the fault from x2 to y when using the 

SSBDD model. The resulting test pattern is: x1, x2 , x3 = -D- , where dash 

means don’t care. When trying to activate multiple paths in the gate level we 

would need two additional assignments: x1 = 1 and x3 = 0 with resulting test 

pattern: x1, x2 , x3 = 1D0. By keeping the variables x1, x3 free (not assigned) 

we can avoid many backtracks later in searching the test, and the test 

generation speed will increase. 

The last example shows another advantage of using SSBDDs in test 

generation compared to the gate-level approach. The explanation of this 

effect results from the fact that we work only with input variables of tree-like 

subcircuits instead of the internal variables of gate-level representation. 

3.2 HIGH-LEVEL TEST GENERATION 

Since traditional gate-level test generation algorithms for complex VLSI 

systems have lost their importance, other approaches based mainly on 

functional, behavioral, or hierarchical methods are gaining popularity. 

Functional test generation methods [1], [2], [35], [36], [37], [38], which do 

not use low-level implementation data, help increase the speed of test 

generation, however, they cannot achieve good test quality measured in 

terms of gate-level fault coverage. Hierarchical methods [39], [40], [41], 

[42] take advantage of the high level information for speeding up test 

generation while providing good coverage of low level faults or physical 

defects.  

3.2.1 Overview of methods for high level test generation 

Functional test generation without fault model. Structural details are not 

often given for complex digital systems. In these cases, functional test 

generation is used. Since the functional model of a system is independent 

on the implementation, the functional tests derived from functional models 

can be used not only to check whether physical faults are present in the 

circuit or system, but also as a design verification tool with which we check 

whether the implementation is free of design errors. 

Functional test generation can be done in two different ways [2]: by using 

specific functional fault models (Chapter 2), or by trying to derive tests with 

the knowledge of the specified fault-free behavior only. 
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In the first case heuristic and formal approaches can be used. BDD 

models as the specification of a system have been suggested in formal 

approaches [25], [43]. The BDDs can be still used for not very complex 

circuits only, and hence, can have only restricted use because of an 

exploding complexity of the model. 

Heuristic or ad hoc functional testing methods try to exercise all the 

functions of the system. In case of the microprocessor, a typical functional 

test is based on exercising the instruction set in a specific order. An 

important issue is whether the instruction set is orthogonal [2]. An 

orthogonal instruction set allows every operation to be executed in every 

possible addressing mode. This feature means that the operation decoding 

and address computation are independent, and these mechanisms can be 

tested separately. If the instruction set is not orthogonal, then every operation 

must be tested with all its addressing modes which leads to a very long test 

sequence. 

Functional testing can be optimized by using the start-small (or 

bootstrap) approach [2], in which the tests performed at a certain step use 

components and/or instructions tested in the previous steps. In this way the 

tested part of the system is gradually extended.  

A technique for ordering the instructions of a microprocessor according 

to the start-small principle is presented in [44]. The cardinality of an 

instruction is defined as the number of registers accessed during the execute 

phase of the instruction. Instructions are tested in increasing order of their 

cardinality. In this way the instructions affecting fewer registers are tested 

first. Among instructions of the same cardinality, priority is given to those 

with higher observability.  

As mentioned already, the disadvantage of functional approaches of test 

generation is the low fault coverage measured at the implementation level 

(e.g. low gate level stuck-at fault coverage). 

Test generation with symbolic execution trees. In Chapter 2 an RT level 

fault model was described. It can be used for formalized fault model based 

test generation. It can be justified that the functional faults of that model 

manifest physical faults of lower levels (SAF, bridging faults etc.) as 

functional faults at the RT level. 

Test generation for a complex digital system requires a concise 

description of the functions of the system. We have to describe all the 

possible disjoint modes of operation of the system by giving the input 

conditions and observing the effects of each mode. Hardware description 

languages can be classified into procedural and nonprocedural languages. 

The key difference is in the way of handling sequencing of activities. 

Procedural descriptions are easier to write, understand, and verify than 

nonprocedural descriptions. However, nonprocedural descriptions express 
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the semantics of hardware function more directly than the procedural 

descriptions, and they are therefore more suitable for fault model based test 

generation. Symbolic execution of procedural descriptions can be used to 

bridge the gap between the two types of descriptions [45]. This technique 

has been used to prove the correctness of machine architectures implemented 

in microcode. 

The description of a system is usually given as a set of RT level 

statements. An example of a RT level statement and its symbolic execution 

tree as the result of symbolic execution of the statement is presented in 

Figure 3-22. Each path in the tree represents a particular working mode of 

the system. The list of all paths of the tree can be used by any test generation 

procedure as a checklist to generate the test patterns required to exercise 

each mode of operation. 
 

IF F0 THEN  AC = AC + 1           
ELSE  

IF F1 THEN   

         IF AC = 0   

         THEN  PC = PC + 1 

ELSE   

IF F2 THEN   

AC = AX, AX = AC 

 

 

Figure 3-22. Symbolic execution tree for a function submodule 

The test generation technique based on symbolic execution trees involves 

the following steps [46]. 

Algorithm 3-3. Test generation with symbolic execution trees 

1) Derive test generation order for the set of function sub-modules in the 

whole RTL description (an instruction of a microprocessor may 

represent such a function submodule); 

2) Using the order obtained for every function sub-module, set up its 

symbolic execution tree for terminated paths; 

3) Perform heuristic test procedures derived from the results of Step 2 

for data storage and data transfer faults in the current function sub-

module; 

4) Inject an RTL fault which has not been tested along the selected path; 

5) Set up the symbolic execution sub-tree of the fault-injected machine 

and choose one terminated path for faulty symbolic results; 

6) Derive a test pattern for current fault by comparing the symbolic 

results and path constraints of good and bad machines. 
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In testing complex digital systems (e.g. microprocessors), an order of 

testing based on the partition of function modules (e.g. instructions) is 

needed to efficiently perform the formalized test generation [44]. Each RTL 

statement in each instruction is tested comprehensively based on RTL fault 

model. 

Structural register transfer level test generation. At higher levels a 

design is represented as a network of higher-level components. For example, 

at the RT level, a circuit can be viewed as an interconnection of components 

like registers, counters, multiplexers, adders, etc. Knowing how these 

components function allows using simple solutions for line-justification, 

fault-propagation or implication tasks similarly like in the D-algorithm [2].  

Figure 3-23. RT level data-path 

 

As an example, in Figure 3-23 an RTL data-path is presented. Potential 

RT level functions of the components are represented in Table 3-3 (for 

simplification, the control signals are represented by integer variables). 

 

Table 3-3. Potential operations of the components in Figure 3-23 

M1 M2 M3 R2 

y1 Function y2 Function y3 Function y4 Operation F 

0 M1 = R1 0 M2 = R1 0 M3 = M1+ R2 0 Reset R2 = 0 

1 M1 = IN 1 M2 = IN 1 M3 = IN 1 Hold R2 = R’2 

  2 M3 = R1 2 Load R2 = M3 

3 M3= M2* R2  

The word variables R1, R2 and R3  represent registers, the integer variables 

y1, y2 , y3,  and y4  represent the control signals.  M1, M2 and M3  are 

multiplexers. There is also an adder and a multiplier in the circuit.  

For line justification, we first determine the set of potential operations the 

component can execute, and among these we then select one that can 

produce the desired result. Assume we wish to justify R2 = 1110. From the 

values of the control variable we determine that the potential operations are 

R2M3

e
+M1

a

*M2

b





R1

IN 





c

d
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{Reset, Hold, Load}. Reset and Hold are not possible. For the Load 

operation we have the solution: y4 = 2, M3 = 1110. 

For fault propagation, we have to define corresponding working modes 

of the components in order to allow propagation of erroneous signals from 

inputs to outputs. Denote by D a symbolic faulty value of a vector variable to 

be propagated to an observable node of the RT level circuit. As an example, 

the fault propagation modes which make the component M3 transparent and 

allow propagation of erroneous signals from the inputs to the output are 

given in Table 3-4. 

 

Table 3-4. Transparent modes of  M3  in Figure 3-23 for fault propagation 

y3 M1 M2 R1 R2 IN M3 

0 D x x 0 X D 

3 x D x 1 X D 

2 x x D x X D 

0 0 x x D X D 

3 x 1 x D X D 

1 x x x x D D 

 

Hierarchical approach to test generation for systems. In hierarchical 

test generation for digital systems, top-down and bottom-up strategies are 

well-known [39-42], [47], [48]. In the bottom-up approach, local test 

patterns of components pre-calculated at the lower level are assembled into 

the test frames generated at the higher abstraction level. Generality of the 

approach is in the possibility of using precalculated library tests for 

components during higher level test planning. On the other hand, such 

algorithms typically ignore the incompleteness of the problem: high-level 

constraints imposed by other modules and/or the network structure may 

prevent test vectors from being assembled. This can cause that solutions in 

test generation cannot be found even if they exist. 

The top-down approach has been proposed to solve this problem by 

deriving environmental constraints for low-level solutions. However, the 

complex nature of high-level constraints makes it difficult to consider them 

in low level test generation.  Also, such technique may be of little use when 

the system is still under development in a bottom-up way, or when the pre-

generated local tests have to be applied.  
In the high-level test generation (either for bottom-up or top-down 

approaches), the test properties of system components (modules) are 

described in the form of fault-propagation modes (see Table 3-4). These 

modes usually are defined either by lists of control signals such that the data 

on input lines are reproduced without logic transformation into the output 

lines (called I-path [47]), or by a list of control signals that provide one-to-
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one mapping between data inputs and data outputs (F-path [48]). The I-

paths and F-paths constitute connections that can be used to propagate test 

vectors from input ports to the module inputs and to propagate the test 

response to an output port.  

In this approach, fault-propagation modes and the library test sets 

typically constitute two separate description packages for modules. The 

approach may be useless if not all functions in multi-functional modules are 

used in the given application, because in that case not all library test patterns 

can be assembled at the higher level, which results in a reduced fault 

coverage. Also, using local test patterns and only fault-propagation modes is 

not sufficient for high-level (behavioral) test generation, because the 

functional description of modules needed for test generation is only partially 

represented in this information. 

In the next subsection, a method is presented, which allows 

implementing both bottom-up and top-down approaches at uniform basis. 

We start with the bottom-up approach. The transparency features will be 

exploited to build up transparent I- or F-paths for assembling library patterns 

of components. In these cases when the bottom-up approach fails (no 

transparent path can be activated), we switch to the top-down approach for 

extracting high-level constraints with the goal to be considered when 

deriving tests for components at the lower level. 

3.2.2 Test generation for digital systems with decision 

diagrams 

Representing digital systems with high-level decision diagrams. Test 

generation methods developed for SSBDDs have an advantage compared to 

other logic level methods, namely that they can be easily generalized to 

handle the test generation problems at higher levels of systems [27], [28], 

[31].  

In general case beyond the Boolean algebra a decision diagram can be 

defined as a non-cyclic directed graph G = (M,,X) with a set of nodes M, a 

set of variables X, and a relation  in M where  (m)  M  denotes the set of 

successors of the node m  M [31].  The nodes m  M are labelled by 

variables x(m)  X (constants or algebraic expressions of x  X). For each 

value e from a set of possible predefined values e  V(x(m)) of a non-

terminal node variable x(m), there exists a corresponding output edge from 

the node m into a successor node me (m). Consider a situation where all 

variables x  X are fixed to particular values. By these values, for each non-

terminal node m a certain output edge is chosen, which is connected to a 

successor node. Let us call these connections between nodes - activated 

edges, and the chains of them - activated paths. For each pattern of values 
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of x  X, there exists always a full activated path from the root node to a 

terminal node. This relation describes a mapping from a Cartesian product of 

the sets of values V(X) for variables x  X  in all nodes to the joint set of 

values V(Y) of expressions in terminal nodes. Therefore, by DDs it is 

possible to represent arbitrary digital functions Y=F(X), where Y is the 

variable whose value will be calculated by the DD and X is the vector of all 

variables in the nodes of the DD.  

Figure 3-24. Register-transfer level data-path system 

 

Depending on the type of the system (or its representation level), we may 

have various DDs, where nodes have different interpretations and 

relationships to the system structure. In register transfer level (RTL) 

descriptions, we usually partition a digital system into the control part and 

the data part. State and output variables of the control part serve as 

addresses and control words, and the variables in the data part serve as data 

words. High-level data word variables describe RTL functions in data parts. 

When using DDs to describe complex digital systems, we have to represent 

the system by a suitable set of interconnected components (combinational or 

sequential subcircuits). Thereafter, we have to describe these components by 

their corresponding functions which can be represented by DDs. 

 Figure 3-24 shows a RTL data-path and its DD [49]. The DD is created 

by superposition of elementary DDs of components of the circuit, 

analogically to the superposition procedure for SSBDDs described in 

Subsection 1.2. The word variables R1, R2  and R3  represent registers, the 

integer variables y1, y2 , y3,  and y4  represent the control signals.  M1, M2  and 

M3  are multiplexers, and the functions R1+R2  and R1*R2  represent the adder 

and multiplier, respectively. The whole DD describes the behavior of the 

input logic of the register R2. 
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In test pattern simulation, a path is traced in the graph, guided by the 

values of input variables until a terminal node is reached, similarly as in the 

case of SSBDDs.  In this example, the result of simulating the vector y1, y2, 

y3, y4, R1, R2, IN = 0,0,3,2,10,6,12 is R2 = R1*R2 = 60 (bold arrows mark the 

path activated by the control pattern). Instead of simulating all the 

components in the circuit by a traditional approach, on the DD only 3 control 

variables are visited during simulation, and only a single data manipulation 

R2 = R1*R2 is carried out. 

Each node in a DD represents a subcircuit of the system. For example, the 

nodes y1, y2, y3, y4 represent multiplexers and decoders, the nodes R1, R2, IN, 

and other terminal nodes represent registers, input bus, and data 

manipulation subcircuits, respectively. To test a node of the DD means to 

test the corresponding subcircuit.  

Test generation for RT level data paths with a single DD. RT level data 

path can be represented by a single DD as shown in Figure 3-24. A test for 

such a system can be created in two parts [31]: 

- conformity test, which makes sure that the different working modes 

chosen by control signals are properly carried out, and 

- scanning test, which makes sure that the different functional blocks 

are working correctly. 

The task of the conformity test is to detect the control faults and the faults 

in multiplexers. In terms of DDs the non-terminal nodes are tested by the 

conformity test. For creating the conformity test we may use either high-

level fault models or the hierarchical approach. 

The task of the scanning test is to detect the faults in registers, buses and 

data manipulation blocks. In terms of DDs the terminal nodes are tested by 

the scanning test. For creating scanning test sequences hierarchical test 

generation approach is preferred, since no good high-level fault models for 

testing data manipulation blocks are known. In simpler cases (like buses and 

registers) pure high-level or functional test generation approaches may still 

be used. 

Conformity test. Consider a nonterminal node m labelled by a control 

variable x(m) in the given DD GY representing a digital system with a 

function Y = F(X). Let X = (XC, XD) where XC is the vector of control 

variables and XD is the vector of data variables. To generate a test for the 

node m means to generate a test for the control variable x(m)  XC.  Suppose 

that the variable x(m) may have n = V(x(m)) different values. For testing 

x(m), we have to activate and exercise all the proper working modes 

controlled at least once by each value of  x(m). For each of such a working 

mode, the needed state of the system should be generated, so that every 

possible faulty change of x(m) should produce a faulty next state, which 

differs from the expected next state of the given working mode.  
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Denote by me   (m) the successor node of the node m for the value 

x(m) = e, where e = 1,2,…,n. For generating a test for m we have to solve the 

following tasks on the DD (Figure 3-25). 

Algorithm 3-4. Conformity test generation for a nonterminal node m 

1) Activate a path lm from the root node of the DD up to the node m by 

choosing proper values for all the variables in the nodes of lm. 

2) For each e = 1,2,…,n activate consistent non-overlapping paths lm,e 

from me up to a terminal node mT,e for all successor nodes me of m by 

choosing proper values for all the node variables on all the paths lm,e. 

3) Find the proper set of data (the values of the variables in XD), so that 

the inequality  

f(mT,1)  f(mT,2)  …  f(mT,n)  

holds, where f(mT,e) is the functional expression in the terminal node  

mT,e reached by the path lm,e. 

Figure 3-25. Conformity test generation on the DD 

Consider the resulting symbolic test pattern in the following symbolic 

way:  

T = eCD;Ye 

where e is the symbolic value of the tested variable x(m), C is the vector of 

other control signals X’C  XC generated in the first two steps of the 

algorithm, D is the vector of data values generated in the third step of the 

algorithm, and Ye is the expected output value of the circuit corresponding to 

the value e of the tested control variable x(m). The final conformity test of 

the control variable x(m) created from the generated symbolic test pattern T 

= eCD;Ye  can be implemented as the following test program: 

Algorithm 3-5. Conformity test implementation for T = eCD;Ye 

For each value of e = 1,2, …, V(x(m)) 
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Load the data registers with D 

Carry out the working mode defined by the value of e  

- at the generated control signals x(m) = e, X’C = C, and  

- at the generated input data signals 

Read the value of Ye. 

END. 

Example 3-7 

Generate a test program for testing the multiplexer M3 represented by the 

node m with label y3 in Figure 3-24. We activate 4 paths lm,e for each value e 

= 0,1,2,3 of y3. Two of them, lm,1, lm,2, for values y3 = 1 and y3 = 2, 

respectively, are “automatically” activated since the successors of the node 

y3 for these values are terminal nodes. The control values for the test are 

found by activating the path lm with assigning y4 = 2, and by activating two 

paths lm,0 and lm,3 with assigning y1 = 0 and y2 = 0, respectively. The test data 

D: R1 = D1, R2 = D2, IN = D3 are found by solving the inequality 

R1 + R2  IN  R1  R1 * R2. 

The following conformity test program for the control variable y3 results: 

For e = 1,2,3,4 

BEGIN 

Load the data registers R1 = D1, R2 = D2 

Carry out the tested working mode at  y3 = e, y1 = 0, y2 = 0, y4 = 2 and 

IN = D3 

Read the value of R2,e. 

END. 

Scanning test. Consider a terminal node mT labelled by a functional 

expression f(mT) in the given DD. To generate a test for the node mT means 

to generate a test for the function f(mT). Denote by X(mT)  XD the data 

variables used in the expression f(mT). 

Test generation process for testing f(mT) is carried out according to the 

following algorithm. 

Algorithm 3-6. Scanning test generation for a terminal node mT 

1) Activate a path lm,T from the root node of the DD up to mT by 

choosing proper values C for all the control variables in the nodes of 

lm,T. 

2) Find the proper sets of data values D = (D1, D2,…, Dn) of X(mT) for 

testing the function f(mT) (this operation can be carried out at the 

lower (e.g. gate) level if the implementation details for f(mT) are 

given). 

From executing this algorithm the following test program results: 
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Algorithm 3-7. Scanning test implementation 

For all the values of  i = 1,2, …, n 

BEGIN 

Load the data registers X(mT) with Di 

Carry out the tested working mode at the control values C 

Read the value of Yi. 

END. 

Example 3-8 

Generate a test program for testing the multiplier in Figure 3-24. In the 

DD we have two terminal nodes with the multiplier function. Let us choose 

the node R1*R2 for testing. By activating the path to this node (shown in bold 

in Figure 3-24) we generate a control word (y2, y3, y4) = (0,3, 2). To find the 

proper values of R1 and R2 we need to descend to the lower level (e.g. gate 

level) and generate test patterns by a low level ATPG for the low level 

implementation of the multiplier. Let us have a test set of n  test patterns 

(D11,D21; D12,D22; … D1n,D2n) generated for the multiplier with inputs R1 and 

R2.  

From above the following test program results: 

For all the values of  i = 1,2, …, n 

BEGIN 

Load the data registers R1 = D1i, R2 = D2i 

Carry out the tested working mode at the control values (y2,y3 y4) = 

(0,3,2)  

Read the value of Yi. 

END. 

In the case when the control values are data dependent the algorithms 

become more complicated since the data found for nonterminal nodes by 

activating the paths in the DD should be consistent with the data found in 

processing of the terminal nodes. 

Representing complex digital systems by a set of DDs. In general case a 

system is represented by a set of DDs, where each DD represents a part 

(subcircuit or component) of the system.  

Consider a digital system consisting of the data and control parts as 

represented in Figure 3-26. 

The data path of the system is partitioned into four subcircuits with 

functions described in Table 3-5. To model the system in the clock cycle 

basis it is reasonable to partition the system into components (subcircuits) in 

such a way that each subcircuit consists of a register with its input logic 

connected directly to other registers or to primary inputs. To simplify the 

hierarchical test generation, it is also reasonable to represent complex self-
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contained blocks like adders, multipliers, ALUs, etc. as separate independent 

blocks. This allows during high-level test planning to reuse the local tests of 

these blocks if they are available 

 

 

Figure 3-26. A system consisting of control and data parts 

 In the example system presented in Figure 3-26, y1, y2, and y3 serve as 

control variables, A and B are the data inputs of the data path, R1, R2, and R3 

serve as data register variables, C is an output of the multiplier (input for the 

adder), and Y is the primary output of the data path. The functions of the 

subcircuits of the data path are presented also in Table 3-5 (the previous state 

is denoted by apostrophe). 

Table 3-5. Functions in components of the data-path in Figure 3-26  
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The DD-model of the system is represented in Figure 3-27. The model 

consists of graphs GR2, GC, GR1 and GY,R3 for representing the functions of the 

register R2, multiplier C and of two sub networks R1 and Y=R3, respectively, 

in the datapath surrounded by dotted lines in Figure 3-26. 

 

 

 

Figure 3-27. DD-representation of the digital system in Figure 3-26  

The control part of the system is represented by the DD for calculating 

the value of the complex variable q,y1,y2,y3 of the FSM given by the next 

state and output functions in Table 3-6. Here, q denotes the next state and q’ 

denotes the current state variable. The variables y1, y2, and y3 are the outputs 

of the FSM (the control inputs of the data path). 

 

Table 3-6. FSM state transition and output table of the control-path in Figure 3-26  

Hierarchical test generation for a complex digital system. According to 

the hierarchical approach, the tests are generated for all the nodes in all the 

DDs of the system description [50], [51]. For testing each node, the 

following steps of the procedure are carried out: high level deterministic 

fault manifestation, fault propagation, constraints justification, 

constraints satisfaction and low-level random test generation. The 
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procedure represents a systematic search and therefore an inconsistency in 

any stage will cause backtracking and returning to the last decision. 

Fault manifestation in a system of DDs means generating a symbolic 

local test for a node in the given DD. The procedure is similar to generating 

conformity or scanning tests described above for the single DD model. A not 

yet tested node m in a given DD GY representing a function Y = F(X), X = 

(XC,XD), XD = (XD1, XD2,…,XDk) is chosen. Appropriate test (scanning or 

conformity type) is generated for testing the node m in GY. As the result a 

symbolic test vector is generated: XC  = C, XD1 = D1, XD2 = D2,…, XDk = Dk, Y 

= D. Symbolic fault-effect value D is assigned to Y for fault propagating. 

The control values XC  = C, and the symbolic values (local test patterns) Di, i 

= 1,2, …,k assigned to the data variables XDi  XD represent the constraints 

to be justified later. The constraints in the case of conformity test are 

represented in the form of inequality expressions.  

Fault effect propagation. Subsequent to the manifestation phase, the fault 

effect has to be propagated to primary outputs of the whole circuit. The 

propagation procedure will follow, where decisions are made, both on the 

DDs of the data path as well as on the DD of the control part.  

To propagate faults through the system network, for all the subcircuits as 

network components the lists of fault propagation modes like in Table 3-4 

should be created. For standard high-level components such lists can be 

presented as library information. For arbitrary high-level subcircuits the DD 

model can be used for direct representation of fault propagation modes 

[52]. In Figure 3-28 a technique is illustrated, where the transparent fault 

propagation modes are directly inserted into the original DD-model in 

Figure 3-27. DDs allow representing this additional information more 

concisely than in the form of tables as shown in Table 3-4. 

In the graph GR1, an additional terminal node B is inserted. Activating the 

path in GR1 from the root node to B (by assigning y1=2 and R’3=0) is 

equivalent to creating an I-path (propagating a fault) from the input B to the 

register R1 in Figure 3-26. 

 

 

Figure 3-28. DDs with transparent fault propagation modes  
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In GY,R3, two additional terminal nodes with labels R’2 and C are inserted. 

Activating the path from the root to the terminal node C (by assigning y3=2 

and R’2=0 whereas the value of C remains free) is equivalent to creating an 

I-path (propagating a fault) from C to Y in Figure 3-26. Activating the path 

from the root to R’2 (by assigning y3=2 and C=0) is equivalent to propagating 

the fault from R’2 to Y.  

In the graph GC, three additional terminal nodes with labels R’1, A and 

constant 1 are inserted. Activating the path from the root to R’1 (by assigning 

A=1) is equivalent to propagating transparently a fault from R’1 to C in 

Figure 3-26. Activating the path from the root to A (by assigning R’1=1)  is 

equivalent to propagating the fault from A to C. Finally, by activating the 

path from the root to the terminal node with constant 1 (by assigning A=1 

and R’1=1) we solve the justification task C = 1.   

Constraints justification. The aim of the justification is to backtrace the 

values and symbols that were set during the manifestation and propagation 

phases. The backtracing is performed via constraints extraction [50], [51]. 

Each time that a backward step is made during the justification, the contents 

of the constraints will be updated. Justification will end when all the 

variables in the constraints are primary inputs or constants.  

The constraints are divided into two types: path activation constraints 

and transformation constraints. Path activation constraints are the 

constraints required to provide a transparent path through the circuit. 

Transformation constraints, in turn, reflect the value changes along the 

activated path. Path activation constraints are the constraints corresponding 

to the conditions to be satisfied in the FSM and to the values that are 

required to create a transparent path through a subcircuit of the system. 

Transformation constraints describe the changes in low-level test vectors on 

their way from primary inputs to the inputs of the module under test. During 

each time frame that is earlier than the manifestation time, the justification 

procedure selects a justification objective.  

Constraint satisfaction. Subsequent to the constraint justification, the 

constraints have to be solved. In order to achieve that goal, any known 

Constraint Satisfaction Problem (CSP) solving algorithm can be applied. 

Only the path activation constraints are managed during constraint 

satisfaction. Transformation constraints are considered in the low-level test. 

Low-level test generation. This step targets the gate-level structural faults 

in the current unit under test (UUT). During the low-level test, random 

values are generated to the variables of transformation constraints. The 

constraints are simulated to obtain the transformed vectors at UUT inputs, 

which, in turn, are applied to a fault simulation of the unit. If a fault is 

detected at the output of the module, it is also detected at the primary outputs 
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of the whole system. This is true because the fault effect propagation has 

previously guaranteed a transparent path from the output of the module to 

the primary outputs. 

The vectors that detect previously undetected faults are compiled into 

final test vectors for the whole hierarchical circuit. This takes place by 

substituting the symbolic values in the high-level symbolic test frames by the 

actual values found during constraint satisfaction and low-level test. 

To summarize the approach when generating a test for a module in a 

network, we have to propagate the fault effects from the output of the 

module up to the primary outputs of the network and also to propagate the 

test stimuli from the primary inputs of the network up to the inputs of the 

module. All these procedures are carried out on high-level DDs either by 

Algorithm 3-4 or Algorithm 3-6. 

Example 3-9 

Consider the use of fault propagation modes embedded in DDs on an 

example of symbolic high-level test generation for a multiplier block C in 

Figure 3-26. Denote the set of local test patterns for the block C by T(C). To 

test the block C on high-level by assembling the patterns T(C), we have to 

create an I (or F)-path from the input B through the subnetwork R1 to the 

input of C (for justifying the patterns T(C) on inputs of C), and to create a 

I(or F)-path from the output of C to the primary output Y for observing the 

test responses from C.  

 

 

Figure 3-29. Test generation example for the block C in Figure 3-26  
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The test generation procedure with DDs in Figure 3-27 and Figure 3-28 

is illustrated by the flow of activities in Figure 3-29. The generated final test 

sequence consisting of four symbolic test patterns is shown in Table 3-7, 

where t is the number of clock cycle. 

Symbolic fault manifestation for the block C = A * R’1 is carried out in 

the graph GC in Figure 3-28 by Algorithm 3-6 of generating scanning test for 

the node A * R’1. As the result, the highlighted path to the terminal node A * 

R’1 is activated. The symbolic values are assigned to A and R’1 (A = D1, R’1 

= D2) as justification objectives, and the symbolic fault-effect value D is 

assigned to C (C = D) for fault-effect propagation (see Figure 3-29).  

Fault-effect propagation is produced in GY,R3 in Figure 3-28 through the 

highlighted I-path which generates the constraints R’2 = 0 and y3 = 2 as the 

next justification objectives. To satisfy y3 = 2, we find in the DD for the FSM 

in Figure 3-27 a new justification objective q = 4. All these procedures 

assign values for variables at the current time frame t (the final test length is 

not yet known, we have to backtrace the time starting from the current 

moment denoted by t), see Figure 3-29.   

Constraint justification task has now the following list: A = D1, R’1 = D2, 

R’2 = 0 and q = 4 (all for the current time period t). Since A is an input, the 

first task can be removed from the list.  

To justify R’1 = D2, we have to go back to the previous time moment t-1 

(the time shift is marked by the apostrophe at R’1). To solve now the 

constraint R1 = D2, we generate in the graph GR1 an I-path through the nodes 

y1, R’3, and B. As a result, we find for t-1 the next justification tasks: B = D2, 

R’3 = 0, y1 = 2. The first of these tasks, B = D2,  is already a solution, since B 

is the input.  

To justify R’2 = 0, we find in GR2 a new constraint y2 = 0 for the time 

moment t-1.  

To justify the state q = 4 in the DD of the vector qy1y2y3 in Figure 3-27 

we can trace back to the states, either q = 2 or q = 3 at t-1. The constraint y1 = 

2 at t-1 in Figure 3-29 can be solved also by two ways:   q = 2 or q = 3 (see 

the same DD of qy1y2y3 in Figure 3-27). On the other hand, y2 = 0 at t-1 

needs either q = 0 or q = 2. Intersection of these constraints gives the needed 

state q = 2 for the time period t-1. 

 Table 3-7. Symbolic test sequence for C in Figure 3-26  
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The justification of the remaining constraints can be easily followed on 

the data dependency tree in Figure 3-29. The final test sequence consisting 

of four symbolic test patterns is given in Table 3-7. The symbolic values D1 

and D2 can be substituted either by low-level generated deterministic local 

test patterns or by randomly generated local test patterns. 

3.2.3 Test generation for microprocessors 

Testing of microprocessors is a difficult problem because of the 

complexity and due to the lack of implementation details. The methods 

proposed in literature are based mainly on a functional level using the 

instruction set information [1], [2], [35], [44], [53], [54], [55]. 

Test generation with S-graphs. A microprocessor may be represented by 

interaction between registers according to an instruction set [35]. In [55] a 

model of S-graph describing interaction of registers for test generation 

purposes was proposed. The nodes of the graph represent registers. A pair of 

registers Ri and Rj is connected by an edge if there is an instruction involving 

these registers. The instructions and additional conditions which make the 

corresponding interaction active are shown on the edges.  In addition to the 

register nodes two terminal nodes IN and OUT are added to represent the 

“outside world” of the microprocessor. They may be viewed as buses that 

connect the registers with a  memory and peripheral devices.  

In Figure 3-30 a simple instruction set of a hypothetical microprocessor 

and its S-graph are shown. 

 

 

 

 

 

 

I1:  MVI  A,D  A = IN   I6:  MOV  A,M  A = IN 

I2:  MOV  R,A  R = A              I7:  ADD  R       A = A + R 

I3:  MOV  M,R  OUT = R     I8:  ORA  R       A = A  R 

I4:  MOV  M,A  OUT = A      I9:  ANA  R       A = A  R 

I5:  MOV  R,M  R = IN      I10: CMA  A,D  A =  A 

 

 

 

 

 

 

t q y1 y2 y3 A B C R1 R2 R3 Y 

1 0 0  0  1     0   

2 1 1  2  0      0  

3 2 2  0  0  D2  D2 0   

4 4 1 1  2 D1  D   D D 
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Figure 3-30. Instruction set of a microprocessor and its S-graph 

 

Using the S-graph and the functional fault model of a microprocessor 

described in Chapter 2, the following test generation procedures have been 

developed [53], [55]: 

- testing the register-decoding function (fault classes F1-F5), 

- testing the instruction-decoding and instruction-sequencing 

function (fault classes F6-F8), 

- testing the data-storage and data-transfer functions (F9-F13). 

 

For testing the data manipulation functions no specific functional fault 

model has been proposed. The usual approach is to assume that tests for the 

data manipulation functions are developed by some other techniques [2]. In 

other words, it corresponds to the hierarchical approach where test planning 

is carried out on the functional (instructions set) level whereas test data for 

data manipulation units are generated on the gate-level.  

The test of register-decoding functions involves writing and reading of 

registers. Whenever there exist several ways how to write or read a register, 

we select the shortest sequence. According to the start-small principle, 

registers are ordered for testing in increasing order of the lengths of read 

sequences. 

The test of instruction-decoding and instruction-sequencing function is 

targeting the faults, which affect the execution of the instruction I and cause 

errors in the final results of the instruction (in the data transferred to the 

OUT node or in the register that can be read after I is executed). This should 

be true if microinstructions of I are not activated and/or if additional 

microinstructions are erroneously activated. Missing microinstructions are 

generally easy to detect. To detect the execution of additional parasitic 

microinstructions the method of codewords was proposed [53], [56]. 

 
IN 
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A R 

I1, I6    I5 

 I2 - I5 
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  I6 - I10 

   I4    I3 

   I2 
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Data-storage and data-transfer functions are tested together, because a 

test that detects stuck-at-faults on lines of a transfer path A  B also detects 

stuck-at-faults in the registers corresponding to the nodes A and B. A test for 

the transfer paths and for the registers is based on using different data 

patterns, so that 

- every bit in a transfer path is set to both 0 and 1, 

- every pair of bits is set to the values of 0 and 1 [55]. 

 

As an example, such test patterns for testing an 8-bit transfer path are 

presented in Table 3-8  where the test patterns belong to rows, and the bits of 

the bus belong to columns. 

Such a test detects all the stuck-at-faults on the lines of the transfer path 

and all the shorts between any pair of its lines. 

Test generation with Decision Diagrams. The described S-graph based 

approach can be regarded as a special case of the test generation technique 

developed for DDs [28], [31] and described in Subsection 3.2.2. The first 

two procedures of testing register- and instruction decoding functions are 

equivalent to testing nonterminal nodes of DDs (conformity test), and the 

third procedure of testing data storage and data transfer functions together 

with testing of data manipulation faults are equivalent to testing of terminal 

nodes of DDs (scanning test). 
 

Table 3-8. Test patterns for testing an 8-bit transfer path 

 7 6 5 4 3 2 1 0 

1 1 1 1 1 1 1 1 1 

2 1 1 1 1 0 0 0 0 

3 1 1 0 0 1 1 0 0 

4 1 0 1 0 1 0 1 0 

5 0 0 0 0 0 0 0 0 

6 0 0 0 0 1 1 1 1 

7 0 0 1 1 0 0 1 1 

8 0 1 0 1 0 1 0 1 

 

Example 3-10 

The DD-model of the instruction set in Figure 3-30 consisting of three 

DDs GOUT, GA and GR is shown in Figure 3-31.  

The DD-model represents a conceivable network of three blocks in 

Figure 3-32 with output variables A,R, and OUT, and with primary input 

variables: data variable IN, and control variable I which can have values 

from the set {I1,I2,…I10}.  
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Figure 3-31. Decision diagrams of the microprocessor described in Figure 3-30 

Transformation of the instruction set description into a structural model 

gives us a possibility to use standard procedures of fault manifestation, fault 

propagation and constraints justification in a similar way as it was 

considered in Subsection 3.2.2. 

Consider (scanning) test generation according to Algorithm 3-6 for the 

terminal node A + R in GA. The procedure is illustrated by highlighted 

activated paths in Figure 3-31a, by the fault manifestation, propagation and 

justification steps in Figure 3-33a and by the final test program created by 

Algorithm 3-7 in Figure 3-33b.  

In the fault manifestation step (test step in time frame t-1) a path is 

activated in GA from the root node to the terminal node A + R, which gives 

I(t-1) = I7 (see the bold lines in GA in Figure 3-31a). The fault propagation 

step (observation step in the time frame t) to propagate the fault from A to 

OUT is carried out in GOUT, which gives I(t) = I4. The constraints 

justification step (load operations in time frames t-2, and t-3) is carried out in 

GA by I(t-2) = I1 for loading A with test data IN(t-2) and in GR by I(t-3)  = I5 

for loading R with test data IN(t-3). As the result of the test generation we 

get a symbolic test sequence: I(t-3)  = I5, IN(t-3)  = DR ;  I(t-2) = I1, IN(t-2)  = 

DA ;  I(t-1) = I7;  I(t) = I4. 
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Figure 3-32. Structural model of microprocessor 
 

The whole test generation procedure is presented in Figure 3-33a, and the 

resulting test program according to Algorithm 3-7 is given in Figure 3-33b. 

The test data {DR, DA} for testing the adder A + R are generated at the low 

level by using gate-level specification of the adder. 

Consider now (conformity) test generation according to Algorithm 3-4 for 

the nonterminal node I in GA, which is illustrated in Figure 3-31b and Table 

3-9.  

In the fault manifestation step (time frame t-1) a local test pattern is 

generated in GA for testing the node I. Since I is the root node, and all its 

successors are the terminal nodes, no paths should be generated in GA. The 

local test pattern consists of the symbolic value D  {I1,I2,…I10} assigned to 

the control variable I(t-1), and of test data IN(t-1), A(t-1) and R(t-1) found as 

a solution of the inequality IN  A  A+R   AR   AR   A. The values 

of A(t-1) and R(t-1) need to be justified as constraints. Since IN is an input 

variable, IN(t-1) does not need justification. 

The fault propagation and constraints justification steps are similar to the 

previous example of testing A + R. 

 

 

Figure 3-33. Test program generation for a microprocessor 

 

To propagate the fault (in the time frame t) from A to OUT we assign I(t) 

= I4 in GOUT. To justify the constraint A(t-1) in the time frame t-2 we activate 

by I(t-2) = I1 in GA the path from the root to the terminal node IN, and assign 

Test program: 

For all IN(t-2) and IN(t-3) 

BEGIN 

I5:  MOV  R,M  R = IN(t-3)  

I1:  MVI  A,D  A = IN(t-2)   

I7:  ADD  R   A = A + R 

I4:  MOV  M,A  OUT = A 

END 

a) b) 
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IN(t-2) = A(t-1). To justify R(t-1) at t-3 we activate by I(t-3) = I5 in GR the 

path from the root to IN, which gives IN(t-3) = R(t-1).  

 Table 3-9. Test data generation for testing the node I in GA 

Test data generation for solving the inequality IN  A  A+R   AR   

AR   A is illustrated in Table 3-9. The inequalities are solved by 

choosing bit by bit the proper data for IN(t-1), A(t-1), and R(t-1) to make the 

values of all the expressions IN, A, A+R, AR, AR,A  different.  

The resulting test program according to Algorithm 3-5 can be constructed 

as follows: 

For all D = {I1,I2,…I10} 

BEGIN 

I(t-3) = I5, IN(t-3)=110; 

I(t-2)= I1,  IN(t-2)=101; 

I(t-1)= D, IN(t-1)=0; 

I(t)= I4. 

END 

In the discussion above we have described the general ideas of testing 

microprocessors based on generic architectures. An overview of test 

strategies developed for real life microprocessors may be found in [35]. 

3.3 FAULT SIMULATION 

Fault simulation plays an important role in the ATPG process. A fault 

simulator has to classify the given target faults in DUT as detected or 

undetected by given test stimuli (patterns). Fault simulation does not try to 

generate new test patterns, but determines the fault coverage of existing 

vectors. The basic fault simulation techniques are serial, parallel, deductive 

and concurrent. A special method is the critical path tracing technique where 

test patterns are generated together with determination of detected faults they 

cover during one path tracing through the DUT structure from primary 

outputs toward primary inputs [1], [2]. The serial fault simulation is the 

IN 0

A 101Data

R 110

I1, I6 IN 0

I2, I3 I4, I5 A 101

I7 A + R 1011

I8 A  R 111

I9 A  R 0

Functions
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simplest algorithm for simulating faults injected into the DUT structure by 

modifying the circuit description for a target fault and using a true-value 

simulator.  

3.3.1 Parallel fault simulation method 

The parallel fault simulation algorithm combines two separate concepts 

– single-fault propagation and parallel-pattern evaluation and was widely 

used in the 1960s and 70s. It was implemented in various commercial ATPG 

systems, e.g. the HILO and TEGAS simulators. The idea of the parallel fault 

simulation is to use the bit-parallelism of logic operations in the computer. 

For example in a 32-bit computer word, an integer consists of a 32-bit binary 

vector. This allows a simultaneous simulation of 32 copies of circuit (1 fault-

free circuit and 31 faulty copies) with identical connection, but with possibly 

different signal values [1], [2]. The faults detection is reported by different 

values in bit positions in comparison with the fault-free outputs to input 

stimuli. The automatic parallel fault simulation uses the following 

expressions: 

- A fault is represented by a mask on a signal line (index i is a bit position 

in masks): 

  mask (s)i  = 1      - if a fault on the line s exist,         (3-1) 

  mask (s)i  = 0      - if a fault on the line s does not exist. 

- SAF0 or SAF1 are represented by p_value defined for the signal line:  

  p_value (s)i = 1   - if the fault on s is SAF1 

  p_value (s)i = 0   - if the fault on s is SAF0.         (3-2) 

 

The new value on the signal line s is calculated according to the following 

expression: 

    s’ = s . mask (s) + mask (s) . p_value (s),         (3-3) 

where operation “.” and “+” is logical multiplication and addition. 

 

A simple example of the parallel fault simulation is shown on a circuit 

and input pattern (ABCD) = (1101) presented in Figure 3-34. 

 

Bit position for faults injection 

bit 3: fault-free circuit 

bit 2: circuit with SAF0 on line E 

bit 1: circuit with SAF1 on line F  

bit 0: circuit with SAF1 on line G 
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Figure 3-34. An example of parallel fault simulation 

 

Example 3-11:  

Consider circuit c17 in Figure 3-15 and 8 faults selected for parallel fault 

simulation described in Table 3-10. The masking values and corresponding 

p_values for the selected faults are shown in Table 3-11. The input vector for 

c17 is (ABCDE) = (01110). Find all faults covered by the input pattern. 

 

 

Table 3-10. A list of faults for c17 

Bit position Faults signal line 

1 fault-free  
2 A/SAF0 A 

3 A/SAF1 A 

4 B/SAF0 B 

5 B/SAF1 B 

6 C/SAF0 C 

7 D/SAF1 D 

8 C1/SAF1 Fan from C 

9 C2/SAF1 Fan form C 

Table 3-11. Data for parallel simulation  

Signal line mask p_value 

A 011000000 001000000 

B 000110000 000010000 

C 000001000 000000000 

D 000000100 000000100 

C1 000000010 000000010 

C2 000000001 000000001 

 

The steps of the parallel fault simulation are: 

1. Fault-free simulation with the input patterns: A = (000000000), B = 

(000000000), C = (111111111), D = (000000000), E = (000000000); 

Outputs are Y1 = (000000000), Y2 = (0000000000). 

2. The new value for signal line A is calculated according (3-1): 

 A’ = A . mask (A) + mask (A) . p_value (A)  

      A’ = (000000000).(100111111)+(011000000).(001000000) 
      A‘ = (001000000). 

3. A similar computation is done for other signal lines B, C, D: 

   B’ = (000010000), C’ = (111110111), D’ = (000000000).  

4. The logical operations are computed with the new masked values, e.g.: 

   NOT(A’.C’) = (110111111) and NOT(C’.D’) = (111111111). 

   Then the new values are calculated according to steps 2 and 4 based on  

   the circuit structure. If any fault is modelled on signal line S, then S=S’. 
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5. The values on outputs are Y1= (001010000) and Y2=(000010000) and 

according to Table 3-11 SAF1 on line A and SAF1 on B are covered by 

pattern (ABCDE) = (01110). 

 

3.3.2 Deductive and concurrent fault simulation 

techniques 

          In the deductive fault simulation technique, only the fault-free DUT is 

simulated. All signal values in a faulty circuit are deducted from the fault-

free circuit values and the circuit structure. Since the circuit structure is the 

same for all faulty circuits, all deductions are carried out simultaneously. 

Thus, a deductive fault simulator finds all faults in a single pass of the fault-

free simulation augmented with the deductive procedures for creating and 

propagating fault lists from primary inputs towards primary outputs. In this 

process, fault lists are generated for each signal.  

 

Figure 3-35. Fault list creation and propagation through gate AND 

 

An example of the fault list propagation through basic gate AND is shown in 

Figure 3-35.  LA, LB, LC, LC1, LC2 are lists of faults detected on signal 

lines A, B, C, C1and C2. They are propagated through the DUT structure 

from primary inputs to primary outputs using the rules reported in Table 3-

12. I0 and I1 mean the numbers of logic 0 and logic 1, respectively, set up on 

gate’s inputs.   

 

Table 3-12. Rules for fault list propagation through basic gates 

Gate No. of logical values 0 or 1 Rules 

AND/NAND I0 = 0 

 

I1  0 

 LXi 

                        i I1 

 LXi - LXi 

i  I0         i j I1 

OR/NOR I1 = 0 

 

I0   0 

 LXi  

                        i j I0 

LXi - LXi 

0 

 1 
A 

B C 

LA={A/SAF1} 

LB={B/SAF0

} 

LC={A/SAF0,C/SAF1} 

0 
0 

C1 

C2 
0 

LC1={A/SAF1, C/SAF1, C1/SAF1} 

LC2={A/SAF1, C/SAF1, C1/SAF1} 
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Gate No. of logical values 0 or 1 Rules 

i I1         i I0 

NOT  LXi 

 

Example 3-12:  

Consider fault list propagation through gate AND with 3 inputs using the 

test vector (ABC) = (101); the assumption that the next fault lists were 

propagated to lines A, B, C (see Figure  3-36): LA = {P/t1, Q/t0, R/t1, 

A/t0}, LB = {Q/t0, R/t0, S/t1, B/t1} LC = {R/t1, S/t0, C/t0}, where P, Q, R, 

S are lines before A, B, C, D. The list of faults is created for the output of 

AND (E) according to the expression:   LE = (LB – LA  LC)  E/t1 and 

the resulting list of faults on line E is LE = {R/t0, S/t1, B/t1, E/t1}. 

 

Figure  3-36. Fault lists propagation in c17 to one output 

 

Example 3-13:  

Find all faults in circuit c17 covered by vector (ABCDE) = (01110) 

observable on output Y1 using the deductive fault simulation. The results are 

shown in Figure  3-37 based on the following steps: 

Step 1: Fault-free simulation for the input test. 

Step 2: Fault lists creation on the primary inputs. 

Step 3: Fault lists propagation using the rules defined in Table 3-12 up to  

 primary outputs. 
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Figure  3-37. Fault lists propagation in c17 to one output 

 

The disadvantage of the deductive fault simulation is in creation of fault 

lists for each test. All generated fault lists for the applied input vector are 

deleted and they have to be created again for the new input vector. Therefore 

the deductive fault simulation was modified, and a new concurrent fault 

simulation technique has been developed. Another problem has to be solved 

if DUT contains a feedback where the fault list of a signal may change 

several times. Only after the fault lists become stable, the simulator proceeds 

with the next vector. 

3.3.3 Concurrent fault simulation techniques 

 The concurrent fault simulation technique is the most general fault 
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simulation technique. It can handle various circuit models, faults, signal 

states and timing models. It basically extends the event-driven simulation 

method to the simulation of faults in the most efficient way. Beside the fault 

type, a fault list created for each cell in DUT contains also faulty values on 

the inputs and output of each cell. An example is shown in Figure 3-38 

where all possible faulty states of each element are described.  

 

Figure 3-38. Fault list propagation using the concurrent fault simulation 

 

While parallel and deductive simulation techniques are reasonably 

efficient for two logical values, using three and more logical values 

significantly increases the computational requirements, and the techniques 

are not practical in this case. Both methods are only partially compatible 

with functional-level modelling, as they can process only components that 

can be entirely described by Boolean equations. Both parallel and deductive 

simulation, the basic data structures and algorithms are strongly dependent 

on the number of logical values used in modelling. By contrast, the 

concurrent method provides only a mechanism to represent and maintain the 

differences between the good circuit and a set of faulty circuits, and this 

mechanism is independent of the way the circuits are simulated. It is totally 

compatible with functional-level modelling and can support mixed-level and 

hierarchical modelling. The main disadvantage is that it requires more 

memory than other methods, but in comparison with the deductive fault 

simulation the concurrent method is faster and suitable for increasingly 

complex circuits and evolving technology. 

3.3.4 Critical path tracing method 

The critical path tracing technique is a fault independent method. For 

every input vector, critical path tracing first simulates the fault-free circuit 

then it determines the detected faults by ascertaining which signal values are 

critical. The technique is based on the next two definitions and Lemma [2].  

Definition 3.2: A signal line l has a critical value v in the test vector t if t 

detects the fault SAF_v. A line with a critical value in t is said to be critical in 

t.  

Definition 3.3: A gate input is sensitive (in a test t) if complementing its 

value changes the value of the gate outputs. 

Lemma 3.1: If a gate output is critical, then its sensitive inputs, if any, are 

also critical.  
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The primary outputs are immediately critical in any test. Starting at the 

primary outputs the other critical lines are found by tracing towards primary 

inputs of DUT. This process determines the paths composed of critical lines, 

called critical paths. It uses the concept of sensitive inputs. The sensitive 

inputs of a gate can be easily identified during the fault-free simulation of 

DUT, as scanning for inputs with controlling value is an inherent part of gate 

evaluation. The sensitive inputs of a gate with two or more inputs are easily 

determined as follows: 

1. If only one input j has the controlling value of the gate, then j is 

sensitive. 

2. If all inputs have controlling value, then all inputs are sensitive. 

3. Otherwise no input is sensitive. 

If all critical lines are found in DUT, and values were assigned to primary 

inputs then all faults on critical lines are covered by the received test pattern.     

An example is shown in Figure 3-39 (critical lines are bold).  

Comparing with conventional fault simulation, the features of critical 

path tracing are as follows: 

- It directly identifies the faults detected by a test without simulating the 

set of all possible faults. 

- It deals with faults only implicitly.  

- It is based on a path tracing that does not require computing values in the 

faulty circuits by gate evaluations or fault list processing. 

- It is an approximate method.  

 

Figure 3-39. Critical lines in a circuit 

 

     The critical path tracing method is faster and requires less memory than 

the conventional fault simulation techniques. Some experimental results 

have shown that the critical path tracing technique is faster than the 

concurrent fault simulation but this method has to encounter some problems 

in circuits with reconvergent fanouts. If not all lines from one root are 

critical the root does not have to be critical. The critical path tracing 

technique can produce conflicts, self-masking, multiple-path sensitisation 

and overlaping among primary output cones. 
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3.3.5 Macro-level fault simulation 

In gate-level deductive fault analysis we need different fault list 

propagation formula to be stored in the data base for each gate and for each 

input pattern. This makes impossible to carry out the fault propagation 

procedure at higher than gate levels e.g. at macro levels where the macros 

may represent arbitrary Boolean functions.  

Using Boolean full differentials it would be possible to generalize the 

gate-level deductive fault analysis approach to higher macro levels. 

Consider a macro (subcircuit) with a Boolean function y = F(X) = F(x1, 

x2, … xn). Introduce a Boolean differential dxi so that dxi = 1 when the value 

of the variable xi is changing because of a fault, and dxi = 0 otherwise. In a 

similar way, a differential dy can be introduced for the output variable y.  

The full Boolean differential [58] dy of  the output variable y describes 

the cause-effect relationship between any value changes of input variables 

xi  X and the output variable y. The expression of the full differential dy can 

be presented also in the vector form where each component of the vectors dxi 

=(dxi,1, dxi,2, dxi,m) and dy = (dy1, dy2, dym) represents the behavior of the 

corresponding variables xi and y for different possible faults F1, F2 , … ,Fm. 

Representing the input fault lists Lx1, Lx2, …, Lxn,  in a vector form we can 

easily calculate the output fault list Ly in a vector form. 

Example 3-14 

Consider an example of the gate-level deductive fault simulation shown 

in Figure 3-40.  

 

 

Figure 3-40. Gate-level deductive fault simulation 

 

The Boolean full differential of the circuit is: 

Substituting the variables xi by their values at the given test pattern we get 

))]())(([())(( 5544332211 dxxdxxdxxdxxdxxydy 
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 Let us have the following fault lists at inputs: L1 = {1,3,4}, L2 = {2,3,4}, 

L3 = {2,4}, L4 = {1,2,5}, L5 = {3,4}. By gate level deductive fault list 

calculation we get La = {1,2,3,4,5}, Lb = {1,2,3,4}, Lc = {2,4}, Ly = {1,3}.  

In the vector form we have: dx1 = 10110, dx2 = 01110, dx3 = 01010, dx4 = 

11001, dx5 = 00110. Calculating the full Boolean differential we get dy = 

10100 which corresponds to the fault list Ly = {1,3}. 

 

3.3.6 Hierarchical fault simulation 

Gate-level fault simulation methods have proved to be very time-

consuming for complex digital systems. Hierarchical methods allow taking 

the advantage of high level information while simulating tests for gate-level 

faults.  

In the hierarchical approach, the fault analysis for the given test is carried 

out for the blocks of the higher level network block by block. At each 

iteration, a target block is chosen and represented on the gate level whereas 

all other blocks are represented on the RT level. Always when the target 

block is simulated, the faults are determined which cause erroneous output 

behaviour of the block at the given input pattern and given state of the target 

block. The propagation of detected faults of the target block is analyzed by 

using the RTL or other high-level description. 

An example of the approach is illustrated in  

Figure 3-41 where the network of the system consists of three blocks: A, 

B, and C. The block B is taken here as the target block for the fault analysis, 

and is represented on the gate level. Test sequence is simulated for the whole 

system on the higher level, pattern by pattern. When the target block B is 

reached by the first input pattern P, low level fault analysis in B is carried 

out, and the subset of all faults R activated in B by the pattern P at the given 

state of B is calculated. For each fault r  R, the corresponding faulty output 

pattern P(r) of the block B is calculated. Activated faults are grouped into 

subsets Ri  R, so that for each faulr r  Ri  the output pattern P(r) = Pi 

would be the same. The fault-free pattern P, and all the faulty patterns P1, 

…,Pk  are simulated through other blocks of the network on the higher level. 

If Pi  P at the observable output then the faults Ri  are claimed as detected. 

The detected faults can be removed from further analysis (called fault 

dropping [2]). In general, at the output of each higher level block, a data 

structure (complex test pattern) D = P, (P1,R1), …, (Pk,Rk) will be 

generated where R1  R2  … Rk  R. When the target block B (UUT) is 

reached by a complex pattern D, all the patterns in P,P1, …,Pk should be 

)()( 54321 dxdxdxdxdxdy 
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fault simulated on the low-level. For P, new faults will be determined which 

are activated by P, and for all the faults in each Ri it will be checked if they 

are propagated by the pattern Pi again through B or not. After that, a new 

data structure D will be created for the output of B. 

Consider a block with a function of n arguments y = f(x1, … xn) (xi is 

either input or a state variable), and a set of complex patterns Di = {Pi,0, 

(Pi,1,Ri,1), …, (Pi,ki,Ri,ki)}, i = 1,2, …, n where Pi,0 is the fault-free pattern on 

the input xi, and Pi,j are the possible faulty patterns on the same input for the 

cases of  faults in Ri,j , j=1,2,… ki. Denote by  

the set of all faults propagated to the input xi, where R is the whole set of 

faults in the system to be simulated. 

 

Figure 3-41. Multi-level fault simulation 

 

The multi-level fault simulation of digital systems is carried out by the 

following procedures. 

Algorithm 3-8. High-level fault simulation  

To fault simulate a high-level block for a complex pattern D = (D1,…, 

Dn), first, the correct behaviour of the block for the pattern (P1,0,…,Pn,0) is 

calculated on the high-level. Then, for all the faults 
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propagated to the block, all the possible combinations of patterns 

(P1(r),…,Pn(r)) where for each i = 1, …, n either Pi(r) = Pi,0 if r  Ri, or 

Pi(r)= Pij  if  r  Rij, are simulated on high-level. 

Algorithm 3-9. Low-level fault simulation 

To fault simulate the target low-level block for a complex pattern D = 

(D1,…, Dn), first, the correct behaviour of the block for the pattern (P1,…,Pn) 

is calculated, and the faults causing erroneous output behaviour of the block 

at this pattern are determined. Then, for all the faults r  R’ in the complex 

pattern D which have propagated back to the same target block, all the 

possible combinations of patterns (P1(r), …,Pn(r)) are simulated in the 

presence of the given fault r. 

Figure 3-42. Fault propagation in the multi-level fault simulation 

 
Example 3-15 

An example of the fault propagation in multi-level fault simulation is 

presented in Figure 3-42. Assume the input 1 of the target block represented 

on gate-level is reached by a complex test pattern D1 = {P10, (P11,R11), 

(P12,R12)} = {1100, 0010(3), 1001(2,4,8)}. The faults 2,3,4,8 of the block 

have been propagated through the simulated feedback loop back to the same 

block. By the fault analysis we find that 12 faults are detected by the current 

input pattern P10 = 1100 (or propagated by faulty patterns 0010 and 1001) on 

the output of the target block. They cause 5 different output patterns which 

differ from the expected one 1010. All the 6 output patterns are simulated 

now on high-level for the next block. From P30=P35 we conclude that the 
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faults 7,11 and 12 are self-masked – the pair (P35,R35) is removed from 

further simulation. From P32=P34 we conclude that the faults 1,3 and 5,8 

cannot be distinguished, and we include them into the same group of faults 

R32 = {1,3,5,8}. 

For fault analysis of the target block on the lower level and fault 

propagation through other blocks on the higher level we can use the same 

mathematical model of decision diagrams discussed in this chapter. To 

increase the speed of low-level fault analysis, we can use macro networks 

instead of gate networks where each macro is represented by a SSBDD. For 

fault propagation through other blocks we can use word-level DDs [57]. 

3.4 FAULT DIAGNOSIS AND FAULT 

LOCALISATION 

A unit under test (UUT) fails when its observed behavior is different 

from its expected behavior. The task of the fault diagnosis is to locate the 

fault(s) in a structural model of the UUT. The degree of the accuracy to 

which faults can be located is called diagnostic resolution. Functionally 

equivalent faults (FEF) cannot be distinguished. The partition of all faults 

into distinct subsets of FEF defines the maximal fault resolution. A test that 

achieves the maximal fault resolution is said to be a complete fault-

localization test [2]. 

The fault diagnosis process is often hierarchical, carried out as a top-

down process (with a system operating in the field) or bottom-up process 

(during the fabrication of the system).  

In the top-down approach (system  boards  ICs) first-level 

diagnosis may deal with "large" replaceable parts of a system like boards 

called also field-replaceable units. The faulty board is then tested in a 

maintenance center to locate the faulty component (IC) on the board. 

Accurate location of faults inside a faulty IC may be also useful for 

improving its manufacturing process.  

In the bottom-up approach (ICs  boards  system) a higher level is 

assembled only from components already tested at a lower level. This is 

done to minimize the cost of diagnosis and repair, which increases 

significantly with the level at which the faults are detected. 

The rule of 10: if it costs $1 to test an IC, the cost of locating the same 

defective IC when mounted on a board and repairing the board is about $10; 

when the defective board is plugged into a system, the cost of finding the 

fault and repairing the system is $100. 

In manufacturing, the most likely faults are fabrication errors affecting 

the interconnections between components; in the field the most likely faults 
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are physical failures internal to components (because every UUT has been 

successfully tested in the past). Knowing the most likely class of faults helps 

in fault location. 

3.4.1 Combinational fault diagnosis methods 

Most fault diagnosis methods are based on using fault tables or fault 

dictionaries, which can be created by fault simulation. To locate faults, one 

tries to match the actual results of test experiments with one of the 

precomputed expected results stored in the database (fault table or 

dictionary). The result of the test experiment represents a combination of 

effects of the fault to each test pattern. That's why we call this approach 

combinational fault diagnosis method. If this look-up process is successful, 

the fault table (dictionary) indicates the corresponding fault(s). 

In general, a fault table is a matrix FT = aij where columns Fj represent 

faults, rows Ti represent test patterns, and  aij = 1 if the test pattern Ti detects 

the fault Fj, otherwise if the test pattern Ti does not detect the fault Fj, aij = 0.  

Denote the actual result of a given test pattern by 1 if it differs from the 

precomputed expected one, otherwise denote it by 0. The result of a test 

experiment is represented by a vector E = ei  where ei = 1 if the actual 

result of the test pattern does not match with the expected result, otherwise ei 

= 0. Each column vector fj corresponding to a fault Fj represents the result of 

the test experiment in the case when the fault Fj is present.  

Three cases are now possible depending on the quality of the test patterns 

used for carrying out the test experiment and on the thoroughness of the fault 

set taken into account: 

1. The test result E matches with a single column vector fj in FT. This 

result corresponds to the case where a single fault Fj has been located. In 

other words, the maximum diagnostic resolution has been obtained. 

2. The test result E matches with a subset of column vectors {fi, fj … fk} 

in FT. This result corresponds to the case where a subset of 

indistinguishable faults {Fi, Fj … Fk} has been located. To distinguish these 

faults additional test patterns are needed. 

3. No match for E with column vectors in FT is obtained. This result 

corresponds to the case where the given set of vectors does not allow 

carrying out fault diagnosis. The set of faults described in the fault table 

must be incomplete (in other words, the real existing fault is missing in the 

fault list considered in FT).  

In the example in Figure 3-43 the results of three test experiments E1, E2, 

E3 are demonstrated. E1 corresponds to the first case where a single fault is 

located, E2 corresponds to the second case where a subset of two 

indistinguishable faults is located, and E3 corresponds to the third case where 
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no fault can be located because of the mismatch of E3 with the column 

vectors in the fault table. 

 

 

Figure 3-43. Fault diagnosis with the fault table 

 

Fault dictionaries (FD) contain the same data as the fault tables with the 

difference that the data are reordered. In FD a mapping between the potential 

results of test experiments and the faults is represented in a more compressed 

and ordered form. For example, the column bit vectors can be represented by 

ordered decimal codes (see the example) or by some kind of compressed 

signature.  

An example of the fault dictionary for the fault table in Figure 3-43 is 

shown in Figure 3-44. 

 

Figure 3-44. Fault dictionary 

To reduce large computational effort involved in building a fault 

dictionary, the detected faults are dropped from the set of simulated faults 

during fault simulation. Hence, all the faults detected for the first time by the 

same vector will produce the same column vector (signature) in the fault 

table, and will be included in the same equivalence class of faults. In this 

case the test experiment can stop after the first failing test, because the 

information provided by the following tests is not used. Such a test 

experiment achieves a lower diagnostic resolution. A tradeoff between 
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computing time and diagnostic resolution can be achieved by dropping faults 

after k >1 detections. 

 

Figure 3-45. Reduced fault table 

 

Example 3-16 

In the fault table shown in Figure 3-45 produced by fault simulation with 

fault dropping, only 19 faults need to be simulated compared to the case of 

42 faults when simulation without fault dropping is carried out (the 

simulated faults in the fault table are shown in shadowed boxes). As the 

result of the fault dropping, however, the following faults remain not 

distinguishable: {F2, F3},{F1, F4}.  

3.4.2 Sequential fault diagnosis methods 

In sequential fault diagnosis the process of fault location is carried out 

step by step, where each step depends on the result of the diagnostic 

experiment at the previous step. Such a test experiment is called adaptive 

testing. Sequential experiments can be carried out either by observing only 

output responses of the UUT or by observing also internal control points of 

the UUT (called also guided probing). Sequential diagnosis procedure can 

be graphically represented as diagnostic tree.     

Fault Location by Edge-Pin Testing. In fault diagnosis test patterns are 

applied to the UUT step by step. In each step, only output signals at edge-

pins of the UUT are observed and their values are compared to the expected 

ones. The next test pattern to be applied in adaptive testing depends on the 

result of the previous step. The diagnostic tree (Figure 3-46) of this process 

consists of the fault nodes FN (rectangles) and test nodes TN (circles). A FN 

is labelled by a set of not yet distinguished faults. The starting fault node is 

labelled by the set of all faults. To each FNk a TN is linked which is labelled 

by a test pattern Tk to be applied as the next one. Every test pattern 

distinguishes between the faults that it detects and the ones it does not. The 

task of the test pattern Tk is to divide the faults in FNk into two groups - 

detected and not detected by Tk faults. Each test node has two outgoing 
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edges corresponding to the results of the experiment of this test pattern. The 

results are indicated as passed (P) or failed (F). The set of faults shown in a 

current fault node (rectangle) are equivalent (not distinguished) under the 

currently applied test set. 

 

Figure 3-46. Diagnostic tree 

 

Example 3-17 

The diagnostic tree in Figure 3-46 corresponds to the fault table in 

Figure 3-43. We can see that most of the faults are uniquely identified, two 

faults F1 and F4 remain indistinguishable. Not all test patterns used in the 

fault table are needed. Different faults are located by identifying test 

sequences with different lengths. The shortest test contains two patterns the 

longest one four patterns. 

Rather than applying the entire test sequence in a fixed order as in 

combinational fault diagnosis, adaptive testing determines the next vector to 

be applied based on the results obtained by the preceding vectors. In our 

example, if T1 fails, the possible faults are {F2,,F3}. At this point applying T2 

would be wasteful, because T2 does not distinguish between these faults. The 

use of adaptive testing may substantially decrease the average number of 

tests required to locate a fault. 

Generating tests to distinguish faults. To improve the fault resolution of a 

given test set T, it is necessary to generate additional test patterns to 

distinguish among faults equivalent under the given test T. 

Consider the problem of generating a test to distinguish between faults 

F1 and F2 [2]. Such a test must detect one of these faults but not the other, 

or vice versa. The following cases are possible: 

- F1 and F2 do not influence the same set of outputs. Let OUT(Fk) be 

the set of outputs influenced by the fault Fk. A test should be 

generated for F1 using only the circuit feeding the outputs OUT(F1), 

or for F2 using only the circuit feeding the outputs OUT(F2). 

- F1 and F2 influence the same set of outputs. A test should be 

generated for F1 without activating F2, or vice versa, for F2 without 

activating F1. 
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Three possibilities can be mentioned to keep a fault F2: x  e not 

activated, where x denotes a line in the circuit, and e  {0,1}: 

- the value e should be assigned to the line x; 

- if this is not possible then the activated path from F2 should be 

blocked, so that the fault F2 could not propagate and influence the 

activated path from F1; 

- if the 2nd case is also not possible then the values propagated from the 

sites F1 and F2 and reaching the same gate G should be opposite to 

the inputs of G. 

Example 3-18 

Consider the following fault diagnosis cases in a gate-level circuit in 

Figure 3-47. 

1. There are two faults in the circuit: F1: x3,1 0, and F2: x4 1. The 

fault F1 may influence both outputs; the fault F2 may influence only 

the output x8. A test pattern 0010 activates F1 up to the both outputs 

and F2 to x8 only. If both outputs will be wrong, F1 is present, and if 

only the output x8 will be wrong, F2 is present. 

Figure 3-47. Gate-level circuit 

 

2. There are two faults in the circuit: F1: x3,2 0, and F2: x5,2 1. Both 

of them influence the same output of the circuit. A test pattern 0100 

activates the fault F2. The fault F1 is not activated, because the line 

x3,2 has the same value as it would have if F1 were present. 

3. There are the same two faults in the circuit: F1: x3,2 0, and F2: 

x5,2 1. Both of them influence the same output of the circuit. A test 

pattern 0110 activates the fault F2. The fault F1 is activated at its 

site but not propagated through the AND gate, because of the value 

x4 = 0 at its input. 

4. There are two faults in the circuit: F1: x3,1 1, and F2: x3,2 1. A test 

pattern 1001 consists the value x1 1 which creates the condition 

where both of the faults may influence only the same output x8. On 

the other hand, the test pattern 1001 activates both of the faults to the 

same OR gate (i.e. none of them is blocked). However, the faults 

produce different values at the inputs of the gate, hence they are 
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distinguished. If the output value on x8 will be 0, F1 is present. 

Otherwise, if the output value on x8 will be 1, either F2 is present or 

none of the faults F1 and F2 are present.  

Guided-probe testing extends edge-pin testing process by monitoring 

internal signals in the UUT via a probe which is moved (usually by an 

operator) following the guidance provided by the test equipment. The 

principle of guided-probe testing is to backtrace an error from the primary 

output where it has been observed during edge-pin testing to its physical 

location in the UUT. Probing is carried out step-by-step. In each step an 

internal signal is probed and compared to the expected value. The next 

probing depends on the result of the previous step.  

A diagnostic tree can be created for the given test pattern to control the 

process of probing. The tree consists of internal nodes (circles) to mark the 

internal lines to be probed, and of terminal nodes (rectangles) to show the 

possible result of diagnosis. The results of probing are indicated as passed 

(P) or failed (F). 

Typical faults located are “opens” and defective components. An open 

fault  between two points A and B in a connection line is identified by a 

mismatch between the error observed at B and the correct value measured at 

A. A faulty device is identified by detecting an error at one of its outputs, 

while only correct values are measured at its inputs. 

The most time-consuming part of guided-probe testing is moving the 

probe. To speed-up the fault location process, we need to reduce the number 

of probed lines. A lot of methods to minimize the number of probings are 

available. 

Figure 3-48. Gate-level circuit 
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Figure 3-49. Diagnostic tree for guided probe testing 

 

Example 3-19 

Let us have a test pattern 1010 applied to the inputs of the circuit in 

Figure 3-48. The diagnostic tree created for this particular test pattern is 

shown in Figure 3-49. On the output x8 , instead of the expected value 0, an 

erroneous signal 1 is detected. By backtracing (indicated by bold arrows in 

the diagnostic tree) the faulty component NOR- x5 is located. Diagnostic tree 

allows carrying out optimization of the fault location procedure, for 

example, generating a procedure with minimum average number of probes. 

3.5 TEST GENERATION FOR RAMS 

The testing and operation of memories is radically different from logic. 

Memories are regular structures requiring special regular test patterns to 

perform testing chosen for a specific memory type. The complexity of 

memory testing is the numerous ways that a memory can fail. Many test 

patterns based on memory fault models (described in Chapter 2) are needed 

to test not only the cells but the peripheral circuitry around the memory cells 

as well. With a thorough examination of the specific transistor 

configurations utilised in the memory of concern, the appropriate fault 

models can be selected and the proper test patterns generated. No single 

pattern is sufficient to test a memory for all defect types. A set of patterns is 

needed to look for the real manufacturing defects and for interactions 

between the tightly packed adjacent memory structures. Memory testing is 

defect-based and algorithmic procedure.  
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Test sets in memory testing are now based on fault models and proven to 

have complete coverage for particular fault models and to be of minimal 

length for the given set of fault models covered by the tests. Numerous test 

algorithms for RAMs have been proposed over the years. Different types of 

memories require using different test algorithms [1], [14], [59], [60], [61]. 

3.5.1 Traditional memory testing 

 A wide variety of memory test sets based on different fault models has 

been developed. A memory test can be proposed based on requirement that 

every cell must be capable to storing both logical values 0 and 1, and to 

return the data when it is read. A memory test is a specific sequence of write 

and read operations applied to each cell of the memory cell array. For 

example, a simple test for single SA0 faults requires a sequence of write 1 

(W1) and read logical 1 (R1) operations for every cell. For this reason we 

use the term memory test algorithm rather than memory test. One of the 

most important parameters of any memory testing is the number of test 

cycles needed to apply it, this is easily assessed by counting the number of 

read and write operations. So, the test algorithms are characterised by the 

test length, which determines the test complexity that vary from O(n) to 

O(n2), where n is the number of cells in the RAM chip. 

The traditional test algorithms (such as Zero-One, Galpat, Walking 1/0, 

Checkerboard, Sliding diagonal, Butterfly), which are still being used, are 

less effective [60], [61]. They are still useful for detecting non-functional 

faults, such as refresh or sense amplifier recovery faults. Some of them 

provide more precise fault localisation than other algorithms.  

Exhaustive. It is a test, in which all possible data combinations are 

included. If there are n memory cells then 2n data combinations are possible; 

the original cell’s state must be read, then re-written to the opposite state, 

and once more read to verify that state. It is clearly not feasible to perform 

an initial test which will confirm that any memory pattern can be stored and 

read correctly, since there are 3n2n memory patterns theoretically possible.  

Zero-One. First, zeros are written to all addresses and read from all 

addresses, and then ones are written to and read from all addresses. Each 

memory location is accessed four times, so the Zero-One test complexity is 

4N - it is the number of all performed operations within the memory; where 

N is the number of address locations. 

Zero-One test set achieves 100% stuck-at fault coverage of the memory 

cells but does not provide coverage for data retention, deceptive destructive 

read, address decoder faults (Zero-One test does not indicate whether each 

cell can be addressed uniquely). 
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Walkpat (walking pattern). A single cell (bit oriented memory) or a 

single address (word oriented memory) is in a different state (logical 0 or 1) 

from the other cells in the memory. The test set has a data background 

entirely of one data type (logical 0s or 1s), and a logical 1 (or 0) is walking 

through the memory so that to each address the test sequence  R0 (or 1), 

W1 (or 0), R1 (or 0), W0 (or 1) of read and write operations is applied. All 

four operations are performed on each address before proceeding to the next 

address. The addresses are selected incrementally from the zero address to 

the maximum address in the memory space as it is indicated by . The 

walking pattern has an execution time proportional to 2n2 where n is the 

number of cells (it is extremely long for large memory arrays). It checks 

memory for cell opens and shorts and address uniqueness. 

Galpat (galloping pattern).  The test proceeds as Walking test, except 

that after the 1 is stored in the first cell and while the other 0’s are being 

checked, the first cell 1 is rechecked after each 0 is read, to ensure that the 1 

remains undisturbed. As before, this sequence is repeated for every cell in 

the array and done with the complementary data. 

Each succeeding cell then becomes the test cell in turn and the entire read 

process is repeated. All data is complemented and the entire test is repeated. 

Galpat has an execution time proportional 4n2, where n is the number of 

cells. It is effective for finding cell opens, shorts, address uniqueness faults, 

and sense amplifier interaction and access time problems. 

All members of this class of test algorithms, characterised by a test time 

proportional to n2, are unusable for large memory chips. An alternative, 

because the fault coverage is high, is to restrict “galloping” within a memory 

row or a column. 

March test (marching pattern). It changes the data (a 0 or a 1) at a given 

address and leaves the address in the changed state when proceeding to the 

next address by applying the test sequence:  R0, W1, R1. ( indicates that 

the address space successively decrements after performing each test 

sequence). This test assumes a zero background already existing in the 

memory. 

3.5.2 Testing with March tests 

Nowadays only those algorithms, which test complexity increases 

linearly with the number of memory cells, are of importance for memory 

testing. The use of newer algorithms gives shorter execution time and also 

better fault coverage. 

This subsection is concerned with layout-independent RAM testing only. 

We abstract a defect model for the RAM, which is based on the most likely 

layout and design defects, into a functional fault model, and this leads to the 
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set of reduced functional faults [1], [60]. The set includes stuck-at faults 

(SAF), transition faults (TF), address decoder faults (AF), coupling faults 

(CF) and neighbourhood pattern sensitive faults (NPSF). The fault models 

are described in Chapter 2. 

3.5.3 Testing stuck-at, transition, address and coupling 

faults 

The simplest tests, which detect SAFs, TFs and CFs are part of a family 

of March type test algorithms that are in present the most preferred 

algorithms for RAM array testing. The March tests are of the Nth order, 

which make them fast. 

A March test algorithm consists of a sequence of March test elements. 

A March test element is a finite sequence of write and/or read operations 

(W0/W1, R0/R1) applied consecutively to a cell in the memory array.  Then 

applied to the next cell until all cells have been treated. The addresses of the 

next cells are determined either in increasing () or decreasing address order 

() or the address order is irrelevant (⇕). After applying one March element 

to each cell, the next March element of the March test algorithm is taken. 

There is one requirement that the increasing and decreasing address orders 

during performing one March test algorithm have to be always inverse. The 

length of a March test algorithm is defined as the number of March elements 

multiplied by the number of memory cells. 

An example is shown in Figure 3-50: the MATS algorithm (Modified 

algorithmic test sequence) has three March test elements: ⇕W0; R0,W1; 
⇕R1,W0). Figure 3-51 shows how the SA0 fault in the cell with address 

(2,1) is detected by MATS+ March test. The fault is detected by the element 

2 (R0,W1) as it moves from the highest memory address downward and 

expects to read a 1 in cell (2,1), but gets a 0 instead. Figure 3-52 shows how 

MATS+ detects the multiple address decoder faults, where cell (2,1) is 

unaddressable, and address (2,1) maps to an access of cell (3,1). Since all 

writes to cell (2,1) have no effect, and any read of cell (2,1) produces a 

random result, the defective cell will be detected either by March element 1 

when it reads cell (2,1) if the read returns a 1 when a 0 was expected, or by 

element 2 when it reads cell (2,1) if the read returns a 0 when a 1 was 

expected. March element 1 writes a 1 to cell (2,1) but that has the effect of 

writing cell (3,1). This is detected when element 1 operates on cell (3,1), 

because it first expects to read a 0 but gets an unexpected 1, and then it 

writes a 1 to the cell. If the address of cell (3,1) mapped into an access of cell 

(2,1), then March element 2 would detect this fault as it descended from 

highest to lowest addresses in memory. It would expect to read a 1 from cell 

(2,1), but would get a 0 instead. 
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Figure 3-50. MATS+ test algorithm 

 
Figure 3-51. Detection of SAF0 by MATS+ test: {⇕W0;  R0,W1;  R1,W0} [1] 

 
Figure 3-52. Detection of multiple AFs by MATS+ test [1] 

It was proven [1], [60] that a March test detects all AFs if it satisfies two 

conditions: 

– the value x must be read successively from all cells and the value non-x 

must be written successively to all cells following the increasing address 

order; 

– the value non-x must be read successively from all cells and the value x 

must be written successively to all cells following the decreasing 

address order. 
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Table 3-13. March type test algorithms (FC: fault coverage, (x N): complexity) [60], [61]  

 MATS                   (4 N) MATS+                          (5 N) MATS++                        (6 N) 

1 ⇕W0 ⇕W0 ⇕W0 

2 ⇕ R0, W1  R0, W1  R0, W1 

3 ⇕ R1  R1, W0  R1, W0, R0 

FC: SAF SAF, AF SAF, AF, TF 

 March X               (6 N) March Y                         (8N)  

1 ⇕W0 ⇕W0  

2  R0, W1  R0, W1, R1  

3  R1, W0  R1, W0, R0  

4 ⇕R0 ⇕R0  

FC: SAF, AF, TF, CFin SAF, AF, TF, CFin, TF linked 

with CFin 

 

 March A             (15 N) March B                       (17 N) PMOVI *                     (13 N) 

1  ⇕W0 ⇕W0  W0 

2  R0, W1, W0, W1  R0, W1, R1, W0, R0, W1  R0, W1, R1 

3  R1, W0, W1  R1, W0, W1  R1, W0, R0 

4  R1, W0, W1, W0  R1, W0, W1, W0  R0, W1, R1 

5  R0, W1, W0  R0, W1, W0  R1, W0, R0 

FC: SAF, AF, TF, CFin 
linked CFid 

SAF, AF, TF, linked TF, 

CFin, linked CFid 

 

 Marching 1/0     (14 N) March C-                     (10 N) Enhanced March C-   (18 N) 

1  W0 ⇕W0 ⇕W0 

2  R0, W1, R1  R0, W1  R0, W1, R1, W1 

3  R1, W0, R0  R1, W0  R1, W0, R0, W0 

4  W1  R0, W1  R0, W1, R1, W1 

5  R1, W0, R0  R1, W0  R1, W0, R0, W0 

6  R0, W1, R1 ⇕R0 ⇕R0 

FC: SAF, AF SAF, AF, TF, CFs SAF, AF, TF, CFs, pre-charge 

defects 

 March LR          (14 N) March LA                    (22 N) March SR+                 (18 N) 

1 ⇕W0 ⇕W0  W0 

2  R0, W1  R0, W1, W0, W1, R1   R0, R0, W1, R1, R1,W0,R0 

3  R1, W0, R0, W1  R1, W0, W1, W0, R0  R0 

4  R1, W0  R0, W1, W0, W1, R1  W1 

5  R0, W1, R1, W0  R1, W0, W1, W0, R0   R1, R1, W0, R0, R0,W1,R1 

6  R0  R0  R1 

FC: linked faults all simple, many linked faults SAF, TF, CFs, dec.destr.reads 

 March C           (11 N) March SRD+      (18 N) March G                      (23 N) 

1 ⇕W0  W0 ⇕W0 

2  R0, W1  R0, R0, W1, R1, R1,W0,R0  R0, W1, R1, W0, R0, W1  

3  R1, W0 Pause  R1, W0, R1 

4 ⇕R0  R0  R1, W0, W1, W0 

5  R0, W1  W1  R0, W1, W0  

6  R1, W0  R1, R1, W0, R0, R0,W1,R1 Pause 

7 ⇕R0 Pause ⇕ R0, W1, R1 

8   R1 Pause 

9  FC: SAF, TF, CFs, retention ⇕ R1, W0, R0 

FC:  faults, decept. destruct. reads SOF, retention faults 
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*Partial moving inversion 

 

– Specific test sets with their sequence of operations and covered fault 

models, which are widely used in the industry to find manufacturing 

defects, are listed in easing address order. 

Table 3-13. 

Partial moving inversion test set checks, if the data has been correctly 

stored into the cell by the third read operation performed on each cell 

immediately after the write operation to prevent defect masking. 

Detecting of pre-charge defects is accomplished by the rapid succession 

of the fourth operation in an element of Enhanced March C- pattern. A 

defect can prevent the bit lines from pre-charging correctly. The same 

column must be utilised while different rows are addressing successively.  

March LR pattern is a combination of marching and walking elements 

and was developed to detect realistic linked faults. March G pattern includes 

a pause in the sequence to facilitate retention testing. 

The March A+ and March A++ patterns and also March C+ and March 

C++ patterns are extensions of the March A and March C pattern 

respectively. In the March A+ and March C+ each read operation is replaced 

by three read operations, which allows to detect pull-up and pull-down paths, 

which are disconnected in a cell. The March A++ and March C++ patterns 

include two delay elements, which allows detecting retention defects. 

3.5.4 Testing word-oriented memories 

Memories that have single bit data input only and data output are bit-

oriented, and each memory cell can be addressed individually. Memories, 

which have wider data input and data output buses, are word-oriented 

memories, and when a read or write operation to an address is performed, the 

full width of the data bus is utilised. 

Patterns developed in the past for a bit-oriented memory have to be 

modified for the word orientation. In a word-oriented memory a single cell 

cannot be addressed individually. Possible interactions between cells-bits 

within a word are covered by the tests, only if various data background 

patterns are used. 

The number of data background patterns required is log2m+1, where m is 

the number of bits in a word. Thus a memory with an 8-bit word requires 

four data background patterns, and it is always assumed that a background 

and its complementary background are to be utilised (an example is seen in 

Table 3-14). 

Other data background test requirements can be based also on the cell 

adjacencies. 
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Table 3-14. Data backgrounds and their inverses for an 8-bit word [61] 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

0 0 0 0 0 0 0 0 

0 0 0 0 1 1 1 1 

0 0 1 1 0 0 1 1 

0 1 0 1 0 1 0 1 

1 1 1 1 1 1 1 1 

1 1 1 1 0 0 0 0 

1 1 0 0 1 1 0 0 

1 0 1 0 1 0 1 0 

3.5.5 Testing neighbourhood pattern sensitive faults 

Tests for NPSFs (the NPSF model is explained in Chapter 2) cannot be 

performed by March tests because the base cell has to be treated differently 

from other cells of the neighbourhood. On the other hand, the NPSF tests do 

not detect AFs. It is always assumed that read operations of memory cells 

are fault-free in the NPSF testing (can be ensured by a March test). 

To test a neighbourhood for a certain kind of NPSF, all required test 

patterns (Table 3-15) must be applied to that neighbourhood, and after each 

test pattern the base cell must be read. In this way all NPSFs can be not only 

detected but also located. 

Active neighbourhood patterns (ANPs). The required test patterns for 

testing ANPSFs are composed of:  

– base cell is in two different possible values (0 and 1); 

– one of the deleted neighbourhood cells undergoes up and down transitions; 

– other deleted neighbourhood cells are in all combinations of the logical 

values 0 and 1. 

The total number of ANPs is (k-1) . 2k (where k is the size of the 

neighbourhood).  

Passive neighbourhood patterns (PNPs). Test patterns for PNPSFs are: 

– base cell undergoes up and down transitions; 

– other deleted neighbourhood cells are in all combinations of the logical 

values 0 and 1. 

There are 2k PNPs. 

Static neighbourhood patterns (SNPs). The number of test patterns for 

SNPSFs is determined by all possible combinations of the given 

neighbourhood cells logic values and is also equal 2k. 

It is important to minimise the number of write operations during NPSF 

testing, in order to obtain the shortest possible test. The mechanisms how to 

apply a sequence of all required patterns and performed a minimal number 

of write operations is based on the fact that the difference between a pattern 

and its successor has to be minimal, it means that they should differ in one 

bit.  
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Table 3-15. All possible NPSF test patterns for the type 1 neighbourhood: b=base cell, 

d1,d2,d3,d4=deleted neighbourhood cells [1], [60] 

ANPs 

b 00000000000000001111111111111111 b 00000000000000001111111111111111 

d1 ↑↑↑↑↑↑↑↑↓↓↓↓↓↓↓↓↑↑↑↑↑↑↑↑↓↓↓↓↓↓↓↓ d1 00001111000011110000111100001111 

d2 00001111000011110000111100001111 d2 00110011001100110011001100110011 

d3 00110011001100110011001100110011 d3 ↑↑↑↑↑↑↑↑↓↓↓↓↓↓↓↓↑↑↑↑↑↑↑↑↓↓↓↓↓↓↓↓ 

d4 01010101010101010101010101010101 d4 01010101010101010101010101010101 

b 00000000000000001111111111111111 b 00000000000000001111111111111111 

d1 00001111000011110000111100001111 d1 00001111000011110000111100001111 

d2 ↑↑↑↑↑↑↑↑↓↓↓↓↓↓↓↓↑↑↑↑↑↑↑↑↓↓↓↓↓↓↓↓ d2 00110011001100110011001100110011 

d3 00110011001100110011001100110011 d3 01010101010101010101010101010101 

d4 01010101010101010101010101010101 d4 ↑↑↑↑↑↑↑↑↓↓↓↓↓↓↓↓↑↑↑↑↑↑↑↑↓↓↓↓↓↓↓↓ 

PNPs SNPs 

b ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓ b 00000000000000001111111111111111 

d1 00000000111111110000000011111111 d1 00000000111111110000000011111111 

d2 00001111000011110000111100001111 d2 00001111000011110000111100001111 

d3 00110011001100110011001100110011 d3 00110011001100110011001100110011 

d4 01010101010101010101010101010101 d4 01010101010101010101010101010101 

 

A k-bit Eulerian graph (in Figure 3-53 a 3-bit Eulerian graph is 

depicted) is defined as a graph in which there is a node for each k-bit pattern 

of 1s and 0s and there is an edge between two nodes, if they differ just in one 

bit. The edges in the Eulerian graph correspond to the ANPs and PNPs of a 

k-bit neighbourhood, and the nodes correspond to SNPs. An Eulerian 

sequence is a sequence through the Eulerian graph which traverses each edge 

just once and which should be used in the case that there are up or down 

transitions in the patterns. A Hamiltonian sequence on the other hand 

traverses each node of the Eulerian graph just once and should be used if the 

patterns contain only 0s and 1s. 

 

 

 

 

 

 

 

 

 

 
 

Figure 3-53. Eulerian graph for 3-bit patterns [1] 
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When data are written into the base cell is, we change k different 

neighbourhoods (type 1 or type 2) and we wish to test the neighbourhoods 

simultaneously, using two methods for this purpose: tiling and two-group. 

The tiling method totally covers memory with non-overlapping 

neighbourhoods as it is shown in Figure 3-54. Memory cell 2 is always the 

base cell and other numbered cells are deleted neighbourhood cells. Now 

there are n/5 base cells to which all the test patterns are applied. It turns out 

that also appropriate patterns are applied to the memory when cell 0, cell 1, 

cell 3 or cell 4 is the base cell. This reduces the pattern length from n . 2k 

patterns to n/k . 2k patterns while each cell is simultaneously a base cell and 

a deleted neighbourhood cell for other base cells. 

 

0 1 b 3 4 0 1 b 3 4 

b 3 4 0 1 b 3 4 0 1 

4 0 1 b 3 4 0 1 b 3 

1 b 3 4 0 1 b 3 4 0 

3 4 0 1 b 3 4 0 1 b 

0 1 b 3 4 0 1 b 3 4 

b 3 4 0 1 b 3 4 0 1 

4 0 1 b 3 4 0 1 b 3 

1 b 3 4 0 1 b 3 4 0 

3 4 0 1 b 3 4 0 1 b 

 
Figure 3-54. Five cells (type1) tiling neighbourhood [1], [60] 

In the case of the two-group method, a cell is simultaneously a base cell 

in one group and a deleted neighbourhood cell in the second group (Figure 

3-55). The memory cells are divided into two groups in a checkerboard  

pattern, i.e. the base cells in group 1 become deleted neighbourhood cells in 

group 2, and vice versa. Each group has n/2 base cells (denoted as b) and n/2 

deleted neighbourhood cells of divided into four subgroups d1, d2, d3 and d4. 
 

 

d1 b d2 b d1 b d2 b  b d1 b d2 b d1 b d2 

b d3 b d4 b d3 b d4  d3 b d4 b d3 b d4 b 

d2 b d1 b d2 b d1 b  b d2 b d1 b d2 b d1 

b d4 b d3 b d4 b d3  d4 b d3 b d4 b d3 b 

d1 b d2 b d1 b d2 b  b d1 b d2 b d1 b d2 

b d3 b d4 b d3 b d4  d3 b d4 b d3 b d4 b 

d2 b d1 b d2 b d1 b  b d2 b d1 b d2 b d1 

b d4 b d3 b d4 b d3  d4 b d3 b d4 b d3 b 

 
Figure 3-55. Labels of cells in the two-group method [1] 
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Table 3-16 gives NPSF testing algorithms overview and some 

performance details as the type of the used neighbourhood, the number of 
cells involved in the neighbourhood, method used for the simultaneous 
testing, which fault models are covered (detected or also located, the 
operation count). 

No single type of test (March, NPSF, DC parametric, AC parametric) is 

sufficient for current RAM testing needs, so a combination of various test is 

used.  

Table 3-16. Overview of NPSF testing algorithms (L=location, D=detection) [1], [60] 

Algorithm Neighbourhood/k/Method Fault coverage Complexity 

SAF TF NPSF 

A P S 

TD ANPSF 1G type 1 / 5 / 2 group L  D   163.5 n 

TL ANPPSF 1G type 1 / 5 / 2 group L L L L L 195.5 n 

TL ANPPSF 2T type 2 / 9 /  tiling L L L L  5122 n 

TL ANPPSF 1T type 1 / 5 / tiling L L L L  194 n 

TL SNPSF 1G type 1 / 5 / 2 group L    L 43.5 n 

TL SNPSF 1T type 1 / 5 / tiling L    L 39.2 n 

TL SNPSF 2T type 2 / 9 / tiling L    L 569 n 

TD SNPSF 1G type 1 / 5 / 2 group L    D 36.125 n 

 

3.5.6 Testing RAM technology and layout related faults 

The coupling fault tests may not be effective because the DRAMs may be 

repaired after manufacturing testing or DRAM address lines are scrambled. 

Also, the G-bit DRAMs have new kind of defects. 

With deep sub-micron chip feature sizes, memory chips are increasingly 

subject to peculiar, layout specific failures. Therefore, inductive fault 

analysis (IFA) is now used to analyse the chip layout and determine which 

fault models correctly model the actual physical defects that may occur. IFA 

is now necessary to ensure that the actual defects that occur are mapped into 

a fault model, and appropriate tests can be selected for that fault model. 

After performing IFA faults caused by actual defects as broken wires, shorts 

between wires, missing contacts, extra contacts, parasitic transistors can be 

found. These defects can be mapped to functional faults as SAF, SOF, TF in 

a memory cell or state CF and CFid between two cells and also data 

retention fault caused by broken pull-up device. The March type tests IFA-9 

and IFA13 were extended by a new March element Delay, which means to 

wait for 100 ms to be able to test for data retention faults (see Table 3-17). 

Table 3-17. Overview of the IFA testing algorithms [60], [61] 

 IFA-9                     (12 N + Delays) IFA-13                        (16N+ Delays) 
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1 ⇕W0 ⇕W0 

2  R0, W1  R0, W1, R1 

3  R1, W0  R1, W0, R0 

4  R0, W1  R0, W1, R1 

5  R1, W0  R1, W0, R0 

6 Delay Delay 

7  R0, W1  R0, W1 

8 Delay Delay 

9  R1  R1 

FC: SAF, TF, AF, CFid, data retention 

fault 

SAF, TF, AF, CFs for bits in the 

same word, SOF, data retention 
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