
Chapter 3

TEST GENERATION TECHNIQUES

AND ALGORITHMS

Raimund Ubar (1), Elena Gramatová(2), Mária Fischerová(2)
(1)Tallinn University of Technology, Tallinn, Estonia

 (2)Institute of Informatics of the Slovak Academy of Sciences, Bratislava, Slovakia

Abstract: This chapter describes different approaches to test generation, fault simulation

and fault diagnosis in digital circuits and systems. First, an overview about the

main techniques of logic level structural test generation for digital circuits is

given. Then these techniques are explained in terms of graph technique based

on structurally synthesised BDDs. Differently from the classical BDD-based

test generation, the emphasis is given here to the topological aspects of test

generation on SSBDDs in terms of path activation tasks on graphs, similarly to

path activation in logic level circuits. Such a topological view on SSBDDs

allows easily to generalise logic level test generation algorithms for higher

level test generation purposes. In more details, register transfer level test

generation and instruction set level test generation for microprocessors are

considered. Several methods of gate-level fault simulation like parallel,

deductive and critical path tracing methods are discussed. Afterwards macro-

level fault simulation for logic circuits and hierarchical fault simulation for

digital systems are considered. Advantages and disadvantages of all these

methods are highlighted. In the subchapter on fault diagnosis, combinational

and sequential fault localisation procedures are described. Finally, test

generation methods for RAM are discussed. An overview about traditional

methods like March, Walkpat, Galpat a.o. is given. In more detail the

capability of March test to detect different faults like stuck-at-faults,

transition, addressing and coupling faults is analysed. Finally, the problems of

testing pattern sensitivity faults and layout related faults is discussed.

Keywords: faults, test pattern generation, fault simulation, logical, functional, defect-

oriented, hierarchical test generation techniques, memory faults, March

algorithms, BDD, fault diagnosis

2 Chapter 3

3.1 LOGIC-LEVEL TEST GENERATION

Test generation itself plays a key role in various processes such as logic

optimisation, verification, design for testability, and built-in self-testing

where the efficiency of the combinational test pattern generation algorithms

is an important issue [1], [2], [3]. Frequently, the circuit designer will

provide a limited subset of the functional test patterns for a device under

test (DUT), which typically cover only 70 to 75 % of the total number of

faults. Testing for only 75 % of the modelled defects is not sufficient. Thus,

the importance of automatic test pattern generation (ATPG) algorithms at

the structural level is undisputed. ATPG is the application of algorithmic

based software to generate vectors – test patterns. The traditional goal of

ATPG algorithms is to achieve high fault coverage by producing a small

volume of test patterns. Therefore the first step after processing of the design

description involves establishing the fault model to be used, and the faults

have to be enumerated. Fault models represent defects and a fault list is

defined for DUT. Obviously, inputs to ATPG systems consists are a DUT

netlist (often based on standard cell libraries), a list of targeted faults and

requirements to test vectors quality [1].

Historically, the single stuck-at fault model (SAF model; stuck_at 0 –

SAF0, stuck_at 1 – SAF1) has been widely accepted as a standard fault

model for the test pattern generation algorithms. The usage of the SAF

model will continue as long as ATPG exists. Although the SAF model

cannot guarantee the highest quality of defect testing, especially for CMOS

integrated circuits [4], [5], [6], it is still the key fault model of the structural

TPG algorithms. Its importance is due to its simplicity, tractability, logical

behaviour, measurability and adaptability [6]. Various TPG algorithms

targeted to other fault models (e.g. bridging faults, delay faults) or other

testing types (IDDQ and at speed testing) are often based on the structural

TPG strategies using the SAF model. Each test pattern generation algorithm

is obviously evaluated by the following measures:

- test effectiveness = (detected and proven non testable faults)/total

faults

- fault coverage = detected faults/total faults

- test generation time

- length of the generated test set (test volume).

3.1.1 Structural test generation algorithms

The structural TPG algorithms can be applied for multiple purposes

because they can [1]:

- generate test patterns

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 3

- find redundant or unnecessary logic

- verify whether one circuit implementation matches another circuit

implementation.

 Since the scan-based design techniques are increasingly used for complex

circuit designs, the structural test generation for combinational circuits

becomes more important. The test generation problem can be viewed as a

finite space search problem of finding appropriate logic assignments to the

primary inputs such that the given fault is detected. The size of the search

space is exponential in the number of primary inputs and the test generation

problem is proven to be NP-complete problem. It means that no polynomial

expression for the computing time function was found, and the problem is

presumed to have exponential complexity. Therefore it is very important to

develop efficient techniques to speed up the test generation process

producing an optimal test set volume.

Besides of simple test generation algorithms: exhaustive (every possible

test is applied to the n input ports of DUT – it means 2n logic values),

pseudo-exhaustive (some portion of all possible 2n logic values), random,

pseudo-random and deterministic TPG algorithms remain still of great

interests in the research field. The pseudo-random TPG means that a circuit

is divided into cones (a cone is a part of DUT with one primary output and

those primary inputs, which are linked to this primary output) and a test set

is generated randomly for each cone. If a random or pseudo-random TPG

technique is used a fault simulator has to be applied for fault coverage

computation for a defined fault list (see Figure 3-1).

Figure 3-1. ATPG with a random TPG and a fault simulator

The random test pattern generation produces test patterns in the shortest

time but they do not have to achieve sufficient high fault coverage. Thus the

random TPG effectiveness is not too high for complex circuits in comparison

with the deterministic TPG algorithms.

The fault coverage values are effective only at the beginning of the

random TPG process. After exceeding a specific number of patterns a rise in

the fault coverage is very slow. Usually the random TPG does not have to

produce the highest fault coverage value (the standard expectation is 95 % -

Random TPG

 Fault

 simulation

Fault list

4 Chapter 3

99,9 % in the semiconductor industry [14]). It is caused by faults due to a

fault resistant problem. It means that a special pattern inside DUT must be

assigned.

An example of the fault resistant problem is given in Figure 3-2 where

only one out of 232 (4 billion) patterns detects the SAF1 at the output of a

circuit. Obviously 20 % - 40 % of faults are typically random pattern

resistant.

Figure 3-2. Fault resistant state (SAF1 at the output)

On the other hand, deterministic TPG algorithms assume that only a

single fault is injected into the DUT structure for which a test is generated.

Therefore any deterministic TPG run longer than the random TPG.

Beside this restriction, another problem in deterministic TPGs is the

problem of finding right logical values for cells inside the DUT structure that

cannot be assigned uniquely during the TPG procedures. Selection of the

values is based on some specific rules or heuristics, and a value conflict can

be announced during test generation for an injected fault. Each conflict has

to be solved by returning back to a node where a new value assignment can

be done – a decision node (point). This step is named backtrack. Then the

deterministic algorithm speed depends also on the number of backtracks

during the test generation process. Many algorithmic and heuristic strategies

have been developed for decreasing the number of backtracks based on

finding the conflict point in the DUT structure as quickly as possible.

The deteministic TPG should find a test pattern for a fault if it is

detectable. Therefore it is important to use the deterministic TPG, e.g. for

SAF1

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 5

hardly detectable faults. Figure 3-3 shows in general the effectiveness of

random and deterministic TPG algorithms.

The total number of backtracks can also be reduced by fault simulation

applied to each new generated deterministic test vector to get he list of

covered faults, and then test patterns are not generated by the deterministic

TPG for the faults already covered.

Figure 3-3. Effectiveness of the random and deterministic TPGs

A fault simulator must classify the given target faults in DUT as detected

or undetected by a given test vector, then all faults covered by the vector are

deleted from the fault list and the deterministic TPG is applied to other

uncovered fault. It is known that the fault simulation speed is higher than the

speed of any deterministic TPG algorithm because the process of finding

covered faults is performed by tracing the DUT structure only twice (fault-

free simulation, fault lists propagation) for one test vector. Thus, the typical

and effective ATPG construction is shown in Figure 3-4. It means the

random TPG is used at the first TPG phase running together with the fault

simulator and the deterministic TPG phase is used only for hardly detectable

faults also linked to the fault simulator.

Both the fault simulator and the deterministic TPG run over the same list

of faults. The deterministic TPG algorithm is used for hardly detectable

faults or after a limit of defined fault coverage is achieved by the random

TPG [1]. Developed TPG algorithms are classified into 5 groups [1]:

1. TPG based on path sensitisation techniques

2. Simulation-based TPG methods

3. TPG using Boolean satisfiability (a Boolean expression or equation)

4. TPG based on implication graph methods

5. TPG methods based on genetic algorithms.

number of patterns

fa
u
lt
 c

o
v
e
ra

g
e

hardly detectable faults

faults

random TPG

 deterministic TPG

100 %

6 Chapter 3

Figure 3-4. ATPGs with a fault simulator

Most of the existing professional and academic ATPG systems use the

path sensitisation technique; this principle is based on faulty signal

sensitisation through each cell and on the D-calculus defined by Roth [8].

Figure 3-5 presents the path sensitisation through basic gate NOR for fault

SAF0 propagated from its input to output (logical 1 is forced to the faulty

input).

Figure 3-5. Path sensitisation through basic cell NOR

The path sensitisation rules for basic gates – AND, NAND, OR, NOR,

XOR, XNOR were defined (see Figure 3-6). The sensitive path is always

created through cells NOT, BUFF, XOR and XNOR.

Figure 3-6. Path sensitisation through basic cell

0

1

0

0

1
0

0

0

SAF1

SAF0 SAF0 SAF0

SAF1 SAF1

0

0

0

/

1

1 1

0

0

0

1 1 1

0

1

0

1

0

1

0

1

0

1

1

0

Deterministic TPG

 Fault

simulation

Fault list

Random TPG

0

SAF0

path sensitisation

force to 1

fa
u
lt
y
 o

u
tp

u
t

g
o
o
d
 o

u
tp

u
t

1

0
0  1

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 7

The path sensitisation through complex cells has to be defined according

to their structure; an example is shown in Figure 3-7. Three different input

vectors (1000, 1010, 1001) can sensitise the fault on gate AND.

Figure 3-7. Path sensitisation through a complex cell

The 5-value logic model has been defined using the values 0, 1, x, D, D;

the value x means don’t care value, and D, D represent faulty signals SAF0

and SAF1, respectively. The value D represents logical value 1 in the fault

free state and 0 in the faulty state. An example of the path sensitisation for

SAF0 is shown on a circuit presented in Figure 3-8. The value D is

propagated through the sensitive path using the following logic values: 0 on

gate OR, 1 on gate AND, 0 or 1 on gate XOR. If the sensitive path is found

from the fault site to a primary output, some values have to be assigned from

the primary inputs (it means logical value 1 at the input of gate AND and

logical value 0 at the input of gate XNOR inside the circuit in Figure 3-8).

Figure 3-8. Path sensitisation using D calculus

Finding the right values at the primary inputs for confirmation of assigned

values inside the circuit is realised by a backtrace through the circuit

structure from the node of a non-confirmed value to a primary input. This

step is named value (line) justification. The logical values 1 and 0 inside the

circuit presented in Figure 3-8 are justified by the pattern (CD) = (x1). The

path sensitisation methods at the logical level of circuit representation are

currently the most preferred ATPG methods and consist of the following 3

basic steps [1], [2], [9], [15]:

0 1 0
1 0 0

1
0

1  0

0

0

SAF 1

0  1

1.1.11. x

D/¬ D

1

1

0

D

D

1
1.1.10. D

SAF0

D

0/1

1

 0 A

 D B

1 x C

x 1 D

 x

8 Chapter 3

1. Fault sensitisation (fault activation, fault excitation), in which a SAF

is activated by forcing the signal to an opposite value as the fault

value (ensuring difference between good and faulty circuits).

2. Fault propagation (using path sensitisation), in which the fault effect

is propagated through one or more paths to primary output(s) of the

circuit. In general, the number of paths may rise exponentially with

the number of logical gates in the circuit.

3. Line justification, in which the internal signal assignments previously

used to sensitise a fault or propagate its effect is justified by setting

the primary inputs of DUT; one example is shown in Figure 3-9,

where two logical values 1 and 0 have to be justified. The logical

value 1 on the primary inputs C and D justifies both desired values.

Figure 3-9. Line justification

Figure 3-10. Conflict situation during the justification step

During the path sensitisation and the line justification some inconsistent

states can arise and this has to be solved by alternative assignments – a

backtrack must be used to a node in DUT where a new value assignment can

be done. An example with two possibilities is shown in Figure 3-10. One

alternative solution is a new assignment on the primary input and other one

D

1
1.1.7. D

SAF0

1

1

0

1.1.6. x

1.1.5. 0

/

1

0

D

1

0

1

conflict

alternative

input vector

1

1

1

the alternative

value for path

sensitisation

0  1

D

D

1 C

1 D

 E

D

1
1.1.9. D

SAF0

1

1

0

1.1.8. 0

/

1

D

0

1

0 A

D B

D

D

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 9

is to return to the second fan-out and to change the value for path

sensitisation through cell XOR (new logical value is 1).

Many algorithms based on the path sensitisation technique have been

developed and implemented in various ATPG systems. All these algorithms

use the mentioned 3 basic steps but their effectiveness depends on different

heuristics and combinations of the mentioned steps. After the first TPG

algorithm development – D algorithm [8] and its heuristics successors

PODEM (1981; the branch and bound search algorithm) [7] and FAN

(1981; fan-out-oriented algorithm) [9], many other techniques and heuristics

have been developed improving and speeding up the existing TPG systems.

They are e.g. SOCRATES (using static and dynamic learning procedures)

[10], TOPS algorithm (based on the defined signal line as dominators) [11],

recursive learning algorithm [13], EST (using defined evaluation frontier)

[12] and some their modifications. In the FAN algorithm several progressive

concepts were defined for decreasing the number of backtracks:

- The unique sensitisation procedure – values assignment to signals on

gates involved in all sensitive paths for an investigated fault – this

procedure is applied immediately after fault sensitisation.

- Application of the multiple backtracing procedure to primary inputs.

- Immediate implications (backward and forward) – values assignment for

uniquely determined signals, places of backtracks – fan-out nodes of

DUT [9]. The implication procedures are demonstrated in Figure 3-11

using c17 ISCAS’85 benchmark circuit.

Figure 3-11. Forward and backward implications on c17 benchmark circuit

The research continues by improving the deterministic algorithms and

new heuristics or algorithmic formulas have been published e.g. [16], [17],

1

1
0

1

1
0

1

1
0

0

1

1
0

1

1
0

Y1

Y2

A

B

C

D

E

1

1

1 1

0

0

1

0

1

SAF1

D

1

unique path sensitisation

D

1

forward implication backward implication

implication

10 Chapter 3

[18], [19], [20]. Table 3-1 shows the history of accelerating combinational

ATPG algorithms and systems [1].

Table 3-1. TPG algorithms progress

Algorithm Speed evaluation year

D 1 1966

PODEM 7 1981

FAN 23 1983

TOPS 292 1987

SOCRATES 1574 1988

Waicukaiski 2189 1990

EST 8765 1991

TRAN 3005 1993

Recursive learning 485 1995

Tafertshofer 25057 1997

Nowadays, the following TPG algorithms have been published: SPIRIT

[15], ATOM [17], STAR-ATPG [18] and some new techniques have been

developed for speeding up the deterministic TPG process as dynamic

decision ordering, conflict driven recursive learning and conflict learning

[19]. The number of backtracks is the key step of the test generation speed.

The structural TPG algorithms can also be used for defect-oriented

testing using an implicit fault model. The implicit fault model means that

some patterns have to be set up on each cell of DUT during testing, e.g. for

cell NOR (Figure 3-12) it is necessary to apply test patterns – (00, 01, 10).

The same patterns, named also fault conditions, can be used for gate OR.

Figure 3-12. Implicit fault model

This fault model is suitable for defect-oriented testing [5] and IDDQ testing

[21]. In defect-oriented test pattern generation we need information about

coverage of expected defects by means of specified vectors for each cell

integrated in DUT. An example is demonstrated in Table 3-2 for gate NOR

(with two inputs A, B and output Q) where notation A/B means short

between 2 nodes: A, B; “*” means its coverage by a corresponding vector.

Table 3-2. Fault table for NOR (Gn – ground node and Vd – power node)

vector A/B A/Q A/Gn A/Vd B/Q B/ Gn B/Vd Q/ Gn Q/Vd

00 * 1 1 1 1

01 1 1 1 1

10 1 1 1 1

1
0

100

010
001

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 11

Similar strategies based on the path sensitisation methods can be used for

the test generation process using the implicit fault model. A selected pattern

for a cell in DUT instead of faulty value D or  D is propagated through

sensitive paths and justified from primary inputs. An example is shown in

Figure 3-13; the first pattern (AB) = (00) is selected for test generation. The

received test vector (ABCDE) = (00011) covers 6 patterns on basic gates in

the circuit.

Figure 3-13. Test pattern generation using the implicit fault model

If some complex cells are used in a DUT structure, e.g. cell AN1 with

function: Q = NOR (AND(A,B), AND(C,D)); fault conditions for AN1

could be defined with regard to stuck_at fault coverage of basic cells (ANDs,

NOR) or results from defect analysis (described in Chapter 2). An example

of fault conditions for cell AN1 is shown in Figure 3-14.

Figure 3-14. Implicit fault model – test patterns for complex cell AN1

Current-based testing (IDDQ testing) is a completely different paradigm in

comparison with the classical voltage-based testing (described in Chapter 7).

The fault model cannot be restricted to the single stuck-at fault assumption

0

0

00111
11001

10010
11010

A

B

C

D

Q

100

010
101

011
1001

0101

100

010

D

1
1.1.4. D

1

1

1.1.3. x

0 A

0 B

0

0
1 E

0 C

1 D

101

011

100

010

0

1
0

0
1

1

1

0

0

1

12 Chapter 3

because the measured unit is the current at the chip-level. Test pattern

generation techniques use the following fault models:

- The pseudo-stuck-at fault model (it means a fault is represented by

SAF1 or SAF0 injected on a DUT node - but its manifestation has not to

be propagated to a primary output).

- The implicit fault model based on the toggle test set (application logical

1 and logical 0 to all nodes in DUT).

- The implicit fault model based on specified test patterns = the fault

conditions described above.

Figure 3-15. Test generation for IDDQ testing using the toggle test set

Test pattern generation for IDDQ testing is simpler than for classical

voltage testing because the injected fault or a logical value has not to be

observable on a primary output. It is enough to find a test vector that sets up

defined values on gates inside DUT. An example for the test pattern

generation using the toggle test for IDDQ testing is shown in Figure 3-15.

The test set of 5 patterns is generated for covering all desired values (toggle

test patterns) on circuit cells.

Example 3-1: Consider test set generation for circuit c17 (Figure 3-11) by

the random and deterministic TPG algorithms. There are 34 SAF0 and SAF1

in the c17 fault list. Their coverage is 100 %, e.g. by 8 random test patterns

(ABCDE) = (00100, 10010, 00011, 00011, 10100, 11010, 11110, 10111) or

by 5 deterministic test patterns (ABCDE) = (1x1010, 0110x, 01111, x00x1,

100x0), x is don’t care value. If IDDQ testing is used for some faults (not

detected by classical voltage testing), the combined test patterns should be

applied: e.g. 5 patterns for voltage and current measurements (ABCDE) =

(100100, 01101, 11111, x10x0, x00x1) and 2 only for voltage testing

(ABCDE) = (x101x, 001xx).

 01

 10

1.1.1.

0

1 1 0 1 0 A
1 1 0 0 1 B

1 1 1 1 0 D
0 0 0 0 1 E 1

0

1

 01

 10

 01

 10

 01

 10

 01

 10

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 13

Almost all digital systems are realised as sequential circuits. These

circuits contain combinational logic and flip-flops. Their testing is more

complex than combinational circuit testing for two reasons [1]:

1. Internal memory states. The circuit has internal memory and its state is

not known at the beginning of testing. A test must, therefore, initialise

the circuit to a known state. After test inputs are applied, the final state

of the internal memory must be inferred only indirectly from primary

outputs. Only in special cases the internal memory can be made

controllable and observable for testing.

2. Long test sequences. A test for a fault in the sequential logic essentially

contains 3 parts:

(a) Initialisation of the internal memory.

(b) A combinational test to activate the fault and to bring its effect to the

boundary of the combinational logic.

(c) If the fault has affected one or more memory elements, then the state

observation of one of the affected elements at a primary output.

The test for a fault in a sequential circuit may be a sequence of several

vectors that must be applied in the specified order. One simple TPG

technique applied for synchronous circuits is an iterative (time-frame

expansion) TPG method using a TPG algorithm for combinational logic. The

basic idea is to divide the circuit structure to several time frames. It means

we receive several copies of the same combinational circuit with not only

primary inputs and outputs but also with pseudo-primary inputs (outputs

from flip-flops) and pseudo-primary outputs (inputs to flip-flops). The fault

has to be injected in the same node in all time frames.

Figure 3-16. Sequential circuit for Example 3-2

I

y1

y2

Z

F
F

F
F

CLK

y2

0

SAF1

SAF1

y1

inputs and outputs from FFs = pseudo-outputs and pseudo-intputs

primary inputs and outputs of combinational part

y1

y2

14 Chapter 3

The major problem is that the number of circuit structure copies is not

known at starting the test generation process. The number of copies depends

on the FFs states for the fault propagation to a primary output. Test

generation for complex sequential circuits is a time consuming and memory

space demanding process. No clock signal faults and internal faults of flip-

flops are modelled in this TPG method.

Example 3-2: Consider test sequence generation for the sequential circuit

presented in Figure 3-16 and injected SAF1 with initial FF states (y1y2) =

(11) using the iterative TPG technique. The circuit structure is divided into

time frames according to the structure presented in Figure 3-17. The test

sequence I = (1,1,1) for SAF1 is generated in 3 time frames where q1
+ and

q2
+ mean the next state of FFs.

Figure 3-17. One time frame for sequential circuit in Figure 3-16

Other TPG methods are simulation-based methods [1], [2], [15].

Nowadays complex sequential circuits are designed by scan design methods

(described in Chapter 4) to avoid the TPG problems for sequential logic and

ATPG is applied only for combinational parts, and sequential parts are tested

as a scan chain by the flush test (1100110011....).

Test set for delay faults requires a 2-pattern ordered test set. The first

pattern is devoted to initialisation of a specific value in a DUT node and the

second one for delay faults excitation. The test set is categorised as robust or

non-robust test set. A robust test detects the targeted delay faults irrespective

of the presence of other delay faults in the DUT. Otherwise, the test set is

non-robust. TPG algorithms for path delays use a model with multiple logic

values (e.g. 5,9,11,13 values). TPG methods for transition faults are mostly

Z

I

q2

q1
+

SAF1

0

SAF

1

q2
+

I, Z are primary input and output

q1, q2 represent FF states and q1
+, q2

+ represent new FF states

q1

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 15

based on the principle that test vectors for SAFs can be used for constructing

the test set for delay faults [2],[14].

The efficient TPG algorithms are the central part of each ATPG process.

The strength of the ATPG rests in its algorithms for tracing through the

design description and establishing values. Therefore TPG algorithms are

still one of the hot research tasks. The overall test set preparation includes

other tasks that have to be done before and after the application of the ATPG

tool. They include preparing the computer environment for the tool,

preparing the tool for accepting the design description using during structure

analysis and test vectors processing and to assign with the data and control

format of the tester.

3.1.2 Test generation with BDDs

As the complexity of digital systems continues to increase, the gate level

test generation methods become obsolete. Promising approaches are high-

level, multi-level or hierarchical methods which use behavioral, functional or

multi-level descriptions of systems. Nevertheless a uniform approach to test

generation at different levels is missing, a lot of different languages, models

and formalisms depending on the level are used.

Decision Diagrams (DD) can serve as a basis for a uniform approach to

test generation for mixed-level representations of systems, similarly as we

use the Boolean algebra for the plain logic level. In the following we

describe how the traditional logic level test generation methods can be

implemented on Binary Decision Diagrams (BDD) [23], [24], [25], [29] as

a special class of DDs, and then we generalize the procedures developed for

BDDs for a general class of DDs [27], [28], [31] to handle the test

generation problems at higher levels of systems.

Structurally synthesized BDDs. In 1959 C.Y.Lee introduced a method for

representing digital circuits by Binary Decision Programs [23]. In 1976 the

same model called alternative graphs [24] was introduced for test generation

purposes. Independently the same model was introduced into the field of test

generation by Akers [25] under the name of Binary Decision Diagrams

(BDD). Today the theory of BDDs is developing quickly [29], [30], [32].

In [24], [26], [31], [33], [34] structurally synthesized BDDs (SSBDD)

as a special class of BDDs was introduced to represent the topology of gate-

level circuits in terms of signal paths. Unlike “traditional” BDDs, SSBDDs

[29], [30], [32] directly support test generation for gate-level structural faults

without representing these faults explicitly. The advantage of the SSBDD

based approach is that the library of components is not needed for structural

path activization. This is the reason why SSBDD based test generation

procedures do not depend on whether the circuit is represented on the gate

16 Chapter 3

level or on the macro-level whereas the macro means an arbitrary single-

output subcircuit of the whole circuit. Moreover, the test generation

procedures developed for SSBDDs can be easily generalized for higher

level DDs to handle digital systems represented at higher levels [27], [28],

[31].

The BDD that represents a Boolean function is a directed noncyclic

graph with a single root node, where all nonterminal nodes are labelled by

Boolean variables (arguments of the function) and have always exactly two

successor-nodes whereas all terminal nodes are labelled by constants 0 or 1.

For all nonterminal nodes, a one-to-one correspondence exists between the

values of the label variable of the node and the successors of the node. This

correspondence is determined by the Boolean function inherent to the graph.
Denote the variable which labels a node m in a BDD by x(m). We say

that a value of the node variable activates the node output edge. According

to the value of x(m), one of two output edges of m will be activated. If

x(m)=1 we say 1-edge is activated, or if x(m)=0 we say 0-edge is activated.

A path in a BDD is activated if all the edges that form this path are

activated. The BDD is activated to the value 0 (or 1) if there exists an

activated path which includes both the root node and the terminal node

labelled by the constant 0 (or 1).

Definition 3.1. A BDD Gy with nodes labelled by variables x1, x2, ..., xn,

represents a Boolean function y = f(X) = f(x1, x2, ..., xn), if for each pattern of

X, the BDD will be activated to the value which is equal to y.

Important property of SSBDDs. SSBDDs differently from traditional

BDDs have the following property: each node m in a Gy which describes a

tree-like subnetwork Ny of the gate-level circuit N, represents a signal path

l(m) in Ny.

An example of a combinational circuit with a tree-like macro and

SSBDD for the macro is presented in Figure 3-18. For simplicity, the values

of variables on edges of the SSBDD are omitted (by convention, the 1-edge

is always directed to the right, and the 0-edge is always directed

downwards). Also, terminal nodes with constants 0 and 1 are omitted

(leaving the SSBDD to the right corresponds always to y = 1, and down - to

y = 0). Each node is marked by an input variable of the macro. A node with

the label xm in the SSBDD represents the signal path through the macro

which begins with the input variable xm. The node variable is inverted when

the path consists of odd number of inverters, and not inverted when the

number of inverters is even. For example, the node x7,1 of SSBDD

represents the signal path with even number of inverters starting with the

line x7,1, through the nodes a,d,e to the output y in the macro (the bold lines

in the circuit). The node x1 in the SSBDD is inverted since the corresponding

path x1,d,e,y consists of odd number of inverters. The fan-out node x7 in the

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 17

circuit has three branches, and each branch x7,i, j = 1,2,3 is the beginning of a

path which is represented by the node x7,i in the SSBDD.

Figure 3-18. Combinational macro and his SSBDD

The one-to-one correspondence between nodes m in a SSBDD and paths

l(m) in the corresponding gate-level circuit is the direct result of the

synthesis procedure of SSBDDs.

From the above-described property of the SSBDD, automatic fault

collapsing results. Assume a node m with label variable x(m) represents a

signal path l(m) in a circuit. Suppose the path l(m) goes through n gates.

Then, instead of 2n faults of the path l(m) in the circuit, only 2 faults related

to the node variable x(m) should be tested when using the SSBDD model.

Generation of SSBDDs. For synthesis of SSBDDs for a gate network,

the graph superposition procedure is used [24], [31]. If the label x(m) of a

node m in the SSBDD Gy is an output of a subnetwork which is represented

by another SSBDD Gx(m) then the node m in Gy can be substituted by the

graph Gx(m). In this graph superposition procedure the following changes in

Gy and Gx(m) are made.

y

0

1

x6 x7,3

x1

x2 x7,1

x5

x7,2

y

0

1

x6 x7,3

x1

x2 x7,1

x5

x7,2

x 1
x 2

x 3
x 4
x 5

x 6

x x 7

x 7,1 x 7,1

x 7,3

x 7,2

a

b

c
y

e

d Macro

18 Chapter 3

Algorithm 3-1. Graph superposition

1) The node m will be removed from Gy.

2) All the edges in Gx(m) that were connected to terminal nodes mT,e in

Gx(m) will be cut and then connected, correspondingly, to the

successors me of the node m in Gy. Here, mT,e is the terminal node

labelled by constant e {0,1}

3) All the incoming edges of m in Gy will be now incoming edges for

the initial node m0 in Gx(m).

Consider a gate-level description of a network where each gate is

represented by a BDD. Starting from the BDD of the output gate, and using

iteratively the superposition procedure, we can compress the initial model of

the gate-network (by each substitution we reduce the model by one node and

by one graph). To reach high compression (to reduce complexity) of the

model, we generate SSBDDs only for tree-like subnetworks. As the result

we get a macro network where each macro (a tree-like subcircuit) is

represented by a SSBDD.

Figure 3-19. Example of superposition of graphs

Example 3-3

An example of the graph superposition procedure is shown in Figure 3-

19. We start with the output AND gate, and its BDD Gy which consists of

two nodes a and b. The input a of the AND gate is simultaneously the output

of the OR gate represented by the BDD Ga which consists of the nodes x1

and x21. First, we substitute the node a in Gy by the graph Ga. Thereafter the

node b in Gy is substituted by the graph Gb which consists of the nodes x22

and x3. The final graph which represents the whole circuit consists of the

nodes x1, x21, x22, and x3.

Test generation with SSBDDs. Consider a combinational circuit as a

network of gates, which is partitioned into interconnected tree-like

subcircuits (macros). This is a new higher level (macro-level) representation

of the same circuit. Each macro is represented by a SSBDD where each node

corresponds to an input of the macro. In the tree-like subcircuits only the

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 19

stuck-at faults at inputs should be tested (see Section 1.2 in Chapter 2). This

corresponds to testing all the nodes in each SSBDD.

Test generation for a node m in SSBDD, which represents a function y =

f(X) of a tree-like subcircuit (macro), is carried out by the following

procedure [31], [33], [34].

Figure 3-20. Test generation for the node m with SSBDD

Algorithm 3-2. Test generation for a node m in the SSBDD Gy, y = f(X)

1) A path lm from the root node of SSBDD to the node m is activated.

2) Two paths lm,e consistent with lm, where e{0,1}, from the neighbors

me of m to the corresponding terminal nodes mT,e should be activated.

If the node m is directly connected via e-edge to mT,e no path lm,e

should be activated for this particular value of e.

3) For generating a test for a particular stuck-at-e fault x(m)  e,

e{0,1}, the opposite assignment is needed: .)(emx 

4) All the values assigned to node variables (to variables of X) build the

local test pattern T(X,y) (input pattern of the macro) for testing the

node m in Gy (for testing the corresponding path l(m) on the output y

of the given tree-like circuit).

The paths in the SSBDD activated by the described procedure are

illustrated in Figure 3-20.

To create the final test pattern in terms of primary inputs of the circuit for

the given fault in an embedded macro of the circuit, similar fault propagation

and line justification procedures are needed as described in Subsection 3.1.

The difference, however, is that these procedures will be carried out on the

higher macro (instead of the gate) level whereas the macros of the circuit are

represented by SSBDDs. The fault propagation through a macro from the

input x to its output y is carried out similarly to the test generation for the

node m labelled by x in the corresponding SSBDD Gy as explained in

Algorithm 3-2. Line justification for the task y = e is carried out by activating

a path in the graph Gy from the root node to the terminal node mT,e.

SSBDD

m
lm

lm,1

m1

m0

mT,1

mT,0

lm,0

Root node

20 Chapter 3

Example 3-4

Consider test generation for the fault SAF0 on the internal branch (input

of the macro) x7,1 in the circuit in Figure 3-18. For SSBDD we have to

generate by Algorithm 3-2 a test for the node x7,1 at the condition x7,1 = 1.

Activating the path lm through the nodes x6, x1, and x2 gives assignment x6=0,

x1=1, and x2=1. Activating the path lm,1 through the node x5 gives x5=0. The

path lm,0 is activated “automatically”, since the 0-edge from the node x7,1 is

connected directly to the terminal node mT,0. The paths, activated by test

pattern x1x2x3x4x5 = 11001, are shown by bold lines in Figure 3-18.

In general we represent a circuit by a network of tree-like subcircuits

where each subcircuit is represented by a SSBDD. To generate a full test for

a given circuit, test patterns should be generated for SAF faults of all nodes

in all SSBDDs. The procedure of test generation for a chosen fault consists

of three steps - fault senzitization, fault propagation and line justification

as explained in Section 3.1.1 for the gate-level approach.

Fault sensitization. Sensitizing a fault on a line means to assign the

complement of the faulty signal on the line. Since the faulty signal may be 0

or 1, we distinguish it by denoting the SAF0 (SAF1) fault with D (D)

analogically to the classical D-algorithm where D {0,1}[1], [2].

Consider a graph Gy representing a tree-like subcircuit with Boolean

function y = f(X) where X is the vector of input variables of the subcircuit.

Choose a node m labelled by an input variable x(m)  X in Gy for generating

a test pattern for the fault SAFe, e {0,1}. To sensitize the fault we generate

a local test pattern for testing m with condition x(m) = e as explained above.

Assign to y a symbolic value D if y = 1 in the generated local test pattern

T(X,y) or D if y = 0. This symbolic value should be propagated to one of the

outputs of the circuit. All the generated input values of X should be justified

by primary input values of the circuit.

Fault propagation. In general, the fault propagation procedure on

SSBDDs is similar to the test generation on a single SSBDD. To propagate a

symbolic value D (D) from x to y in a SSBDD Gy where y = f(X) and x  X

, we have to find in Gy a node m labelled by x and generate a local test

pattern for m at the given constraints. The constraints are all the previously

assigned values of the variables of the circuit.

The new technique compared to fault sensitization is related to handling

the symbolic value D when tracing the paths on SSBDDs. Two techniques

may be used: single path activation, or multiple path activation (similar to

the well known D-algorithm [1], [2]).

In single path activation we propagate the value D along a single path in

a circuit and block its propagation along all other parallel paths. On SSBDDs

it means that during path activation procedures we have to treat all assigned

values D as unknown values that should remain unknown. In other words

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 21

when tracing and activating the paths lm (or lm,e) on a SSBDD through a node

m’ with symbolic value x(m’) = D we have to reach the target node m (or

mT,e) from both outputs of the node m’. As the result, the activation of the

path lm or (lm,e) will not depend on the changing value of x(m’).

Example 3-5

Consider a circuit and its SSBDD in Figure 3-21. Let us propagate the

value D from the input x2 through the branch x2,2 in a circuit, and block its

propagation through the branches x2,1 and x2,3. On the SSBDD the task is

equivalent to generation of a test for the node x2,2. When activating the path

lm,1 we meet a node with unknown value of x2,3. So, we have to reach the

terminal node 1 for both cases x2,3 = 0, and x2,3 = 1. For that we have to assign

x3 = 1. On the other hand, when activating the path lm,0 we meet a node with

unknown value of x2,1. So, we have to reach the terminal node 0 for both

cases x2,1 = 0, and x2,1 = 1. For that we have to assign x1 = 0. Now the value D

is propagated from x2 through the circuit to y via a single path (via edge x2,2).

The resulting test pattern is x1, x2 , x3 = 0D1.

Figure 3-21. Multiple path activation by using SSBDDs

To allow multiple path activation on SSBDDs (more general case) we

can exploit properly the duality of the symbolic value D  {0,1} in the path

activation. Suppose the fault should be propagated through the path

represented on SSBDD by a node m. Let us have x(m) = D (or D). To

propagate D via multiple paths through the circuit we will use Algorithm 3-2

in a slightly modified form: instead of activating the three separate paths lm,

lm,1, and lm,0, we will activate now two overlapping composite paths lm.lm,1

and lm.lm,0. When tracing and activating the path lm.lm,1, the value D is taken

as 1 (if x(m) = D) or 0 (if x(m) = D), and in the opposite case, when tracing

and activating the path lm.lm,0, the value D should be taken as 0 (if x(m) = D)

or 1 (if x(m) = D).

Example 3-6

22 Chapter 3

Consider again the circuit and its SSBDD in Figure 3-21. Propagate the

value D through all the three paths in a circuit. In the SSBDD the task is

equivalent to generating a test for the node x2,2 with taking D = 1 on the path

lm,1 and taking D = 0 on the path lm,0. It is easy to see that no additional

assignments are needed for propagating the fault from x2 to y when using the

SSBDD model. The resulting test pattern is: x1, x2 , x3 = -D- , where dash

means don’t care. When trying to activate multiple paths in the gate level we

would need two additional assignments: x1 = 1 and x3 = 0 with resulting test

pattern: x1, x2 , x3 = 1D0. By keeping the variables x1, x3 free (not assigned)

we can avoid many backtracks later in searching the test, and the test

generation speed will increase.

The last example shows another advantage of using SSBDDs in test

generation compared to the gate-level approach. The explanation of this

effect results from the fact that we work only with input variables of tree-like

subcircuits instead of the internal variables of gate-level representation.

3.2 HIGH-LEVEL TEST GENERATION

Since traditional gate-level test generation algorithms for complex VLSI

systems have lost their importance, other approaches based mainly on

functional, behavioral, or hierarchical methods are gaining popularity.

Functional test generation methods [1], [2], [35], [36], [37], [38], which do

not use low-level implementation data, help increase the speed of test

generation, however, they cannot achieve good test quality measured in

terms of gate-level fault coverage. Hierarchical methods [39], [40], [41],

[42] take advantage of the high level information for speeding up test

generation while providing good coverage of low level faults or physical

defects.

3.2.1 Overview of methods for high level test generation

Functional test generation without fault model. Structural details are not

often given for complex digital systems. In these cases, functional test

generation is used. Since the functional model of a system is independent

on the implementation, the functional tests derived from functional models

can be used not only to check whether physical faults are present in the

circuit or system, but also as a design verification tool with which we check

whether the implementation is free of design errors.

Functional test generation can be done in two different ways [2]: by using

specific functional fault models (Chapter 2), or by trying to derive tests with

the knowledge of the specified fault-free behavior only.

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 23

In the first case heuristic and formal approaches can be used. BDD

models as the specification of a system have been suggested in formal

approaches [25], [43]. The BDDs can be still used for not very complex

circuits only, and hence, can have only restricted use because of an

exploding complexity of the model.

Heuristic or ad hoc functional testing methods try to exercise all the

functions of the system. In case of the microprocessor, a typical functional

test is based on exercising the instruction set in a specific order. An

important issue is whether the instruction set is orthogonal [2]. An

orthogonal instruction set allows every operation to be executed in every

possible addressing mode. This feature means that the operation decoding

and address computation are independent, and these mechanisms can be

tested separately. If the instruction set is not orthogonal, then every operation

must be tested with all its addressing modes which leads to a very long test

sequence.

Functional testing can be optimized by using the start-small (or

bootstrap) approach [2], in which the tests performed at a certain step use

components and/or instructions tested in the previous steps. In this way the

tested part of the system is gradually extended.

A technique for ordering the instructions of a microprocessor according

to the start-small principle is presented in [44]. The cardinality of an

instruction is defined as the number of registers accessed during the execute

phase of the instruction. Instructions are tested in increasing order of their

cardinality. In this way the instructions affecting fewer registers are tested

first. Among instructions of the same cardinality, priority is given to those

with higher observability.

As mentioned already, the disadvantage of functional approaches of test

generation is the low fault coverage measured at the implementation level

(e.g. low gate level stuck-at fault coverage).

Test generation with symbolic execution trees. In Chapter 2 an RT level

fault model was described. It can be used for formalized fault model based

test generation. It can be justified that the functional faults of that model

manifest physical faults of lower levels (SAF, bridging faults etc.) as

functional faults at the RT level.

Test generation for a complex digital system requires a concise

description of the functions of the system. We have to describe all the

possible disjoint modes of operation of the system by giving the input

conditions and observing the effects of each mode. Hardware description

languages can be classified into procedural and nonprocedural languages.

The key difference is in the way of handling sequencing of activities.

Procedural descriptions are easier to write, understand, and verify than

nonprocedural descriptions. However, nonprocedural descriptions express

24 Chapter 3

the semantics of hardware function more directly than the procedural

descriptions, and they are therefore more suitable for fault model based test

generation. Symbolic execution of procedural descriptions can be used to

bridge the gap between the two types of descriptions [45]. This technique

has been used to prove the correctness of machine architectures implemented

in microcode.

The description of a system is usually given as a set of RT level

statements. An example of a RT level statement and its symbolic execution

tree as the result of symbolic execution of the statement is presented in

Figure 3-22. Each path in the tree represents a particular working mode of

the system. The list of all paths of the tree can be used by any test generation

procedure as a checklist to generate the test patterns required to exercise

each mode of operation.

IF F0 THEN AC = AC + 1
ELSE

IF F1 THEN

 IF AC = 0

 THEN PC = PC + 1

ELSE

IF F2 THEN

AC = AX, AX = AC

Figure 3-22. Symbolic execution tree for a function submodule

The test generation technique based on symbolic execution trees involves

the following steps [46].

Algorithm 3-3. Test generation with symbolic execution trees

1) Derive test generation order for the set of function sub-modules in the

whole RTL description (an instruction of a microprocessor may

represent such a function submodule);

2) Using the order obtained for every function sub-module, set up its

symbolic execution tree for terminated paths;

3) Perform heuristic test procedures derived from the results of Step 2

for data storage and data transfer faults in the current function sub-

module;

4) Inject an RTL fault which has not been tested along the selected path;

5) Set up the symbolic execution sub-tree of the fault-injected machine

and choose one terminated path for faulty symbolic results;

6) Derive a test pattern for current fault by comparing the symbolic

results and path constraints of good and bad machines.

 F0
0 1

AC=AC+1
F1

1

AC=0

PC=PC+1 PC=PC

0 1
F2

0 1

0

AC=AC

AX=AX

AC=AX

AX=AC

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 25

In testing complex digital systems (e.g. microprocessors), an order of

testing based on the partition of function modules (e.g. instructions) is

needed to efficiently perform the formalized test generation [44]. Each RTL

statement in each instruction is tested comprehensively based on RTL fault

model.

Structural register transfer level test generation. At higher levels a

design is represented as a network of higher-level components. For example,

at the RT level, a circuit can be viewed as an interconnection of components

like registers, counters, multiplexers, adders, etc. Knowing how these

components function allows using simple solutions for line-justification,

fault-propagation or implication tasks similarly like in the D-algorithm [2].

Figure 3-23. RT level data-path

As an example, in Figure 3-23 an RTL data-path is presented. Potential

RT level functions of the components are represented in Table 3-3 (for

simplification, the control signals are represented by integer variables).

Table 3-3. Potential operations of the components in Figure 3-23

M1 M2 M3 R2

y1 Function y2 Function y3 Function y4 Operation F

0 M1 = R1 0 M2 = R1 0 M3 = M1+ R2 0 Reset R2 = 0

1 M1 = IN 1 M2 = IN 1 M3 = IN 1 Hold R2 = R’2

 2 M3 = R1 2 Load R2 = M3

3 M3= M2* R2

The word variables R1, R2 and R3 represent registers, the integer variables

y1, y2 , y3, and y4 represent the control signals. M1, M2 and M3 are

multiplexers. There is also an adder and a multiplier in the circuit.

For line justification, we first determine the set of potential operations the

component can execute, and among these we then select one that can

produce the desired result. Assume we wish to justify R2 = 1110. From the

values of the control variable we determine that the potential operations are

R2M3

e
+M1

a

*M2

b





R1

IN 





c

d

y1 y2 y3 y4

26 Chapter 3

{Reset, Hold, Load}. Reset and Hold are not possible. For the Load

operation we have the solution: y4 = 2, M3 = 1110.

For fault propagation, we have to define corresponding working modes

of the components in order to allow propagation of erroneous signals from

inputs to outputs. Denote by D a symbolic faulty value of a vector variable to

be propagated to an observable node of the RT level circuit. As an example,

the fault propagation modes which make the component M3 transparent and

allow propagation of erroneous signals from the inputs to the output are

given in Table 3-4.

Table 3-4. Transparent modes of M3 in Figure 3-23 for fault propagation

y3 M1 M2 R1 R2 IN M3

0 D x x 0 X D

3 x D x 1 X D

2 x x D x X D

0 0 x x D X D

3 x 1 x D X D

1 x x x x D D

Hierarchical approach to test generation for systems. In hierarchical

test generation for digital systems, top-down and bottom-up strategies are

well-known [39-42], [47], [48]. In the bottom-up approach, local test

patterns of components pre-calculated at the lower level are assembled into

the test frames generated at the higher abstraction level. Generality of the

approach is in the possibility of using precalculated library tests for

components during higher level test planning. On the other hand, such

algorithms typically ignore the incompleteness of the problem: high-level

constraints imposed by other modules and/or the network structure may

prevent test vectors from being assembled. This can cause that solutions in

test generation cannot be found even if they exist.

The top-down approach has been proposed to solve this problem by

deriving environmental constraints for low-level solutions. However, the

complex nature of high-level constraints makes it difficult to consider them

in low level test generation. Also, such technique may be of little use when

the system is still under development in a bottom-up way, or when the pre-

generated local tests have to be applied.
In the high-level test generation (either for bottom-up or top-down

approaches), the test properties of system components (modules) are

described in the form of fault-propagation modes (see Table 3-4). These

modes usually are defined either by lists of control signals such that the data

on input lines are reproduced without logic transformation into the output

lines (called I-path [47]), or by a list of control signals that provide one-to-

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 27

one mapping between data inputs and data outputs (F-path [48]). The I-

paths and F-paths constitute connections that can be used to propagate test

vectors from input ports to the module inputs and to propagate the test

response to an output port.

In this approach, fault-propagation modes and the library test sets

typically constitute two separate description packages for modules. The

approach may be useless if not all functions in multi-functional modules are

used in the given application, because in that case not all library test patterns

can be assembled at the higher level, which results in a reduced fault

coverage. Also, using local test patterns and only fault-propagation modes is

not sufficient for high-level (behavioral) test generation, because the

functional description of modules needed for test generation is only partially

represented in this information.

In the next subsection, a method is presented, which allows

implementing both bottom-up and top-down approaches at uniform basis.

We start with the bottom-up approach. The transparency features will be

exploited to build up transparent I- or F-paths for assembling library patterns

of components. In these cases when the bottom-up approach fails (no

transparent path can be activated), we switch to the top-down approach for

extracting high-level constraints with the goal to be considered when

deriving tests for components at the lower level.

3.2.2 Test generation for digital systems with decision

diagrams

Representing digital systems with high-level decision diagrams. Test

generation methods developed for SSBDDs have an advantage compared to

other logic level methods, namely that they can be easily generalized to

handle the test generation problems at higher levels of systems [27], [28],

[31].

In general case beyond the Boolean algebra a decision diagram can be

defined as a non-cyclic directed graph G = (M,,X) with a set of nodes M, a

set of variables X, and a relation  in M where  (m)  M denotes the set of

successors of the node m  M [31]. The nodes m  M are labelled by

variables x(m)  X (constants or algebraic expressions of x  X). For each

value e from a set of possible predefined values e  V(x(m)) of a non-

terminal node variable x(m), there exists a corresponding output edge from

the node m into a successor node me (m). Consider a situation where all

variables x  X are fixed to particular values. By these values, for each non-

terminal node m a certain output edge is chosen, which is connected to a

successor node. Let us call these connections between nodes - activated

edges, and the chains of them - activated paths. For each pattern of values

28 Chapter 3

of x  X, there exists always a full activated path from the root node to a

terminal node. This relation describes a mapping from a Cartesian product of

the sets of values V(X) for variables x  X in all nodes to the joint set of

values V(Y) of expressions in terminal nodes. Therefore, by DDs it is

possible to represent arbitrary digital functions Y=F(X), where Y is the

variable whose value will be calculated by the DD and X is the vector of all

variables in the nodes of the DD.

Figure 3-24. Register-transfer level data-path system

Depending on the type of the system (or its representation level), we may

have various DDs, where nodes have different interpretations and

relationships to the system structure. In register transfer level (RTL)

descriptions, we usually partition a digital system into the control part and

the data part. State and output variables of the control part serve as

addresses and control words, and the variables in the data part serve as data

words. High-level data word variables describe RTL functions in data parts.

When using DDs to describe complex digital systems, we have to represent

the system by a suitable set of interconnected components (combinational or

sequential subcircuits). Thereafter, we have to describe these components by

their corresponding functions which can be represented by DDs.

 Figure 3-24 shows a RTL data-path and its DD [49]. The DD is created

by superposition of elementary DDs of components of the circuit,

analogically to the superposition procedure for SSBDDs described in

Subsection 1.2. The word variables R1, R2 and R3 represent registers, the

integer variables y1, y2 , y3, and y4 represent the control signals. M1, M2 and

M3 are multiplexers, and the functions R1+R2 and R1*R2 represent the adder

and multiplier, respectively. The whole DD describes the behavior of the

input logic of the register R2.

R2M3

e
+M1

a

*M2

b





R1

IN 





c

d

y1 y2 y3 y4

y4

y3 y1 R1 + R2

IN + R2

R1* R2

IN* R2

y2

R2
0

1

2 0

1

0

1

0

1

0

R2

IN

R1

2

3

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 29

In test pattern simulation, a path is traced in the graph, guided by the

values of input variables until a terminal node is reached, similarly as in the

case of SSBDDs. In this example, the result of simulating the vector y1, y2,

y3, y4, R1, R2, IN = 0,0,3,2,10,6,12 is R2 = R1*R2 = 60 (bold arrows mark the

path activated by the control pattern). Instead of simulating all the

components in the circuit by a traditional approach, on the DD only 3 control

variables are visited during simulation, and only a single data manipulation

R2 = R1*R2 is carried out.

Each node in a DD represents a subcircuit of the system. For example, the

nodes y1, y2, y3, y4 represent multiplexers and decoders, the nodes R1, R2, IN,

and other terminal nodes represent registers, input bus, and data

manipulation subcircuits, respectively. To test a node of the DD means to

test the corresponding subcircuit.

Test generation for RT level data paths with a single DD. RT level data

path can be represented by a single DD as shown in Figure 3-24. A test for

such a system can be created in two parts [31]:

- conformity test, which makes sure that the different working modes

chosen by control signals are properly carried out, and

- scanning test, which makes sure that the different functional blocks

are working correctly.

The task of the conformity test is to detect the control faults and the faults

in multiplexers. In terms of DDs the non-terminal nodes are tested by the

conformity test. For creating the conformity test we may use either high-

level fault models or the hierarchical approach.

The task of the scanning test is to detect the faults in registers, buses and

data manipulation blocks. In terms of DDs the terminal nodes are tested by

the scanning test. For creating scanning test sequences hierarchical test

generation approach is preferred, since no good high-level fault models for

testing data manipulation blocks are known. In simpler cases (like buses and

registers) pure high-level or functional test generation approaches may still

be used.

Conformity test. Consider a nonterminal node m labelled by a control

variable x(m) in the given DD GY representing a digital system with a

function Y = F(X). Let X = (XC, XD) where XC is the vector of control

variables and XD is the vector of data variables. To generate a test for the

node m means to generate a test for the control variable x(m)  XC. Suppose

that the variable x(m) may have n = V(x(m)) different values. For testing

x(m), we have to activate and exercise all the proper working modes

controlled at least once by each value of x(m). For each of such a working

mode, the needed state of the system should be generated, so that every

possible faulty change of x(m) should produce a faulty next state, which

differs from the expected next state of the given working mode.

30 Chapter 3

Denote by me   (m) the successor node of the node m for the value

x(m) = e, where e = 1,2,…,n. For generating a test for m we have to solve the

following tasks on the DD (Figure 3-25).

Algorithm 3-4. Conformity test generation for a nonterminal node m

1) Activate a path lm from the root node of the DD up to the node m by

choosing proper values for all the variables in the nodes of lm.

2) For each e = 1,2,…,n activate consistent non-overlapping paths lm,e

from me up to a terminal node mT,e for all successor nodes me of m by

choosing proper values for all the node variables on all the paths lm,e.

3) Find the proper set of data (the values of the variables in XD), so that

the inequality

f(mT,1)  f(mT,2)  …  f(mT,n)

holds, where f(mT,e) is the functional expression in the terminal node

mT,e reached by the path lm,e.

Figure 3-25. Conformity test generation on the DD

Consider the resulting symbolic test pattern in the following symbolic

way:

T = eCD;Ye

where e is the symbolic value of the tested variable x(m), C is the vector of

other control signals X’C  XC generated in the first two steps of the

algorithm, D is the vector of data values generated in the third step of the

algorithm, and Ye is the expected output value of the circuit corresponding to

the value e of the tested control variable x(m). The final conformity test of

the control variable x(m) created from the generated symbolic test pattern T

= eCD;Ye can be implemented as the following test program:

Algorithm 3-5. Conformity test implementation for T = eCD;Ye

For each value of e = 1,2, …, V(x(m))

BEGIN

DD

m

lm
lm,1

m1

mT,1

Root node

lm,2m2

mT,2

lm,n
mn

mT,n

DD

m

lm
lm,1

m1

mT,1

Root node

lm,2m2

mT,2

lm,n
mn

mT,n

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 31

Load the data registers with D

Carry out the working mode defined by the value of e

- at the generated control signals x(m) = e, X’C = C, and

- at the generated input data signals

Read the value of Ye.

END.

Example 3-7

Generate a test program for testing the multiplexer M3 represented by the

node m with label y3 in Figure 3-24. We activate 4 paths lm,e for each value e

= 0,1,2,3 of y3. Two of them, lm,1, lm,2, for values y3 = 1 and y3 = 2,

respectively, are “automatically” activated since the successors of the node

y3 for these values are terminal nodes. The control values for the test are

found by activating the path lm with assigning y4 = 2, and by activating two

paths lm,0 and lm,3 with assigning y1 = 0 and y2 = 0, respectively. The test data

D: R1 = D1, R2 = D2, IN = D3 are found by solving the inequality

R1 + R2  IN  R1  R1 * R2.

The following conformity test program for the control variable y3 results:

For e = 1,2,3,4

BEGIN

Load the data registers R1 = D1, R2 = D2

Carry out the tested working mode at y3 = e, y1 = 0, y2 = 0, y4 = 2 and

IN = D3

Read the value of R2,e.

END.

Scanning test. Consider a terminal node mT labelled by a functional

expression f(mT) in the given DD. To generate a test for the node mT means

to generate a test for the function f(mT). Denote by X(mT)  XD the data

variables used in the expression f(mT).

Test generation process for testing f(mT) is carried out according to the

following algorithm.

Algorithm 3-6. Scanning test generation for a terminal node mT

1) Activate a path lm,T from the root node of the DD up to mT by

choosing proper values C for all the control variables in the nodes of

lm,T.

2) Find the proper sets of data values D = (D1, D2,…, Dn) of X(mT) for

testing the function f(mT) (this operation can be carried out at the

lower (e.g. gate) level if the implementation details for f(mT) are

given).

From executing this algorithm the following test program results:

32 Chapter 3

Algorithm 3-7. Scanning test implementation

For all the values of i = 1,2, …, n

BEGIN

Load the data registers X(mT) with Di

Carry out the tested working mode at the control values C

Read the value of Yi.

END.

Example 3-8

Generate a test program for testing the multiplier in Figure 3-24. In the

DD we have two terminal nodes with the multiplier function. Let us choose

the node R1*R2 for testing. By activating the path to this node (shown in bold

in Figure 3-24) we generate a control word (y2, y3, y4) = (0,3, 2). To find the

proper values of R1 and R2 we need to descend to the lower level (e.g. gate

level) and generate test patterns by a low level ATPG for the low level

implementation of the multiplier. Let us have a test set of n test patterns

(D11,D21; D12,D22; … D1n,D2n) generated for the multiplier with inputs R1 and

R2.

From above the following test program results:

For all the values of i = 1,2, …, n

BEGIN

Load the data registers R1 = D1i, R2 = D2i

Carry out the tested working mode at the control values (y2,y3 y4) =

(0,3,2)

Read the value of Yi.

END.

In the case when the control values are data dependent the algorithms

become more complicated since the data found for nonterminal nodes by

activating the paths in the DD should be consistent with the data found in

processing of the terminal nodes.

Representing complex digital systems by a set of DDs. In general case a

system is represented by a set of DDs, where each DD represents a part

(subcircuit or component) of the system.

Consider a digital system consisting of the data and control parts as

represented in Figure 3-26.

The data path of the system is partitioned into four subcircuits with

functions described in Table 3-5. To model the system in the clock cycle

basis it is reasonable to partition the system into components (subcircuits) in

such a way that each subcircuit consists of a register with its input logic

connected directly to other registers or to primary inputs. To simplify the

hierarchical test generation, it is also reasonable to represent complex self-

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 33

contained blocks like adders, multipliers, ALUs, etc. as separate independent

blocks. This allows during high-level test planning to reuse the local tests of

these blocks if they are available

Figure 3-26. A system consisting of control and data parts

 In the example system presented in Figure 3-26, y1, y2, and y3 serve as

control variables, A and B are the data inputs of the data path, R1, R2, and R3

serve as data register variables, C is an output of the multiplier (input for the

adder), and Y is the primary output of the data path. The functions of the

subcircuits of the data path are presented also in Table 3-5 (the previous state

is denoted by apostrophe).

Table 3-5. Functions in components of the data-path in Figure 3-26

+ R 3

R
2

 F R 1

A

B
C

Y

A
s

3

Control part

Data part

y1 y2 y3

R2 = 0

Block Control RTL operation Function

 y1 = 0 R1 = 0 Reset

R1 y1 = 1 R1 = R’1 Hold

 y1 = 2 R1 = F (B, R’1) Special

 y2 = 0 R2 = 0 Reset

R2 y2 = 1 R2 = R’2 Hold

 y2 = 2 R2 = A Load

 y2 = 3 R2 = 2 * R’2 Shift

 y3 = 0 R3 = 0 Reset

R3 y3 = 1 R3 = R’3 Hold

 y3 = 2 R3 = C + R’2 Add

C None C = A * R’1 Multiply

34 Chapter 3

The DD-model of the system is represented in Figure 3-27. The model

consists of graphs GR2, GC, GR1 and GY,R3 for representing the functions of the

register R2, multiplier C and of two sub networks R1 and Y=R3, respectively,

in the datapath surrounded by dotted lines in Figure 3-26.

Figure 3-27. DD-representation of the digital system in Figure 3-26

The control part of the system is represented by the DD for calculating

the value of the complex variable q,y1,y2,y3 of the FSM given by the next

state and output functions in Table 3-6. Here, q denotes the next state and q’

denotes the current state variable. The variables y1, y2, and y3 are the outputs

of the FSM (the control inputs of the data path).

Table 3-6. FSM state transition and output table of the control-path in Figure 3-26

Hierarchical test generation for a complex digital system. According to

the hierarchical approach, the tests are generated for all the nodes in all the

DDs of the system description [50], [51]. For testing each node, the

following steps of the procedure are carried out: high level deterministic

fault manifestation, fault propagation, constraints justification,

constraints satisfaction and low-level random test generation. The

State Condition Nstate Control signals

q’ q y1 y2 y3

0 1 0 0 1

1 R2 = 0 2 1 2 0

1 R2  0 3 0 2 1

2 4 2 0 0

3 4 2 1 1

4 0 1 1 2

y
3 0 y

2

2

A

2R’
2y1

R’1

F(B,R

’
3
)

AR’
1

0

0

Y,R 3 R
2

0 0

1 1
2

2

0

3

R1

C

1

2

0

C+R

’
2

R’
3 R’

2

q y1 y2 y3

q’  1001

4200

1

2

0

R’2=0
1

0

#2120

3021

4211

0112

3

4

q y1 y2 y3

q’  1001

4200

1

2

0

R’2=0
1

0

#2120

3021

4211

0112

3

4

q’  1001

4200

1

2

0

R’2=0
1

0

#2120

3021

42114211

01120112

3

4

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 35

procedure represents a systematic search and therefore an inconsistency in

any stage will cause backtracking and returning to the last decision.

Fault manifestation in a system of DDs means generating a symbolic

local test for a node in the given DD. The procedure is similar to generating

conformity or scanning tests described above for the single DD model. A not

yet tested node m in a given DD GY representing a function Y = F(X), X =

(XC,XD), XD = (XD1, XD2,…,XDk) is chosen. Appropriate test (scanning or

conformity type) is generated for testing the node m in GY. As the result a

symbolic test vector is generated: XC = C, XD1 = D1, XD2 = D2,…, XDk = Dk, Y

= D. Symbolic fault-effect value D is assigned to Y for fault propagating.

The control values XC = C, and the symbolic values (local test patterns) Di, i

= 1,2, …,k assigned to the data variables XDi  XD represent the constraints

to be justified later. The constraints in the case of conformity test are

represented in the form of inequality expressions.

Fault effect propagation. Subsequent to the manifestation phase, the fault

effect has to be propagated to primary outputs of the whole circuit. The

propagation procedure will follow, where decisions are made, both on the

DDs of the data path as well as on the DD of the control part.

To propagate faults through the system network, for all the subcircuits as

network components the lists of fault propagation modes like in Table 3-4

should be created. For standard high-level components such lists can be

presented as library information. For arbitrary high-level subcircuits the DD

model can be used for direct representation of fault propagation modes

[52]. In Figure 3-28 a technique is illustrated, where the transparent fault

propagation modes are directly inserted into the original DD-model in

Figure 3-27. DDs allow representing this additional information more

concisely than in the form of tables as shown in Table 3-4.

In the graph GR1, an additional terminal node B is inserted. Activating the

path in GR1 from the root node to B (by assigning y1=2 and R’3=0) is

equivalent to creating an I-path (propagating a fault) from the input B to the

register R1 in Figure 3-26.

Figure 3-28. DDs with transparent fault propagation modes

y3 0

C R’2

CR’2

Y,R3

1

0

0

2

0

C+R’2

R’3

A

A

A R’1

0C

R’1

R’1

1

0

0

01

1

1

R’1

y1

R’1

R’3 B

F(B,R’3)

0R1

1

0
2

0 y3 0

C R’2

CR’2

Y,R3

1

0

0

2

0

C+R’2

R’3

y3 0

C R’2

CR’2

Y,R3

1

0

0

2

0

C+R’2

R’3

A

A

A R’1

0C

R’1

R’1

1

0

0

01

1

1

R’1

A

A

A R’1

0C

R’1

R’1

1

0

0

01

1

1

R’1

y1

R’1

R’3 B

F(B,R’3)

0R1

1

0
2

0
y1

R’1

R’3 B

F(B,R’3)

0R1

1

0
2

0

36 Chapter 3

In GY,R3, two additional terminal nodes with labels R’2 and C are inserted.

Activating the path from the root to the terminal node C (by assigning y3=2

and R’2=0 whereas the value of C remains free) is equivalent to creating an

I-path (propagating a fault) from C to Y in Figure 3-26. Activating the path

from the root to R’2 (by assigning y3=2 and C=0) is equivalent to propagating

the fault from R’2 to Y.

In the graph GC, three additional terminal nodes with labels R’1, A and

constant 1 are inserted. Activating the path from the root to R’1 (by assigning

A=1) is equivalent to propagating transparently a fault from R’1 to C in

Figure 3-26. Activating the path from the root to A (by assigning R’1=1) is

equivalent to propagating the fault from A to C. Finally, by activating the

path from the root to the terminal node with constant 1 (by assigning A=1

and R’1=1) we solve the justification task C = 1.

Constraints justification. The aim of the justification is to backtrace the

values and symbols that were set during the manifestation and propagation

phases. The backtracing is performed via constraints extraction [50], [51].

Each time that a backward step is made during the justification, the contents

of the constraints will be updated. Justification will end when all the

variables in the constraints are primary inputs or constants.

The constraints are divided into two types: path activation constraints

and transformation constraints. Path activation constraints are the

constraints required to provide a transparent path through the circuit.

Transformation constraints, in turn, reflect the value changes along the

activated path. Path activation constraints are the constraints corresponding

to the conditions to be satisfied in the FSM and to the values that are

required to create a transparent path through a subcircuit of the system.

Transformation constraints describe the changes in low-level test vectors on

their way from primary inputs to the inputs of the module under test. During

each time frame that is earlier than the manifestation time, the justification

procedure selects a justification objective.

Constraint satisfaction. Subsequent to the constraint justification, the

constraints have to be solved. In order to achieve that goal, any known

Constraint Satisfaction Problem (CSP) solving algorithm can be applied.

Only the path activation constraints are managed during constraint

satisfaction. Transformation constraints are considered in the low-level test.

Low-level test generation. This step targets the gate-level structural faults

in the current unit under test (UUT). During the low-level test, random

values are generated to the variables of transformation constraints. The

constraints are simulated to obtain the transformed vectors at UUT inputs,

which, in turn, are applied to a fault simulation of the unit. If a fault is

detected at the output of the module, it is also detected at the primary outputs

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 37

of the whole system. This is true because the fault effect propagation has

previously guaranteed a transparent path from the output of the module to

the primary outputs.

The vectors that detect previously undetected faults are compiled into

final test vectors for the whole hierarchical circuit. This takes place by

substituting the symbolic values in the high-level symbolic test frames by the

actual values found during constraint satisfaction and low-level test.

To summarize the approach when generating a test for a module in a

network, we have to propagate the fault effects from the output of the

module up to the primary outputs of the network and also to propagate the

test stimuli from the primary inputs of the network up to the inputs of the

module. All these procedures are carried out on high-level DDs either by

Algorithm 3-4 or Algorithm 3-6.

Example 3-9

Consider the use of fault propagation modes embedded in DDs on an

example of symbolic high-level test generation for a multiplier block C in

Figure 3-26. Denote the set of local test patterns for the block C by T(C). To

test the block C on high-level by assembling the patterns T(C), we have to

create an I (or F)-path from the input B through the subnetwork R1 to the

input of C (for justifying the patterns T(C) on inputs of C), and to create a

I(or F)-path from the output of C to the primary output Y for observing the

test responses from C.

Figure 3-29. Test generation example for the block C in Figure 3-26

y
3 =2

 C

 R’ 2 =0

y 2 = 0

  0
 R 3 =D

 A R’ 1

 A =D 1

R’ 1 =D 2 B =D 2

y1=2
y

3 = 0

  0

C =D

q=4

Fault manifestation

q=2 q=1 q=0

R’ 2 = 0 y
2 = 0

q=1
q=2

Constraints justification

Fault

propagation

t t-1 t-2 t-3 Time:

  0

 R3’=0

38 Chapter 3

The test generation procedure with DDs in Figure 3-27 and Figure 3-28

is illustrated by the flow of activities in Figure 3-29. The generated final test

sequence consisting of four symbolic test patterns is shown in Table 3-7,

where t is the number of clock cycle.

Symbolic fault manifestation for the block C = A * R’1 is carried out in

the graph GC in Figure 3-28 by Algorithm 3-6 of generating scanning test for

the node A * R’1. As the result, the highlighted path to the terminal node A *

R’1 is activated. The symbolic values are assigned to A and R’1 (A = D1, R’1

= D2) as justification objectives, and the symbolic fault-effect value D is

assigned to C (C = D) for fault-effect propagation (see Figure 3-29).

Fault-effect propagation is produced in GY,R3 in Figure 3-28 through the

highlighted I-path which generates the constraints R’2 = 0 and y3 = 2 as the

next justification objectives. To satisfy y3 = 2, we find in the DD for the FSM

in Figure 3-27 a new justification objective q = 4. All these procedures

assign values for variables at the current time frame t (the final test length is

not yet known, we have to backtrace the time starting from the current

moment denoted by t), see Figure 3-29.

Constraint justification task has now the following list: A = D1, R’1 = D2,

R’2 = 0 and q = 4 (all for the current time period t). Since A is an input, the

first task can be removed from the list.

To justify R’1 = D2, we have to go back to the previous time moment t-1

(the time shift is marked by the apostrophe at R’1). To solve now the

constraint R1 = D2, we generate in the graph GR1 an I-path through the nodes

y1, R’3, and B. As a result, we find for t-1 the next justification tasks: B = D2,

R’3 = 0, y1 = 2. The first of these tasks, B = D2, is already a solution, since B

is the input.

To justify R’2 = 0, we find in GR2 a new constraint y2 = 0 for the time

moment t-1.

To justify the state q = 4 in the DD of the vector qy1y2y3 in Figure 3-27

we can trace back to the states, either q = 2 or q = 3 at t-1. The constraint y1 =

2 at t-1 in Figure 3-29 can be solved also by two ways: q = 2 or q = 3 (see

the same DD of qy1y2y3 in Figure 3-27). On the other hand, y2 = 0 at t-1

needs either q = 0 or q = 2. Intersection of these constraints gives the needed

state q = 2 for the time period t-1.

 Table 3-7. Symbolic test sequence for C in Figure 3-26

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 39

The justification of the remaining constraints can be easily followed on

the data dependency tree in Figure 3-29. The final test sequence consisting

of four symbolic test patterns is given in Table 3-7. The symbolic values D1

and D2 can be substituted either by low-level generated deterministic local

test patterns or by randomly generated local test patterns.

3.2.3 Test generation for microprocessors

Testing of microprocessors is a difficult problem because of the

complexity and due to the lack of implementation details. The methods

proposed in literature are based mainly on a functional level using the

instruction set information [1], [2], [35], [44], [53], [54], [55].

Test generation with S-graphs. A microprocessor may be represented by

interaction between registers according to an instruction set [35]. In [55] a

model of S-graph describing interaction of registers for test generation

purposes was proposed. The nodes of the graph represent registers. A pair of

registers Ri and Rj is connected by an edge if there is an instruction involving

these registers. The instructions and additional conditions which make the

corresponding interaction active are shown on the edges. In addition to the

register nodes two terminal nodes IN and OUT are added to represent the

“outside world” of the microprocessor. They may be viewed as buses that

connect the registers with a memory and peripheral devices.

In Figure 3-30 a simple instruction set of a hypothetical microprocessor

and its S-graph are shown.

I1: MVI A,D A = IN I6: MOV A,M A = IN

I2: MOV R,A R = A I7: ADD R A = A + R

I3: MOV M,R OUT = R I8: ORA R A = A  R

I4: MOV M,A OUT = A I9: ANA R A = A  R

I5: MOV R,M R = IN I10: CMA A,D A =  A

t q y1 y2 y3 A B C R1 R2 R3 Y

1 0 0 0 1 0

2 1 1 2 0 0

3 2 2 0 0 D2 D2 0

4 4 1 1 2 D1 D D D

40 Chapter 3

Figure 3-30. Instruction set of a microprocessor and its S-graph

Using the S-graph and the functional fault model of a microprocessor

described in Chapter 2, the following test generation procedures have been

developed [53], [55]:

- testing the register-decoding function (fault classes F1-F5),

- testing the instruction-decoding and instruction-sequencing

function (fault classes F6-F8),

- testing the data-storage and data-transfer functions (F9-F13).

For testing the data manipulation functions no specific functional fault

model has been proposed. The usual approach is to assume that tests for the

data manipulation functions are developed by some other techniques [2]. In

other words, it corresponds to the hierarchical approach where test planning

is carried out on the functional (instructions set) level whereas test data for

data manipulation units are generated on the gate-level.

The test of register-decoding functions involves writing and reading of

registers. Whenever there exist several ways how to write or read a register,

we select the shortest sequence. According to the start-small principle,

registers are ordered for testing in increasing order of the lengths of read

sequences.

The test of instruction-decoding and instruction-sequencing function is

targeting the faults, which affect the execution of the instruction I and cause

errors in the final results of the instruction (in the data transferred to the

OUT node or in the register that can be read after I is executed). This should

be true if microinstructions of I are not activated and/or if additional

microinstructions are erroneously activated. Missing microinstructions are

generally easy to detect. To detect the execution of additional parasitic

microinstructions the method of codewords was proposed [53], [56].

IN

OUT

A R

I1, I6 I5

 I2 - I5

 I7 - I10
 I1 , I3, I4

 I6 - I10

 I4 I3

 I2

 I7, I8, I9

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 41

Data-storage and data-transfer functions are tested together, because a

test that detects stuck-at-faults on lines of a transfer path A  B also detects

stuck-at-faults in the registers corresponding to the nodes A and B. A test for

the transfer paths and for the registers is based on using different data

patterns, so that

- every bit in a transfer path is set to both 0 and 1,

- every pair of bits is set to the values of 0 and 1 [55].

As an example, such test patterns for testing an 8-bit transfer path are

presented in Table 3-8 where the test patterns belong to rows, and the bits of

the bus belong to columns.

Such a test detects all the stuck-at-faults on the lines of the transfer path

and all the shorts between any pair of its lines.

Test generation with Decision Diagrams. The described S-graph based

approach can be regarded as a special case of the test generation technique

developed for DDs [28], [31] and described in Subsection 3.2.2. The first

two procedures of testing register- and instruction decoding functions are

equivalent to testing nonterminal nodes of DDs (conformity test), and the

third procedure of testing data storage and data transfer functions together

with testing of data manipulation faults are equivalent to testing of terminal

nodes of DDs (scanning test).

Table 3-8. Test patterns for testing an 8-bit transfer path

 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1

2 1 1 1 1 0 0 0 0

3 1 1 0 0 1 1 0 0

4 1 0 1 0 1 0 1 0

5 0 0 0 0 0 0 0 0

6 0 0 0 0 1 1 1 1

7 0 0 1 1 0 0 1 1

8 0 1 0 1 0 1 0 1

Example 3-10

The DD-model of the instruction set in Figure 3-30 consisting of three

DDs GOUT, GA and GR is shown in Figure 3-31.

The DD-model represents a conceivable network of three blocks in

Figure 3-32 with output variables A,R, and OUT, and with primary input

variables: data variable IN, and control variable I which can have values

from the set {I1,I2,…I10}.

42 Chapter 3

Figure 3-31. Decision diagrams of the microprocessor described in Figure 3-30

Transformation of the instruction set description into a structural model

gives us a possibility to use standard procedures of fault manifestation, fault

propagation and constraints justification in a similar way as it was

considered in Subsection 3.2.2.

Consider (scanning) test generation according to Algorithm 3-6 for the

terminal node A + R in GA. The procedure is illustrated by highlighted

activated paths in Figure 3-31a, by the fault manifestation, propagation and

justification steps in Figure 3-33a and by the final test program created by

Algorithm 3-7 in Figure 3-33b.

In the fault manifestation step (test step in time frame t-1) a path is

activated in GA from the root node to the terminal node A + R, which gives

I(t-1) = I7 (see the bold lines in GA in Figure 3-31a). The fault propagation

step (observation step in the time frame t) to propagate the fault from A to

OUT is carried out in GOUT, which gives I(t) = I4. The constraints

justification step (load operations in time frames t-2, and t-3) is carried out in

GA by I(t-2) = I1 for loading A with test data IN(t-2) and in GR by I(t-3) = I5

for loading R with test data IN(t-3). As the result of the test generation we

get a symbolic test sequence: I(t-3) = I5, IN(t-3) = DR ; I(t-2) = I1, IN(t-2) =

DA ; I(t-1) = I7; I(t) = I4.

I R
3

A

OUT

4

I A
2

R

IN
5

R

1,3,4,6-10

I IN
1,6

A

A
2,3,4,5

A + R
7

A  R
8

A  R
9

 A
10

I R
3

A

OUT

4

I A
2

R

IN
5

R

1,3,4,6-10

I IN
1,6

A

A
2,3,4,5

A + R
7

A  R
8

A  R
9

 A
10

I R
3

A

OUT

4

I A
2

R

IN
5

R

1,3,4,6-10

I IN
1,6

A

A
2,3,4,5

A + R
7

A  R
8

A  R
9

 A
10

I R
3

A

OUT

4

I A
2

R

IN
5

R

1,3,4,6-10

I IN
1,6

A

A
2,3,4,5

A + R
7

A  R
8

A  R
9

 A
10

a) b)

OUT

R

A

IN

I
OUT

R

A

IN

I

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 43

Figure 3-32. Structural model of microprocessor

The whole test generation procedure is presented in Figure 3-33a, and the

resulting test program according to Algorithm 3-7 is given in Figure 3-33b.

The test data {DR, DA} for testing the adder A + R are generated at the low

level by using gate-level specification of the adder.

Consider now (conformity) test generation according to Algorithm 3-4 for

the nonterminal node I in GA, which is illustrated in Figure 3-31b and Table

3-9.

In the fault manifestation step (time frame t-1) a local test pattern is

generated in GA for testing the node I. Since I is the root node, and all its

successors are the terminal nodes, no paths should be generated in GA. The

local test pattern consists of the symbolic value D  {I1,I2,…I10} assigned to

the control variable I(t-1), and of test data IN(t-1), A(t-1) and R(t-1) found as

a solution of the inequality IN  A  A+R  AR  AR  A. The values

of A(t-1) and R(t-1) need to be justified as constraints. Since IN is an input

variable, IN(t-1) does not need justification.

The fault propagation and constraints justification steps are similar to the

previous example of testing A + R.

Figure 3-33. Test program generation for a microprocessor

To propagate the fault (in the time frame t) from A to OUT we assign I(t)

= I4 in GOUT. To justify the constraint A(t-1) in the time frame t-2 we activate

by I(t-2) = I1 in GA the path from the root to the terminal node IN, and assign

Test program:

For all IN(t-2) and IN(t-3)

BEGIN

I5: MOV R,M R = IN(t-3)

I1: MVI A,D A = IN(t-2)

I7: ADD R A = A + R

I4: MOV M,A OUT = A

END

a) b)

OUT I 4

A I 7

A

R

I 1

IN(t-2)

IN(t-3)

R I 5

Time:
t t - 1 t - 2 t - 3

Observation Test Load

OUT I 4

A I 7

A

R

I 1

R I 5

Time:
t t - 1 t - t - 3

Observation Test Load

44 Chapter 3

IN(t-2) = A(t-1). To justify R(t-1) at t-3 we activate by I(t-3) = I5 in GR the

path from the root to IN, which gives IN(t-3) = R(t-1).

 Table 3-9. Test data generation for testing the node I in GA

Test data generation for solving the inequality IN  A  A+R  AR 

AR  A is illustrated in Table 3-9. The inequalities are solved by

choosing bit by bit the proper data for IN(t-1), A(t-1), and R(t-1) to make the

values of all the expressions IN, A, A+R, AR, AR,A different.

The resulting test program according to Algorithm 3-5 can be constructed

as follows:

For all D = {I1,I2,…I10}

BEGIN

I(t-3) = I5, IN(t-3)=110;

I(t-2)= I1, IN(t-2)=101;

I(t-1)= D, IN(t-1)=0;

I(t)= I4.

END

In the discussion above we have described the general ideas of testing

microprocessors based on generic architectures. An overview of test

strategies developed for real life microprocessors may be found in [35].

3.3 FAULT SIMULATION

Fault simulation plays an important role in the ATPG process. A fault

simulator has to classify the given target faults in DUT as detected or

undetected by given test stimuli (patterns). Fault simulation does not try to

generate new test patterns, but determines the fault coverage of existing

vectors. The basic fault simulation techniques are serial, parallel, deductive

and concurrent. A special method is the critical path tracing technique where

test patterns are generated together with determination of detected faults they

cover during one path tracing through the DUT structure from primary

outputs toward primary inputs [1], [2]. The serial fault simulation is the

IN 0

A 101Data

R 110

I1, I6 IN 0

I2, I3 I4, I5 A 101

I7 A + R 1011

I8 A  R 111

I9 A  R 0

Functions

I10  A 0

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 45

simplest algorithm for simulating faults injected into the DUT structure by

modifying the circuit description for a target fault and using a true-value

simulator.

3.3.1 Parallel fault simulation method

The parallel fault simulation algorithm combines two separate concepts

– single-fault propagation and parallel-pattern evaluation and was widely

used in the 1960s and 70s. It was implemented in various commercial ATPG

systems, e.g. the HILO and TEGAS simulators. The idea of the parallel fault

simulation is to use the bit-parallelism of logic operations in the computer.

For example in a 32-bit computer word, an integer consists of a 32-bit binary

vector. This allows a simultaneous simulation of 32 copies of circuit (1 fault-

free circuit and 31 faulty copies) with identical connection, but with possibly

different signal values [1], [2]. The faults detection is reported by different

values in bit positions in comparison with the fault-free outputs to input

stimuli. The automatic parallel fault simulation uses the following

expressions:

- A fault is represented by a mask on a signal line (index i is a bit position

in masks):

 mask (s)i = 1 - if a fault on the line s exist, (3-1)

 mask (s)i = 0 - if a fault on the line s does not exist.

- SAF0 or SAF1 are represented by p_value defined for the signal line:

 p_value (s)i = 1 - if the fault on s is SAF1

 p_value (s)i = 0 - if the fault on s is SAF0. (3-2)

The new value on the signal line s is calculated according to the following

expression:

 s’ = s . mask (s) + mask (s) . p_value (s), (3-3)

where operation “.” and “+” is logical multiplication and addition.

A simple example of the parallel fault simulation is shown on a circuit

and input pattern (ABCD) = (1101) presented in Figure 3-34.

Bit position for faults injection

bit 3: fault-free circuit

bit 2: circuit with SAF0 on line E

bit 1: circuit with SAF1 on line F

bit 0: circuit with SAF1 on line G

0

G

1

1

F

1

1 0 1 1

0 0 1 0

E

SAF0, SAF1 on

lines E, G

 are detected

D

B

C

A 1 1 1 1

1 1 1 1

0 0 0 0

1 1 1 1

0 0 0 0

0 1 0 1

fault free ouput

faulty ouput

46 Chapter 3

Figure 3-34. An example of parallel fault simulation

Example 3-11:

Consider circuit c17 in Figure 3-15 and 8 faults selected for parallel fault

simulation described in Table 3-10. The masking values and corresponding

p_values for the selected faults are shown in Table 3-11. The input vector for

c17 is (ABCDE) = (01110). Find all faults covered by the input pattern.

Table 3-10. A list of faults for c17

Bit position Faults signal line

1 fault-free
2 A/SAF0 A

3 A/SAF1 A

4 B/SAF0 B

5 B/SAF1 B

6 C/SAF0 C

7 D/SAF1 D

8 C1/SAF1 Fan from C

9 C2/SAF1 Fan form C

Table 3-11. Data for parallel simulation

Signal line mask p_value

A 011000000 001000000

B 000110000 000010000

C 000001000 000000000

D 000000100 000000100

C1 000000010 000000010

C2 000000001 000000001

The steps of the parallel fault simulation are:

1. Fault-free simulation with the input patterns: A = (000000000), B =

(000000000), C = (111111111), D = (000000000), E = (000000000);

Outputs are Y1 = (000000000), Y2 = (0000000000).

2. The new value for signal line A is calculated according (3-1):

 A’ = A . mask (A) + mask (A) . p_value (A)

 A’ = (000000000).(100111111)+(011000000).(001000000)
 A‘ = (001000000).

3. A similar computation is done for other signal lines B, C, D:

 B’ = (000010000), C’ = (111110111), D’ = (000000000).

4. The logical operations are computed with the new masked values, e.g.:

 NOT(A’.C’) = (110111111) and NOT(C’.D’) = (111111111).

 Then the new values are calculated according to steps 2 and 4 based on

 the circuit structure. If any fault is modelled on signal line S, then S=S’.

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 47

5. The values on outputs are Y1= (001010000) and Y2=(000010000) and

according to Table 3-11 SAF1 on line A and SAF1 on B are covered by

pattern (ABCDE) = (01110).

3.3.2 Deductive and concurrent fault simulation

techniques

 In the deductive fault simulation technique, only the fault-free DUT is

simulated. All signal values in a faulty circuit are deducted from the fault-

free circuit values and the circuit structure. Since the circuit structure is the

same for all faulty circuits, all deductions are carried out simultaneously.

Thus, a deductive fault simulator finds all faults in a single pass of the fault-

free simulation augmented with the deductive procedures for creating and

propagating fault lists from primary inputs towards primary outputs. In this

process, fault lists are generated for each signal.

Figure 3-35. Fault list creation and propagation through gate AND

An example of the fault list propagation through basic gate AND is shown in

Figure 3-35. LA, LB, LC, LC1, LC2 are lists of faults detected on signal

lines A, B, C, C1and C2. They are propagated through the DUT structure

from primary inputs to primary outputs using the rules reported in Table 3-

12. I0 and I1 mean the numbers of logic 0 and logic 1, respectively, set up on

gate’s inputs.

Table 3-12. Rules for fault list propagation through basic gates

Gate No. of logical values 0 or 1 Rules

AND/NAND I0 = 0

I1  0

 LXi

 i I1

 LXi - LXi

i  I0 i j I1

OR/NOR I1 = 0

I0  0

 LXi

 i j I0

LXi - LXi

0

 1
A

B C

LA={A/SAF1}

LB={B/SAF0

}

LC={A/SAF0,C/SAF1}

0
0

C1

C2
0

LC1={A/SAF1, C/SAF1, C1/SAF1}

LC2={A/SAF1, C/SAF1, C1/SAF1}

48 Chapter 3

Gate No. of logical values 0 or 1 Rules

i I1 i I0

NOT LXi

Example 3-12:

Consider fault list propagation through gate AND with 3 inputs using the

test vector (ABC) = (101); the assumption that the next fault lists were

propagated to lines A, B, C (see Figure 3-36): LA = {P/t1, Q/t0, R/t1,

A/t0}, LB = {Q/t0, R/t0, S/t1, B/t1} LC = {R/t1, S/t0, C/t0}, where P, Q, R,

S are lines before A, B, C, D. The list of faults is created for the output of

AND (E) according to the expression: LE = (LB – LA  LC)  E/t1 and

the resulting list of faults on line E is LE = {R/t0, S/t1, B/t1, E/t1}.

Figure 3-36. Fault lists propagation in c17 to one output

Example 3-13:

Find all faults in circuit c17 covered by vector (ABCDE) = (01110)

observable on output Y1 using the deductive fault simulation. The results are

shown in Figure 3-37 based on the following steps:

Step 1: Fault-free simulation for the input test.

Step 2: Fault lists creation on the primary inputs.

Step 3: Fault lists propagation using the rules defined in Table 3-12 up to

 primary outputs.

A

B

C

E

P

Q

R

S

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 49

Figure 3-37. Fault lists propagation in c17 to one output

The disadvantage of the deductive fault simulation is in creation of fault

lists for each test. All generated fault lists for the applied input vector are

deleted and they have to be created again for the new input vector. Therefore

the deductive fault simulation was modified, and a new concurrent fault

simulation technique has been developed. Another problem has to be solved

if DUT contains a feedback where the fault list of a signal may change

several times. Only after the fault lists become stable, the simulator proceeds

with the next vector.

3.3.3 Concurrent fault simulation techniques

 The concurrent fault simulation technique is the most general fault

E/SAF0

E/SAF0
F/SAF1

G/SAF1

C/SAF1

D/SAF0

F/SAF1

A = 1

B = 1

C = 0
D = 1

E = 1

F = 0

B/SAF0
A/SAF0

0
 0
1

1
 0
1

1
 0
0

1
 1
1

0
 0
0

0
 1
1

0
 1
0

0
 0
1

1
 1
0

G = 0

0

1

1

1

0

A/SAF1

F/SAF0

C/SAF0

D/SAF0

G/SAF1

B/SAF0

C/SAF0

D/SAF0

E/SAF1

A/SAF1

C/SAF0

D/SAF0

G/SAF1

H/SAF0

A/SAF0

F/SAF0

C/SAF0

D/SAF0

G/SAF1

H/SAF0

Y1/SAF1

1

1
0

1

1
0

1

1
0

1

1
0

1

1
0

1

1
0

A

B

Y1= 0

Y2 = 0

C

D

E

F=1

G =0

H=1

I =1

I/SAF0

C/SAF0

D/SAF0

G/SAF1

H/SAF0

I/SAF0

Y2/SAF1

50 Chapter 3

simulation technique. It can handle various circuit models, faults, signal

states and timing models. It basically extends the event-driven simulation

method to the simulation of faults in the most efficient way. Beside the fault

type, a fault list created for each cell in DUT contains also faulty values on

the inputs and output of each cell. An example is shown in Figure 3-38

where all possible faulty states of each element are described.

Figure 3-38. Fault list propagation using the concurrent fault simulation

While parallel and deductive simulation techniques are reasonably

efficient for two logical values, using three and more logical values

significantly increases the computational requirements, and the techniques

are not practical in this case. Both methods are only partially compatible

with functional-level modelling, as they can process only components that

can be entirely described by Boolean equations. Both parallel and deductive

simulation, the basic data structures and algorithms are strongly dependent

on the number of logical values used in modelling. By contrast, the

concurrent method provides only a mechanism to represent and maintain the

differences between the good circuit and a set of faulty circuits, and this

mechanism is independent of the way the circuits are simulated. It is totally

compatible with functional-level modelling and can support mixed-level and

hierarchical modelling. The main disadvantage is that it requires more

memory than other methods, but in comparison with the deductive fault

simulation the concurrent method is faster and suitable for increasingly

complex circuits and evolving technology.

3.3.4 Critical path tracing method

The critical path tracing technique is a fault independent method. For

every input vector, critical path tracing first simulates the fault-free circuit

then it determines the detected faults by ascertaining which signal values are

critical. The technique is based on the next two definitions and Lemma [2].

Definition 3.2: A signal line l has a critical value v in the test vector t if t

detects the fault SAF_v. A line with a critical value in t is said to be critical in

t.

Definition 3.3: A gate input is sensitive (in a test t) if complementing its

value changes the value of the gate outputs.

Lemma 3.1: If a gate output is critical, then its sensitive inputs, if any, are

also critical.

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 51

The primary outputs are immediately critical in any test. Starting at the

primary outputs the other critical lines are found by tracing towards primary

inputs of DUT. This process determines the paths composed of critical lines,

called critical paths. It uses the concept of sensitive inputs. The sensitive

inputs of a gate can be easily identified during the fault-free simulation of

DUT, as scanning for inputs with controlling value is an inherent part of gate

evaluation. The sensitive inputs of a gate with two or more inputs are easily

determined as follows:

1. If only one input j has the controlling value of the gate, then j is

sensitive.

2. If all inputs have controlling value, then all inputs are sensitive.

3. Otherwise no input is sensitive.

If all critical lines are found in DUT, and values were assigned to primary

inputs then all faults on critical lines are covered by the received test pattern.

An example is shown in Figure 3-39 (critical lines are bold).

Comparing with conventional fault simulation, the features of critical

path tracing are as follows:

- It directly identifies the faults detected by a test without simulating the

set of all possible faults.

- It deals with faults only implicitly.

- It is based on a path tracing that does not require computing values in the

faulty circuits by gate evaluations or fault list processing.

- It is an approximate method.

Figure 3-39. Critical lines in a circuit

 The critical path tracing method is faster and requires less memory than

the conventional fault simulation techniques. Some experimental results

have shown that the critical path tracing technique is faster than the

concurrent fault simulation but this method has to encounter some problems

in circuits with reconvergent fanouts. If not all lines from one root are

critical the root does not have to be critical. The critical path tracing

technique can produce conflicts, self-masking, multiple-path sensitisation

and overlaping among primary output cones.

1
1.1.2. D 1

0
 1

0

0

1

A

B

C

D
1

0

0

0

52 Chapter 3

3.3.5 Macro-level fault simulation

In gate-level deductive fault analysis we need different fault list

propagation formula to be stored in the data base for each gate and for each

input pattern. This makes impossible to carry out the fault propagation

procedure at higher than gate levels e.g. at macro levels where the macros

may represent arbitrary Boolean functions.

Using Boolean full differentials it would be possible to generalize the

gate-level deductive fault analysis approach to higher macro levels.

Consider a macro (subcircuit) with a Boolean function y = F(X) = F(x1,

x2, … xn). Introduce a Boolean differential dxi so that dxi = 1 when the value

of the variable xi is changing because of a fault, and dxi = 0 otherwise. In a

similar way, a differential dy can be introduced for the output variable y.

The full Boolean differential [58] dy of the output variable y describes

the cause-effect relationship between any value changes of input variables

xi  X and the output variable y. The expression of the full differential dy can

be presented also in the vector form where each component of the vectors dxi

=(dxi,1, dxi,2, dxi,m) and dy = (dy1, dy2, dym) represents the behavior of the

corresponding variables xi and y for different possible faults F1, F2 , … ,Fm.

Representing the input fault lists Lx1, Lx2, …, Lxn, in a vector form we can

easily calculate the output fault list Ly in a vector form.

Example 3-14

Consider an example of the gate-level deductive fault simulation shown

in Figure 3-40.

Figure 3-40. Gate-level deductive fault simulation

The Boolean full differential of the circuit is:

Substituting the variables xi by their values at the given test pattern we get

))]())(([())((5544332211 dxxdxxdxxdxxdxxydy 

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 53

 Let us have the following fault lists at inputs: L1 = {1,3,4}, L2 = {2,3,4},

L3 = {2,4}, L4 = {1,2,5}, L5 = {3,4}. By gate level deductive fault list

calculation we get La = {1,2,3,4,5}, Lb = {1,2,3,4}, Lc = {2,4}, Ly = {1,3}.

In the vector form we have: dx1 = 10110, dx2 = 01110, dx3 = 01010, dx4 =

11001, dx5 = 00110. Calculating the full Boolean differential we get dy =

10100 which corresponds to the fault list Ly = {1,3}.

3.3.6 Hierarchical fault simulation

Gate-level fault simulation methods have proved to be very time-

consuming for complex digital systems. Hierarchical methods allow taking

the advantage of high level information while simulating tests for gate-level

faults.

In the hierarchical approach, the fault analysis for the given test is carried

out for the blocks of the higher level network block by block. At each

iteration, a target block is chosen and represented on the gate level whereas

all other blocks are represented on the RT level. Always when the target

block is simulated, the faults are determined which cause erroneous output

behaviour of the block at the given input pattern and given state of the target

block. The propagation of detected faults of the target block is analyzed by

using the RTL or other high-level description.

An example of the approach is illustrated in

Figure 3-41 where the network of the system consists of three blocks: A,

B, and C. The block B is taken here as the target block for the fault analysis,

and is represented on the gate level. Test sequence is simulated for the whole

system on the higher level, pattern by pattern. When the target block B is

reached by the first input pattern P, low level fault analysis in B is carried

out, and the subset of all faults R activated in B by the pattern P at the given

state of B is calculated. For each fault r  R, the corresponding faulty output

pattern P(r) of the block B is calculated. Activated faults are grouped into

subsets Ri  R, so that for each faulr r  Ri the output pattern P(r) = Pi

would be the same. The fault-free pattern P, and all the faulty patterns P1,

…,Pk are simulated through other blocks of the network on the higher level.

If Pi  P at the observable output then the faults Ri are claimed as detected.

The detected faults can be removed from further analysis (called fault

dropping [2]). In general, at the output of each higher level block, a data

structure (complex test pattern) D = P, (P1,R1), …, (Pk,Rk) will be

generated where R1  R2  … Rk  R. When the target block B (UUT) is

reached by a complex pattern D, all the patterns in P,P1, …,Pk should be

)()(54321 dxdxdxdxdxdy 

54 Chapter 3

fault simulated on the low-level. For P, new faults will be determined which

are activated by P, and for all the faults in each Ri it will be checked if they

are propagated by the pattern Pi again through B or not. After that, a new

data structure D will be created for the output of B.

Consider a block with a function of n arguments y = f(x1, … xn) (xi is

either input or a state variable), and a set of complex patterns Di = {Pi,0,

(Pi,1,Ri,1), …, (Pi,ki,Ri,ki)}, i = 1,2, …, n where Pi,0 is the fault-free pattern on

the input xi, and Pi,j are the possible faulty patterns on the same input for the

cases of faults in Ri,j , j=1,2,… ki. Denote by

the set of all faults propagated to the input xi, where R is the whole set of

faults in the system to be simulated.

Figure 3-41. Multi-level fault simulation

The multi-level fault simulation of digital systems is carried out by the

following procedures.

Algorithm 3-8. High-level fault simulation

To fault simulate a high-level block for a complex pattern D = (D1,…,

Dn), first, the correct behaviour of the block for the pattern (P1,0,…,Pn,0) is

calculated on the high-level. Then, for all the faults

High-Level

component

High-Level

component

High-Level

component

Sequence of

patterns

P: First

Pattern

R

Fa

ult

s

Set of patterns

With faults

P; P1(R1)…Pn(Rn)

Set of patterns

with faults

P; P1(R1)…Pm(Rm)

P: Pattern

Set of patterns

with faults

P; P1(R1)…Pn(Rn)

A

B

C

RRRRR kiiiii  ,2,1, ...

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 55

propagated to the block, all the possible combinations of patterns

(P1(r),…,Pn(r)) where for each i = 1, …, n either Pi(r) = Pi,0 if r  Ri, or

Pi(r)= Pij if r  Rij, are simulated on high-level.

Algorithm 3-9. Low-level fault simulation

To fault simulate the target low-level block for a complex pattern D =

(D1,…, Dn), first, the correct behaviour of the block for the pattern (P1,…,Pn)

is calculated, and the faults causing erroneous output behaviour of the block

at this pattern are determined. Then, for all the faults r  R’ in the complex

pattern D which have propagated back to the same target block, all the

possible combinations of patterns (P1(r), …,Pn(r)) are simulated in the

presence of the given fault r.

Figure 3-42. Fault propagation in the multi-level fault simulation

Example 3-15

An example of the fault propagation in multi-level fault simulation is

presented in Figure 3-42. Assume the input 1 of the target block represented

on gate-level is reached by a complex test pattern D1 = {P10, (P11,R11),

(P12,R12)} = {1100, 0010(3), 1001(2,4,8)}. The faults 2,3,4,8 of the block

have been propagated through the simulated feedback loop back to the same

block. By the fault analysis we find that 12 faults are detected by the current

input pattern P10 = 1100 (or propagated by faulty patterns 0010 and 1001) on

the output of the target block. They cause 5 different output patterns which

differ from the expected one 1010. All the 6 output patterns are simulated

now on high-level for the next block. From P30=P35 we conclude that the

RRRr ij

kijni




)('
,1,1



P20 1010 

P21 1100 R21 2,4,9

P22 0110 R22 1,3

P23 1011 R23 6,10

P24 1110 R24 5,8

P25 0010 R25 7,11,12

Low-level fault simulation

P30 0100 

P31 1000 R31 2,4,9

P32 1100 R32 1,3

P33 0110 R33 6,10

P34 1100 R34 5,8

P35 0100 R35 7,11,12

High-level fault propagation

P30 0100 

P31 1000 R31 2,4,9

P32 1100 R32 1,3,5,8

P33 0110 R33 6,10

Updated complex pattern

P10 1100  To be fault simulated

P11 0010 R11 3

P12 1001 R12 2,4,8

To be simulated at

given faults

Gate-

level

block

Register-

level

block

Target block

under fault

analysis

56 Chapter 3

faults 7,11 and 12 are self-masked – the pair (P35,R35) is removed from

further simulation. From P32=P34 we conclude that the faults 1,3 and 5,8

cannot be distinguished, and we include them into the same group of faults

R32 = {1,3,5,8}.

For fault analysis of the target block on the lower level and fault

propagation through other blocks on the higher level we can use the same

mathematical model of decision diagrams discussed in this chapter. To

increase the speed of low-level fault analysis, we can use macro networks

instead of gate networks where each macro is represented by a SSBDD. For

fault propagation through other blocks we can use word-level DDs [57].

3.4 FAULT DIAGNOSIS AND FAULT

LOCALISATION

A unit under test (UUT) fails when its observed behavior is different

from its expected behavior. The task of the fault diagnosis is to locate the

fault(s) in a structural model of the UUT. The degree of the accuracy to

which faults can be located is called diagnostic resolution. Functionally

equivalent faults (FEF) cannot be distinguished. The partition of all faults

into distinct subsets of FEF defines the maximal fault resolution. A test that

achieves the maximal fault resolution is said to be a complete fault-

localization test [2].

The fault diagnosis process is often hierarchical, carried out as a top-

down process (with a system operating in the field) or bottom-up process

(during the fabrication of the system).

In the top-down approach (system boards ICs) first-level

diagnosis may deal with "large" replaceable parts of a system like boards

called also field-replaceable units. The faulty board is then tested in a

maintenance center to locate the faulty component (IC) on the board.

Accurate location of faults inside a faulty IC may be also useful for

improving its manufacturing process.

In the bottom-up approach (ICs boards system) a higher level is

assembled only from components already tested at a lower level. This is

done to minimize the cost of diagnosis and repair, which increases

significantly with the level at which the faults are detected.

The rule of 10: if it costs $1 to test an IC, the cost of locating the same

defective IC when mounted on a board and repairing the board is about $10;

when the defective board is plugged into a system, the cost of finding the

fault and repairing the system is $100.

In manufacturing, the most likely faults are fabrication errors affecting

the interconnections between components; in the field the most likely faults

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 57

are physical failures internal to components (because every UUT has been

successfully tested in the past). Knowing the most likely class of faults helps

in fault location.

3.4.1 Combinational fault diagnosis methods

Most fault diagnosis methods are based on using fault tables or fault

dictionaries, which can be created by fault simulation. To locate faults, one

tries to match the actual results of test experiments with one of the

precomputed expected results stored in the database (fault table or

dictionary). The result of the test experiment represents a combination of

effects of the fault to each test pattern. That's why we call this approach

combinational fault diagnosis method. If this look-up process is successful,

the fault table (dictionary) indicates the corresponding fault(s).

In general, a fault table is a matrix FT = aij where columns Fj represent

faults, rows Ti represent test patterns, and aij = 1 if the test pattern Ti detects

the fault Fj, otherwise if the test pattern Ti does not detect the fault Fj, aij = 0.

Denote the actual result of a given test pattern by 1 if it differs from the

precomputed expected one, otherwise denote it by 0. The result of a test

experiment is represented by a vector E = ei where ei = 1 if the actual

result of the test pattern does not match with the expected result, otherwise ei

= 0. Each column vector fj corresponding to a fault Fj represents the result of

the test experiment in the case when the fault Fj is present.

Three cases are now possible depending on the quality of the test patterns

used for carrying out the test experiment and on the thoroughness of the fault

set taken into account:

1. The test result E matches with a single column vector fj in FT. This

result corresponds to the case where a single fault Fj has been located. In

other words, the maximum diagnostic resolution has been obtained.

2. The test result E matches with a subset of column vectors {fi, fj … fk}

in FT. This result corresponds to the case where a subset of

indistinguishable faults {Fi, Fj … Fk} has been located. To distinguish these

faults additional test patterns are needed.

3. No match for E with column vectors in FT is obtained. This result

corresponds to the case where the given set of vectors does not allow

carrying out fault diagnosis. The set of faults described in the fault table

must be incomplete (in other words, the real existing fault is missing in the

fault list considered in FT).

In the example in Figure 3-43 the results of three test experiments E1, E2,

E3 are demonstrated. E1 corresponds to the first case where a single fault is

located, E2 corresponds to the second case where a subset of two

indistinguishable faults is located, and E3 corresponds to the third case where

58 Chapter 3

no fault can be located because of the mismatch of E3 with the column

vectors in the fault table.

Figure 3-43. Fault diagnosis with the fault table

Fault dictionaries (FD) contain the same data as the fault tables with the

difference that the data are reordered. In FD a mapping between the potential

results of test experiments and the faults is represented in a more compressed

and ordered form. For example, the column bit vectors can be represented by

ordered decimal codes (see the example) or by some kind of compressed

signature.

An example of the fault dictionary for the fault table in Figure 3-43 is

shown in Figure 3-44.

Figure 3-44. Fault dictionary

To reduce large computational effort involved in building a fault

dictionary, the detected faults are dropped from the set of simulated faults

during fault simulation. Hence, all the faults detected for the first time by the

same vector will produce the same column vector (signature) in the fault

table, and will be included in the same equivalence class of faults. In this

case the test experiment can stop after the first failing test, because the

information provided by the following tests is not used. Such a test

experiment achieves a lower diagnostic resolution. A tradeoff between

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 59

computing time and diagnostic resolution can be achieved by dropping faults

after k >1 detections.

Figure 3-45. Reduced fault table

Example 3-16

In the fault table shown in Figure 3-45 produced by fault simulation with

fault dropping, only 19 faults need to be simulated compared to the case of

42 faults when simulation without fault dropping is carried out (the

simulated faults in the fault table are shown in shadowed boxes). As the

result of the fault dropping, however, the following faults remain not

distinguishable: {F2, F3},{F1, F4}.

3.4.2 Sequential fault diagnosis methods

In sequential fault diagnosis the process of fault location is carried out

step by step, where each step depends on the result of the diagnostic

experiment at the previous step. Such a test experiment is called adaptive

testing. Sequential experiments can be carried out either by observing only

output responses of the UUT or by observing also internal control points of

the UUT (called also guided probing). Sequential diagnosis procedure can

be graphically represented as diagnostic tree.

Fault Location by Edge-Pin Testing. In fault diagnosis test patterns are

applied to the UUT step by step. In each step, only output signals at edge-

pins of the UUT are observed and their values are compared to the expected

ones. The next test pattern to be applied in adaptive testing depends on the

result of the previous step. The diagnostic tree (Figure 3-46) of this process

consists of the fault nodes FN (rectangles) and test nodes TN (circles). A FN

is labelled by a set of not yet distinguished faults. The starting fault node is

labelled by the set of all faults. To each FNk a TN is linked which is labelled

by a test pattern Tk to be applied as the next one. Every test pattern

distinguishes between the faults that it detects and the ones it does not. The

task of the test pattern Tk is to divide the faults in FNk into two groups -

detected and not detected by Tk faults. Each test node has two outgoing

60 Chapter 3

edges corresponding to the results of the experiment of this test pattern. The

results are indicated as passed (P) or failed (F). The set of faults shown in a

current fault node (rectangle) are equivalent (not distinguished) under the

currently applied test set.

Figure 3-46. Diagnostic tree

Example 3-17

The diagnostic tree in Figure 3-46 corresponds to the fault table in

Figure 3-43. We can see that most of the faults are uniquely identified, two

faults F1 and F4 remain indistinguishable. Not all test patterns used in the

fault table are needed. Different faults are located by identifying test

sequences with different lengths. The shortest test contains two patterns the

longest one four patterns.

Rather than applying the entire test sequence in a fixed order as in

combinational fault diagnosis, adaptive testing determines the next vector to

be applied based on the results obtained by the preceding vectors. In our

example, if T1 fails, the possible faults are {F2,,F3}. At this point applying T2

would be wasteful, because T2 does not distinguish between these faults. The

use of adaptive testing may substantially decrease the average number of

tests required to locate a fault.

Generating tests to distinguish faults. To improve the fault resolution of a

given test set T, it is necessary to generate additional test patterns to

distinguish among faults equivalent under the given test T.

Consider the problem of generating a test to distinguish between faults

F1 and F2 [2]. Such a test must detect one of these faults but not the other,

or vice versa. The following cases are possible:

- F1 and F2 do not influence the same set of outputs. Let OUT(Fk) be

the set of outputs influenced by the fault Fk. A test should be

generated for F1 using only the circuit feeding the outputs OUT(F1),

or for F2 using only the circuit feeding the outputs OUT(F2).

- F1 and F2 influence the same set of outputs. A test should be

generated for F1 without activating F2, or vice versa, for F2 without

activating F1.

T1 F1,F4,F5,F6,F7

P
T2

F
F1,F4

F2, F3 T3

P
F3

F

F

F2

P

F5,F6,F7 T3

P
F5,F7

F

F6

T4

P
F7

F

F5

F1,F2

F3,F4

F5,F6

F7

T1 F1,F4,F5,F6,F7

P
T2

F
F1,F4

F2, F3 T3

P
F3

F

F

F2

P

F5,F6,F7 T3

P
F5,F7

F

F6

T4

P
F7

F

F5

F1,F2

F3,F4

F5,F6

F7

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 61

Three possibilities can be mentioned to keep a fault F2: x  e not

activated, where x denotes a line in the circuit, and e  {0,1}:

- the value e should be assigned to the line x;

- if this is not possible then the activated path from F2 should be

blocked, so that the fault F2 could not propagate and influence the

activated path from F1;

- if the 2nd case is also not possible then the values propagated from the

sites F1 and F2 and reaching the same gate G should be opposite to

the inputs of G.

Example 3-18

Consider the following fault diagnosis cases in a gate-level circuit in

Figure 3-47.

1. There are two faults in the circuit: F1: x3,1 0, and F2: x4 1. The

fault F1 may influence both outputs; the fault F2 may influence only

the output x8. A test pattern 0010 activates F1 up to the both outputs

and F2 to x8 only. If both outputs will be wrong, F1 is present, and if

only the output x8 will be wrong, F2 is present.

Figure 3-47. Gate-level circuit

2. There are two faults in the circuit: F1: x3,2 0, and F2: x5,2 1. Both

of them influence the same output of the circuit. A test pattern 0100

activates the fault F2. The fault F1 is not activated, because the line

x3,2 has the same value as it would have if F1 were present.

3. There are the same two faults in the circuit: F1: x3,2 0, and F2:

x5,2 1. Both of them influence the same output of the circuit. A test

pattern 0110 activates the fault F2. The fault F1 is activated at its

site but not propagated through the AND gate, because of the value

x4 = 0 at its input.

4. There are two faults in the circuit: F1: x3,1 1, and F2: x3,2 1. A test

pattern 1001 consists the value x1 1 which creates the condition

where both of the faults may influence only the same output x8. On

the other hand, the test pattern 1001 activates both of the faults to the

same OR gate (i.e. none of them is blocked). However, the faults

produce different values at the inputs of the gate, hence they are

62 Chapter 3

distinguished. If the output value on x8 will be 0, F1 is present.

Otherwise, if the output value on x8 will be 1, either F2 is present or

none of the faults F1 and F2 are present.

Guided-probe testing extends edge-pin testing process by monitoring

internal signals in the UUT via a probe which is moved (usually by an

operator) following the guidance provided by the test equipment. The

principle of guided-probe testing is to backtrace an error from the primary

output where it has been observed during edge-pin testing to its physical

location in the UUT. Probing is carried out step-by-step. In each step an

internal signal is probed and compared to the expected value. The next

probing depends on the result of the previous step.

A diagnostic tree can be created for the given test pattern to control the

process of probing. The tree consists of internal nodes (circles) to mark the

internal lines to be probed, and of terminal nodes (rectangles) to show the

possible result of diagnosis. The results of probing are indicated as passed

(P) or failed (F).

Typical faults located are “opens” and defective components. An open

fault between two points A and B in a connection line is identified by a

mismatch between the error observed at B and the correct value measured at

A. A faulty device is identified by detecting an error at one of its outputs,

while only correct values are measured at its inputs.

The most time-consuming part of guided-probe testing is moving the

probe. To speed-up the fault location process, we need to reduce the number

of probed lines. A lot of methods to minimize the number of probings are

available.

Figure 3-48. Gate-level circuit

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 63

Figure 3-49. Diagnostic tree for guided probe testing

Example 3-19

Let us have a test pattern 1010 applied to the inputs of the circuit in

Figure 3-48. The diagnostic tree created for this particular test pattern is

shown in Figure 3-49. On the output x8 , instead of the expected value 0, an

erroneous signal 1 is detected. By backtracing (indicated by bold arrows in

the diagnostic tree) the faulty component NOR- x5 is located. Diagnostic tree

allows carrying out optimization of the fault location procedure, for

example, generating a procedure with minimum average number of probes.

3.5 TEST GENERATION FOR RAMS

The testing and operation of memories is radically different from logic.

Memories are regular structures requiring special regular test patterns to

perform testing chosen for a specific memory type. The complexity of

memory testing is the numerous ways that a memory can fail. Many test

patterns based on memory fault models (described in Chapter 2) are needed

to test not only the cells but the peripheral circuitry around the memory cells

as well. With a thorough examination of the specific transistor

configurations utilised in the memory of concern, the appropriate fault

models can be selected and the proper test patterns generated. No single

pattern is sufficient to test a memory for all defect types. A set of patterns is

needed to look for the real manufacturing defects and for interactions

between the tightly packed adjacent memory structures. Memory testing is

defect-based and algorithmic procedure.

64 Chapter 3

Test sets in memory testing are now based on fault models and proven to

have complete coverage for particular fault models and to be of minimal

length for the given set of fault models covered by the tests. Numerous test

algorithms for RAMs have been proposed over the years. Different types of

memories require using different test algorithms [1], [14], [59], [60], [61].

3.5.1 Traditional memory testing

 A wide variety of memory test sets based on different fault models has

been developed. A memory test can be proposed based on requirement that

every cell must be capable to storing both logical values 0 and 1, and to

return the data when it is read. A memory test is a specific sequence of write

and read operations applied to each cell of the memory cell array. For

example, a simple test for single SA0 faults requires a sequence of write 1

(W1) and read logical 1 (R1) operations for every cell. For this reason we

use the term memory test algorithm rather than memory test. One of the

most important parameters of any memory testing is the number of test

cycles needed to apply it, this is easily assessed by counting the number of

read and write operations. So, the test algorithms are characterised by the

test length, which determines the test complexity that vary from O(n) to

O(n2), where n is the number of cells in the RAM chip.

The traditional test algorithms (such as Zero-One, Galpat, Walking 1/0,

Checkerboard, Sliding diagonal, Butterfly), which are still being used, are

less effective [60], [61]. They are still useful for detecting non-functional

faults, such as refresh or sense amplifier recovery faults. Some of them

provide more precise fault localisation than other algorithms.

Exhaustive. It is a test, in which all possible data combinations are

included. If there are n memory cells then 2n data combinations are possible;

the original cell’s state must be read, then re-written to the opposite state,

and once more read to verify that state. It is clearly not feasible to perform

an initial test which will confirm that any memory pattern can be stored and

read correctly, since there are 3n2n memory patterns theoretically possible.

Zero-One. First, zeros are written to all addresses and read from all

addresses, and then ones are written to and read from all addresses. Each

memory location is accessed four times, so the Zero-One test complexity is

4N - it is the number of all performed operations within the memory; where

N is the number of address locations.

Zero-One test set achieves 100% stuck-at fault coverage of the memory

cells but does not provide coverage for data retention, deceptive destructive

read, address decoder faults (Zero-One test does not indicate whether each

cell can be addressed uniquely).

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 65

Walkpat (walking pattern). A single cell (bit oriented memory) or a

single address (word oriented memory) is in a different state (logical 0 or 1)

from the other cells in the memory. The test set has a data background

entirely of one data type (logical 0s or 1s), and a logical 1 (or 0) is walking

through the memory so that to each address the test sequence  R0 (or 1),

W1 (or 0), R1 (or 0), W0 (or 1) of read and write operations is applied. All

four operations are performed on each address before proceeding to the next

address. The addresses are selected incrementally from the zero address to

the maximum address in the memory space as it is indicated by . The

walking pattern has an execution time proportional to 2n2 where n is the

number of cells (it is extremely long for large memory arrays). It checks

memory for cell opens and shorts and address uniqueness.

Galpat (galloping pattern). The test proceeds as Walking test, except

that after the 1 is stored in the first cell and while the other 0’s are being

checked, the first cell 1 is rechecked after each 0 is read, to ensure that the 1

remains undisturbed. As before, this sequence is repeated for every cell in

the array and done with the complementary data.

Each succeeding cell then becomes the test cell in turn and the entire read

process is repeated. All data is complemented and the entire test is repeated.

Galpat has an execution time proportional 4n2, where n is the number of

cells. It is effective for finding cell opens, shorts, address uniqueness faults,

and sense amplifier interaction and access time problems.

All members of this class of test algorithms, characterised by a test time

proportional to n2, are unusable for large memory chips. An alternative,

because the fault coverage is high, is to restrict “galloping” within a memory

row or a column.

March test (marching pattern). It changes the data (a 0 or a 1) at a given

address and leaves the address in the changed state when proceeding to the

next address by applying the test sequence:  R0, W1, R1. ( indicates that

the address space successively decrements after performing each test

sequence). This test assumes a zero background already existing in the

memory.

3.5.2 Testing with March tests

Nowadays only those algorithms, which test complexity increases

linearly with the number of memory cells, are of importance for memory

testing. The use of newer algorithms gives shorter execution time and also

better fault coverage.

This subsection is concerned with layout-independent RAM testing only.

We abstract a defect model for the RAM, which is based on the most likely

layout and design defects, into a functional fault model, and this leads to the

66 Chapter 3

set of reduced functional faults [1], [60]. The set includes stuck-at faults

(SAF), transition faults (TF), address decoder faults (AF), coupling faults

(CF) and neighbourhood pattern sensitive faults (NPSF). The fault models

are described in Chapter 2.

3.5.3 Testing stuck-at, transition, address and coupling

faults

The simplest tests, which detect SAFs, TFs and CFs are part of a family

of March type test algorithms that are in present the most preferred

algorithms for RAM array testing. The March tests are of the Nth order,

which make them fast.

A March test algorithm consists of a sequence of March test elements.

A March test element is a finite sequence of write and/or read operations

(W0/W1, R0/R1) applied consecutively to a cell in the memory array. Then

applied to the next cell until all cells have been treated. The addresses of the

next cells are determined either in increasing () or decreasing address order

() or the address order is irrelevant (⇕). After applying one March element

to each cell, the next March element of the March test algorithm is taken.

There is one requirement that the increasing and decreasing address orders

during performing one March test algorithm have to be always inverse. The

length of a March test algorithm is defined as the number of March elements

multiplied by the number of memory cells.

An example is shown in Figure 3-50: the MATS algorithm (Modified

algorithmic test sequence) has three March test elements: ⇕W0; R0,W1;
⇕R1,W0). Figure 3-51 shows how the SA0 fault in the cell with address

(2,1) is detected by MATS+ March test. The fault is detected by the element

2 (R0,W1) as it moves from the highest memory address downward and

expects to read a 1 in cell (2,1), but gets a 0 instead. Figure 3-52 shows how

MATS+ detects the multiple address decoder faults, where cell (2,1) is

unaddressable, and address (2,1) maps to an access of cell (3,1). Since all

writes to cell (2,1) have no effect, and any read of cell (2,1) produces a

random result, the defective cell will be detected either by March element 1

when it reads cell (2,1) if the read returns a 1 when a 0 was expected, or by

element 2 when it reads cell (2,1) if the read returns a 0 when a 1 was

expected. March element 1 writes a 1 to cell (2,1) but that has the effect of

writing cell (3,1). This is detected when element 1 operates on cell (3,1),

because it first expects to read a 0 but gets an unexpected 1, and then it

writes a 1 to the cell. If the address of cell (3,1) mapped into an access of cell

(2,1), then March element 2 would detect this fault as it descended from

highest to lowest addresses in memory. It would expect to read a 1 from cell

(2,1), but would get a 0 instead.

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 67

Figure 3-50. MATS+ test algorithm

Figure 3-51. Detection of SAF0 by MATS+ test: {⇕W0;  R0,W1;  R1,W0} [1]

Figure 3-52. Detection of multiple AFs by MATS+ test [1]

It was proven [1], [60] that a March test detects all AFs if it satisfies two

conditions:

– the value x must be read successively from all cells and the value non-x

must be written successively to all cells following the increasing address

order;

– the value non-x must be read successively from all cells and the value x

must be written successively to all cells following the decreasing

address order.

Element Operation

 1 ⇕W0

 2  R0, W1

 3  R1, W0

after

element 1

 1 1 1

1 1 1

1 1 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

after

element 2

after

element 3

faulty

correct

1 1 1

0 1 1

1 1 1

detection

after

element 1

 1 1 1

1 1 1

1 1 1

0 0 0

0 0 0

0 0 0

0 0 0

X 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 1 1

X 1 1

1 1 1

after
element 2

for cell (2,1)

after

element 3

faulty

correct

1 1 1

X 0 0

1 0 0

detection

0 0 0

X 0 0

0 0 0

detection

after

element 2

68 Chapter 3

Table 3-13. March type test algorithms (FC: fault coverage, (x N): complexity) [60], [61]

 MATS (4 N) MATS+ (5 N) MATS++ (6 N)

1 ⇕W0 ⇕W0 ⇕W0

2 ⇕ R0, W1  R0, W1  R0, W1

3 ⇕ R1  R1, W0  R1, W0, R0

FC: SAF SAF, AF SAF, AF, TF

 March X (6 N) March Y (8N)

1 ⇕W0 ⇕W0

2  R0, W1  R0, W1, R1

3  R1, W0  R1, W0, R0

4 ⇕R0 ⇕R0

FC: SAF, AF, TF, CFin SAF, AF, TF, CFin, TF linked

with CFin

 March A (15 N) March B (17 N) PMOVI * (13 N)

1 ⇕W0 ⇕W0  W0

2  R0, W1, W0, W1  R0, W1, R1, W0, R0, W1  R0, W1, R1

3  R1, W0, W1  R1, W0, W1  R1, W0, R0

4  R1, W0, W1, W0  R1, W0, W1, W0  R0, W1, R1

5  R0, W1, W0  R0, W1, W0  R1, W0, R0

FC: SAF, AF, TF, CFin
linked CFid

SAF, AF, TF, linked TF,

CFin, linked CFid

 Marching 1/0 (14 N) March C- (10 N) Enhanced March C- (18 N)

1  W0 ⇕W0 ⇕W0

2  R0, W1, R1  R0, W1  R0, W1, R1, W1

3  R1, W0, R0  R1, W0  R1, W0, R0, W0

4  W1  R0, W1  R0, W1, R1, W1

5  R1, W0, R0  R1, W0  R1, W0, R0, W0

6  R0, W1, R1 ⇕R0 ⇕R0

FC: SAF, AF SAF, AF, TF, CFs SAF, AF, TF, CFs, pre-charge

defects

 March LR (14 N) March LA (22 N) March SR+ (18 N)

1 ⇕W0 ⇕W0  W0

2  R0, W1  R0, W1, W0, W1, R1  R0, R0, W1, R1, R1,W0,R0

3  R1, W0, R0, W1  R1, W0, W1, W0, R0  R0

4  R1, W0  R0, W1, W0, W1, R1  W1

5  R0, W1, R1, W0  R1, W0, W1, W0, R0  R1, R1, W0, R0, R0,W1,R1

6  R0  R0  R1

FC: linked faults all simple, many linked faults SAF, TF, CFs, dec.destr.reads

 March C (11 N) March SRD+ (18 N) March G (23 N)

1 ⇕W0  W0 ⇕W0

2  R0, W1  R0, R0, W1, R1, R1,W0,R0  R0, W1, R1, W0, R0, W1

3  R1, W0 Pause  R1, W0, R1

4 ⇕R0  R0  R1, W0, W1, W0

5  R0, W1  W1  R0, W1, W0

6  R1, W0  R1, R1, W0, R0, R0,W1,R1 Pause

7 ⇕R0 Pause ⇕ R0, W1, R1

8  R1 Pause

9 FC: SAF, TF, CFs, retention ⇕ R1, W0, R0

FC: faults, decept. destruct. reads SOF, retention faults

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 69

*Partial moving inversion

– Specific test sets with their sequence of operations and covered fault

models, which are widely used in the industry to find manufacturing

defects, are listed in easing address order.

Table 3-13.

Partial moving inversion test set checks, if the data has been correctly

stored into the cell by the third read operation performed on each cell

immediately after the write operation to prevent defect masking.

Detecting of pre-charge defects is accomplished by the rapid succession

of the fourth operation in an element of Enhanced March C- pattern. A

defect can prevent the bit lines from pre-charging correctly. The same

column must be utilised while different rows are addressing successively.

March LR pattern is a combination of marching and walking elements

and was developed to detect realistic linked faults. March G pattern includes

a pause in the sequence to facilitate retention testing.

The March A+ and March A++ patterns and also March C+ and March

C++ patterns are extensions of the March A and March C pattern

respectively. In the March A+ and March C+ each read operation is replaced

by three read operations, which allows to detect pull-up and pull-down paths,

which are disconnected in a cell. The March A++ and March C++ patterns

include two delay elements, which allows detecting retention defects.

3.5.4 Testing word-oriented memories

Memories that have single bit data input only and data output are bit-

oriented, and each memory cell can be addressed individually. Memories,

which have wider data input and data output buses, are word-oriented

memories, and when a read or write operation to an address is performed, the

full width of the data bus is utilised.

Patterns developed in the past for a bit-oriented memory have to be

modified for the word orientation. In a word-oriented memory a single cell

cannot be addressed individually. Possible interactions between cells-bits

within a word are covered by the tests, only if various data background

patterns are used.

The number of data background patterns required is log2m+1, where m is

the number of bits in a word. Thus a memory with an 8-bit word requires

four data background patterns, and it is always assumed that a background

and its complementary background are to be utilised (an example is seen in

Table 3-14).

Other data background test requirements can be based also on the cell

adjacencies.

70 Chapter 3

Table 3-14. Data backgrounds and their inverses for an 8-bit word [61]

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

3.5.5 Testing neighbourhood pattern sensitive faults

Tests for NPSFs (the NPSF model is explained in Chapter 2) cannot be

performed by March tests because the base cell has to be treated differently

from other cells of the neighbourhood. On the other hand, the NPSF tests do

not detect AFs. It is always assumed that read operations of memory cells

are fault-free in the NPSF testing (can be ensured by a March test).

To test a neighbourhood for a certain kind of NPSF, all required test

patterns (Table 3-15) must be applied to that neighbourhood, and after each

test pattern the base cell must be read. In this way all NPSFs can be not only

detected but also located.

Active neighbourhood patterns (ANPs). The required test patterns for

testing ANPSFs are composed of:

– base cell is in two different possible values (0 and 1);

– one of the deleted neighbourhood cells undergoes up and down transitions;

– other deleted neighbourhood cells are in all combinations of the logical

values 0 and 1.

The total number of ANPs is (k-1) . 2k (where k is the size of the

neighbourhood).

Passive neighbourhood patterns (PNPs). Test patterns for PNPSFs are:

– base cell undergoes up and down transitions;

– other deleted neighbourhood cells are in all combinations of the logical

values 0 and 1.

There are 2k PNPs.

Static neighbourhood patterns (SNPs). The number of test patterns for

SNPSFs is determined by all possible combinations of the given

neighbourhood cells logic values and is also equal 2k.

It is important to minimise the number of write operations during NPSF

testing, in order to obtain the shortest possible test. The mechanisms how to

apply a sequence of all required patterns and performed a minimal number

of write operations is based on the fact that the difference between a pattern

and its successor has to be minimal, it means that they should differ in one

bit.

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 71

Table 3-15. All possible NPSF test patterns for the type 1 neighbourhood: b=base cell,

d1,d2,d3,d4=deleted neighbourhood cells [1], [60]

ANPs

b 00000000000000001111111111111111 b 00000000000000001111111111111111

d1 ↑↑↑↑↑↑↑↑↓↓↓↓↓↓↓↓↑↑↑↑↑↑↑↑↓↓↓↓↓↓↓↓ d1 00001111000011110000111100001111

d2 00001111000011110000111100001111 d2 00110011001100110011001100110011

d3 00110011001100110011001100110011 d3 ↑↑↑↑↑↑↑↑↓↓↓↓↓↓↓↓↑↑↑↑↑↑↑↑↓↓↓↓↓↓↓↓

d4 01010101010101010101010101010101 d4 01010101010101010101010101010101

b 00000000000000001111111111111111 b 00000000000000001111111111111111

d1 00001111000011110000111100001111 d1 00001111000011110000111100001111

d2 ↑↑↑↑↑↑↑↑↓↓↓↓↓↓↓↓↑↑↑↑↑↑↑↑↓↓↓↓↓↓↓↓ d2 00110011001100110011001100110011

d3 00110011001100110011001100110011 d3 01010101010101010101010101010101

d4 01010101010101010101010101010101 d4 ↑↑↑↑↑↑↑↑↓↓↓↓↓↓↓↓↑↑↑↑↑↑↑↑↓↓↓↓↓↓↓↓

PNPs SNPs

b ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓ b 00000000000000001111111111111111

d1 00000000111111110000000011111111 d1 00000000111111110000000011111111

d2 00001111000011110000111100001111 d2 00001111000011110000111100001111

d3 00110011001100110011001100110011 d3 00110011001100110011001100110011

d4 01010101010101010101010101010101 d4 01010101010101010101010101010101

A k-bit Eulerian graph (in Figure 3-53 a 3-bit Eulerian graph is

depicted) is defined as a graph in which there is a node for each k-bit pattern

of 1s and 0s and there is an edge between two nodes, if they differ just in one

bit. The edges in the Eulerian graph correspond to the ANPs and PNPs of a

k-bit neighbourhood, and the nodes correspond to SNPs. An Eulerian

sequence is a sequence through the Eulerian graph which traverses each edge

just once and which should be used in the case that there are up or down

transitions in the patterns. A Hamiltonian sequence on the other hand

traverses each node of the Eulerian graph just once and should be used if the

patterns contain only 0s and 1s.

Figure 3-53. Eulerian graph for 3-bit patterns [1]

001 011

111

100

010

110

101 000

72 Chapter 3

When data are written into the base cell is, we change k different

neighbourhoods (type 1 or type 2) and we wish to test the neighbourhoods

simultaneously, using two methods for this purpose: tiling and two-group.

The tiling method totally covers memory with non-overlapping

neighbourhoods as it is shown in Figure 3-54. Memory cell 2 is always the

base cell and other numbered cells are deleted neighbourhood cells. Now

there are n/5 base cells to which all the test patterns are applied. It turns out

that also appropriate patterns are applied to the memory when cell 0, cell 1,

cell 3 or cell 4 is the base cell. This reduces the pattern length from n . 2k

patterns to n/k . 2k patterns while each cell is simultaneously a base cell and

a deleted neighbourhood cell for other base cells.

0 1 b 3 4 0 1 b 3 4

b 3 4 0 1 b 3 4 0 1

4 0 1 b 3 4 0 1 b 3

1 b 3 4 0 1 b 3 4 0

3 4 0 1 b 3 4 0 1 b

0 1 b 3 4 0 1 b 3 4

b 3 4 0 1 b 3 4 0 1

4 0 1 b 3 4 0 1 b 3

1 b 3 4 0 1 b 3 4 0

3 4 0 1 b 3 4 0 1 b

Figure 3-54. Five cells (type1) tiling neighbourhood [1], [60]

In the case of the two-group method, a cell is simultaneously a base cell

in one group and a deleted neighbourhood cell in the second group (Figure

3-55). The memory cells are divided into two groups in a checkerboard

pattern, i.e. the base cells in group 1 become deleted neighbourhood cells in

group 2, and vice versa. Each group has n/2 base cells (denoted as b) and n/2

deleted neighbourhood cells of divided into four subgroups d1, d2, d3 and d4.

d1 b d2 b d1 b d2 b b d1 b d2 b d1 b d2

b d3 b d4 b d3 b d4 d3 b d4 b d3 b d4 b

d2 b d1 b d2 b d1 b b d2 b d1 b d2 b d1

b d4 b d3 b d4 b d3 d4 b d3 b d4 b d3 b

d1 b d2 b d1 b d2 b b d1 b d2 b d1 b d2

b d3 b d4 b d3 b d4 d3 b d4 b d3 b d4 b

d2 b d1 b d2 b d1 b b d2 b d1 b d2 b d1

b d4 b d3 b d4 b d3 d4 b d3 b d4 b d3 b

Figure 3-55. Labels of cells in the two-group method [1]

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 73

Table 3-16 gives NPSF testing algorithms overview and some

performance details as the type of the used neighbourhood, the number of
cells involved in the neighbourhood, method used for the simultaneous
testing, which fault models are covered (detected or also located, the
operation count).

No single type of test (March, NPSF, DC parametric, AC parametric) is

sufficient for current RAM testing needs, so a combination of various test is

used.

Table 3-16. Overview of NPSF testing algorithms (L=location, D=detection) [1], [60]

Algorithm Neighbourhood/k/Method Fault coverage Complexity

SAF TF NPSF

A P S

TD ANPSF 1G type 1 / 5 / 2 group L D 163.5 n

TL ANPPSF 1G type 1 / 5 / 2 group L L L L L 195.5 n

TL ANPPSF 2T type 2 / 9 / tiling L L L L 5122 n

TL ANPPSF 1T type 1 / 5 / tiling L L L L 194 n

TL SNPSF 1G type 1 / 5 / 2 group L L 43.5 n

TL SNPSF 1T type 1 / 5 / tiling L L 39.2 n

TL SNPSF 2T type 2 / 9 / tiling L L 569 n

TD SNPSF 1G type 1 / 5 / 2 group L D 36.125 n

3.5.6 Testing RAM technology and layout related faults

The coupling fault tests may not be effective because the DRAMs may be

repaired after manufacturing testing or DRAM address lines are scrambled.

Also, the G-bit DRAMs have new kind of defects.

With deep sub-micron chip feature sizes, memory chips are increasingly

subject to peculiar, layout specific failures. Therefore, inductive fault

analysis (IFA) is now used to analyse the chip layout and determine which

fault models correctly model the actual physical defects that may occur. IFA

is now necessary to ensure that the actual defects that occur are mapped into

a fault model, and appropriate tests can be selected for that fault model.

After performing IFA faults caused by actual defects as broken wires, shorts

between wires, missing contacts, extra contacts, parasitic transistors can be

found. These defects can be mapped to functional faults as SAF, SOF, TF in

a memory cell or state CF and CFid between two cells and also data

retention fault caused by broken pull-up device. The March type tests IFA-9

and IFA13 were extended by a new March element Delay, which means to

wait for 100 ms to be able to test for data retention faults (see Table 3-17).

Table 3-17. Overview of the IFA testing algorithms [60], [61]

 IFA-9 (12 N + Delays) IFA-13 (16N+ Delays)

74 Chapter 3

1 ⇕W0 ⇕W0

2  R0, W1  R0, W1, R1

3  R1, W0  R1, W0, R0

4  R0, W1  R0, W1, R1

5  R1, W0  R1, W0, R0

6 Delay Delay

7  R0, W1  R0, W1

8 Delay Delay

9  R1  R1

FC: SAF, TF, AF, CFid, data retention

fault

SAF, TF, AF, CFs for bits in the

same word, SOF, data retention

REFERENCES

1. Bushnell M. L., Agrawal V. D. Essential of Electronic Testing for Digital, Memory and

Mixed-Signal VLSI Circuits, Kluwer Academic Publisher, 2000.

2. Abramovici M., Breuer M.A., Friedman A.D. Digital Systems testing and testable

Design, Computer Science Press, 1995.

3. Hurst S.L. VLSI Testing Digital and Mixed Analogue-Digital techniques, The Institution

of Electrical Engineers, 1998.

4. Sachdev M. Defect Oriented Testing for CMOS Analog and Digital Circuits. Kluwer

Academic Publisher, 1998.

5. Cibáková T., Fischerová M., Gramatová E., Kuzmicz W., Pleskacz W., Raik J., Ubar R.

Hierarchical Test Generation for Combinational Circuits with Real Defects Coverage. In:

Journal of Microelectronics Reliability 42 Pergamon Press, 2002, pp. 1141-1149.

6. Maxwell P., Aitken R. Defect-Oriented Testing. The IEEE ETW’03 (European Test

Workshop) tutorial, Maastricht, 2003.

7. Goel P.An Implicit Enumeration Algorithm to Generate tests for Combinational Logic

Circuits. In IEEE Transactions on Computers, vo. C-30, no. 3, pp.215-222, 1981.

8. Roth J.P.: Diagnosis of Automata Failures: Calculus and a Method. In: IBM Journal of

research and Development, vol. 10, no. 4, pp. 278-291, 1966.

9. Fujiwara H.: Logic testing and Design for testability. Cambridge, Massachusetts, MIT

Press, 1985.

10. Schulz M.H., Trischler E., Bryant R.E.: SOCRATES: A Highly Efficient Automatic Test

Pattern generation System. In IEEE Transactions on Computer -Aided Design, vo. CAD-

7, 1988, pp. 126-137.

11. Kjelkerud E., Mercer M.R: A Topological Search Algorithm for ATPG. In: Proc. of the

24th Design Automation Conference, 1987, pp. 502-508.

12. Giraldi J., Bushnell M.L.: EST: The new Frontier in Automatic Test Pattern Generation.

In: Proc. of the 27th International test Conference, 1991, pp. 662-672.

13. Kunz W., Pradham D.K.: Recursice Learning: An Attractive Alternative to the Decision

Tree for test Generation in Digital Circuits. In: Proc. of the International test Conference,

1992, pp. 826-825.

14. Crouch A. L. Design for Test for Digital IC’s and Embedded Core Systems, Prentice

Hall PTR, New Jersey, USA, 1999, 347 p.

15. Lala P.K.: Digital Circuits Testing and testability, Academic press, 1997.

16. Gizdarski E., Fujiwara H.: SPIRIT: A Highly Robust Combinational Test Generation

Algorithm. In: Proc. of International Test Conference.

17. Hamzaoglu I., Patel J.H. Patel: New Techniques for Deterministic Test Pattern

Generation, Proc. of VTS’98, pp.lee S., Cobb B., Dworak J., Grimaila M.R. and Mercier

3. TEST GENERATION TECHNIQUES AND ALGORITHMS 75

M.R.: A New ATPG Algorithm to Limit test Size and Achieve Multiple Detections of all

Faults, Proc. of DATE’02, pp. 94-99.

18. Tsai K.-H., Tompson, Rajski J., Sadowaska M.M: STAR-ATPG: A High Speed Test

Pattern Generator for Large Scan Design., Proc. of ITC’99, pp. 1021-1030.

19. Wang, Ch., Reddy S.M., Pomeranz I., Lin X., Rajski J.: Conflict Driven Techniqueas for

Improving Deterministic Test Pattern Generation, Proc. of ICCAD’2002, pp.

20. Wang, Z., Sadowaska M.M., Rajski J.: Defect Behavior Extraction Using Stuck_at Fault

Model, Proc. of DDECS’03, pp. 239-244.

21. Chakravarty S., Thadkaran P. J.: Introduction to IDDQ Testing. Kluwer Academic

Publisher, 1997.

22. Chakravarty S.: Defect Based Testing. IEEE DDECS’01 (Design and Diagnostics of

Electronic Circuits and Systems) Workshop, Györ, 2001, invited talk.

23. Lee C.Y. Representation of Switching Circuits by Binary Decision Programs. The Bell

System Technical Journal, July 1959, pp.985-999.

24. Ubar R. Test Generation for Digital Circuits with Alternative Graphs. Proceedings of

Tallinn Technical University No 409, 1976, pp.75-81 (in Russian).

25. Akers S.B. Functional Testing with Binary Decision Diagrams. J. of Design Automation

and Fault-Tolerant Computing, Vol.2, Oct. 1978, pp.311-331.

26. Plakk M., Ubar R. Digital Circuit Test Design using the Alternative Graph Model.

Automation and Remote Control, Vol.41, No 5, part 2, Nov. 1980, Plenum Publishing

Corporation, USA, pp. 714-722.

27. Ubar R. Vektorielle Alternative Graphen und Fehlerdiagnose für digitale Systeme.

Nachrichtentechnik/Elektronik, (31) 1981, H.1, pp.25-29.

28. Ubar R. Test Generation for Digital Systems on the Vector Alternative Graph Model.

Proc. of the 13th Annual Int. Symp. on Fault Tolerant Computing, Milano, Italy, 1983,

pp.374-377.

29. Bryant R.E. Graph-based algorithms for Boolean function manipulation. IEEE Trans. on

Comp., 35 (8): 677-691, 1986.

30. Minato S. Binary Decision Diagrams and Applications for VLSI CAD. Kluwer

Academic Publishers, 1996, 141 p.

31. Ubar R. Test Synthesis with Alternative Graphs. IEEE Design and Test of Computers.

Spring, 1996, pp.48-59.

32. Drechsler R., Becker B. Binary Decision Diagrams. Kluwer Academic Publishers, 1998,

200 p.

33. Ubar R. Multi-Valued Simulation of Digital Circuits with Structurally Synthesized

Binary Decision Diagrams. OPA (Overseas Publishers Assotiation) N.V. Gordon and

Breach Publishers, Multiple Valued Logic, Vol.4 pp. 141-157, 1998.

34. Raik J., Ubar R.. Feasibility of Structurally Synthesized BDD Models for Test

Generation. Proc. of the IEEE European Test Workshop, Barcelona (Spain), May 27-29,

1998, pp.145-146.

35. Mourad S., Zorian Y. Principles of Testing Electronic Systems. J.Wiley & Sons, Inc.

New York, 2000, 420 p.

36. Gupta A., Armstrong J.R. Functional fault modeling and simulation for VLSI devices.

ACM/IEEE 22nd Design Automation Conference, 1985, pp.720-726.

37. Santucci J.F., Courbis A.L., Giambiasi N. Speed up of behavioral ATPG. using a

heuristic criterion, 30th ACM/IEEE Design Automation Conference, pp. 92-96, 1993.

38. Cho C.H., Armstrong J.R. B-algorithm: A Behavioral Test Generation Algorithm, IEEE

1994 International Test Conference, pp.968-979.

39. Bhattacharya D., Hayes J.P. A hierarchical test generation methodology for digital

circuits, JETTA: Theory and Application, vol. 1, pp. 103-123, 1990.

40. Karam M., Leveugle R., Saucier G. Hierarchical test generation based on delayed

propagation, IEEE 1991 International Test Conference, pp.739-747.

76 Chapter 3

41. Lee J., Patel J.H. Hierarchical test generation under intensive global functional

constraints, 29thACM/IEEE Design Automation Conf., June 1992, pp. 261-266.

42. Yadavalli S., Pomeranz I., Reddy S.M. MUSTC-Testing: Multi-Stage-Combinational

Test Scheduling at the Register-Transfer Level, 8th Int. Conference on VLSI Design,

January 1995, pp. 110-115.

43. Abadir M.S. et al. A Knowledge-Based System, IEEE Design & Test, August 1985,

pp.56-68.

44. Annaratone M.A., Sami M.G. An Approach to Functional Testing of Microprocessors.

Digest of Papers 12th Annual Int. Symp. On Fault-Tolerant Computing, June 1982,

pp.158-164.

45. Abadir M.S.,.Reghbati H.K. Functional Specification and Testing of Logic Circuits.

Comp. & Math. With Appls, Vol.11, No 12, 1985, pp.1143 – 1153.

46. Su S.Y.H., Lin T.. Functional Testing Techniques for Digital LSI/VLSI Systems. Dig. of

papers 21st IEEE Design Automation Conference, 1984, pp.517-528.

47. Freeman S. Test Generation for Data Path. IEEE J. of Solid-State Circuits, Vol.23, April

1988, pp.421-427.

48. Abadir M.S., Reghbati H.K. Test Generation for LSI: A Case Study. Proc. of 21st Design

Automation Conf., June 1984, pp.180-195.

49. Ubar R., Moraviec A., Raik J. Cycle-based Simulation with Decision Diagrams. IEEE

Proc. of Design Automation and Test in Europe. Munich, March 9-12, 1999, pp.454-

458.

50. Raik J., Ubar R. Sequential Circuit Test Generation Using Decision Diagram Models.

IEEE Proc. of Design Automation and Test in Europe. Munich, March 9-12, 1999, pp.

736-740.

51. Raik J.,.Ubar R. Fast Test Pattern Generation for Sequential Circuits Using Decision

Diagram Representations. Journal of Electronic Testing: Theory and Applications.

Kluwer Academic Publishers. Vol. 16, No. 3, pp. 213-226, 2000.

52. Ubar R. Representing Transparency Conditions in Test Generation for VLSI by Decision

Diagrams. The 1st Electronic Circuits and Systems Conference. Bratislava, September 4-

5, 1997, pp.213-216.

53. Brahme D., Abraham J.A. Functional Testing of Microprocessors. IEEE Trans. on

Computers, Vol. C-33, June 1984, pp.475-485.

54. Shen L., Su S.Y.H.. A Functional Testing Method for Microprocessors. IEEE Trans. on

Computers, Vol. 37, No 10, Oct 1988, pp.1288-1293.

55. Thatte S.M., Abraham J.A. Test Generation for Microprocessors. IEEE Trans. on

Computers, Vol. C-29, No 6, 1980, pp.429-441.

56. Abraham J.A., Parker K.P. Practical Microprocessor Testing: Open and Closed Loop

Approaches. Proc. COMPCON Spring 1981, pp.308-311.

57. Ubar R., Raik J., Ivask E., Brik M. Multi-Level Fault Simulation of Digital Systems on

Decision Diagrams. IEEE Workshop on Electronic Design, Test and Applications –

DELTA’02, Christchurch, New Zealand, 29-31 January 2002, pp.86-91.

58. Thaise A. Boolean Differential Calculus. Philips Res. Repts., Vol. 26, 1971, pp. 229-246.

59. Mazumder P., Chakraborty K. Testing and Testable Design of High-Density Random

Access Memories, Kluwer Academic Publishers, 1996.

60. Van de Goor A.J. Testing Semiconductor Memories. Theory and Practice, ComTex

Publishing, Gouda, The Netherlands, 1998, 512 p.

61. Adams R. Dean. High Performance Memory Testing. Design Principles, Fault Modeling

and Self-Test, Kluwer Academic Publishers, 2003, 246 p.

