Süsteemide diagnostika

2. Teoreetilised alused

2.1. Boole'i differentsiaalalgebra
2.2. Binaarsed otsustusdiagrammid (BDD)
2.3. Kõrgtasandi otsustusdiagrammid

Introduction to Theories: The Course Map

How to Go Beyond the Boolean World?

Two basic tasks:

1. Which test patterns are needed to detect a fault (or all faults)
2. Which faults are detected by a given test (or by all tests)

BDDs and Testing of Logic Circuits

Three interpretations of BDDs

1) BDD as a binary program:

Applicable only for simulation of input patterns $y=x_{1} \vee x_{2}\left(x_{3} \vee x_{4} x_{5}\right) \vee x_{6} x_{7}$
2) BDD as adata structure:

Components Relations

Node	Var	\rightarrow	\downarrow
1	X_{1}	$\# 1$	2
2	X_{2}	3	6
3	X_{3}	$\# \mathbf{1}$	4
4	X_{4}	5	6
5	X_{5}	\#1	6
6	X_{6}	7	\#0
7	X_{7}	\#1	\#0

Applicable for simulation, fault simulation, test generation, timing simulation, signal probability calculation... etc. for many other circuit analysis tasks

Three interpretations of BDDs

1) BDD as a binary program:

2) $B D D$ as a data structure:

Node	Var	\rightarrow	\downarrow
1	x_{1}	\#1	2
2	X_{2}	3	6
3	X_{3}	\#1	4
4	X_{4}	5	6
5	X_{5}	\#1	6
6	X_{6}	$\mathbf{7}$	$\mathbf{\# 0}$
7	x_{7}	$\mathbf{\# 1}$	$\mathbf{\# 0}$

3) BDD as knowledge presentation:

RS Flip-Flop

$q=c\left(S \vee q^{\prime} \bar{R}\right) \vee \bar{c} q^{\prime}$
$S R=0$
U - unknown value

The graph represents as much functional knowledge as we know about the circuit
(U - indeterminism)

Mapping Between Circuit and SSBDD

4) BDD as a structural model of logic circuits

Each node in SSBDD represents a signal path:

Node x_{11} in SSBDD represents the path $\left(x_{1}, x_{11}, x_{6}, y\right)$ in the circuit
The SAF-0(1) fault at the node x_{11} represents the SAF faults on the lines x_{11}, x_{6}, y in the circuit \rightarrow fault collapsing
32 faults (16 lines) in the circuit $\rightarrow \mathbf{1 6}$ faults (8 nodes) in SSBDD

Test Generation with BD and BDD

BD:

BDD:

$$
\begin{aligned}
& y=x_{1} x_{2} \vee x_{3}\left(\overline{x_{2}} x_{4} \vee \overline{x_{1}}\left(x_{4} \vee\left(x_{5} \vee \overline{x_{2}} x_{6}\right)\right) \vee x_{1} \overline{x_{3}}\right. \\
& \\
& \frac{\partial y}{\partial x_{5}}=\left(\overline{x_{1} x_{2} \vee x_{1} \overline{x_{3}}}\right) x_{3}\left(\overline{\overline{x_{2}} x_{4}}\right) \overline{x_{1}} \overline{x_{4}}\left(\overline{\overline{x_{2}} x_{6}}\right) \frac{\partial x_{5}}{\partial x_{5}}= \\
& =\left(\overline{x_{1}} \vee \overline{x_{2}}\right)\left(\overline{x_{1}} \vee x_{3}\right) x_{3}\left(x_{2} \vee \overline{x_{4}}\right) \overline{x_{1}} \overline{x_{4}}\left(x_{2} \vee \overline{x_{6}}\right)= \\
& =\overline{x_{1}} \overline{x_{4}} x_{3} x_{2} \vee \ldots=1
\end{aligned}
$$

Test pattern:

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	y
0	1	-	0	D	-	D

Fault Analysis with SSBDDs

Algorithm:

1. Determine the activated path to find the fault candidates
2. Analyze the detectability of the each candidate fault (each node represents a subset of real faults)

Test Generation with SSBDDs

Test generation for: $\mathrm{x}_{11} \equiv 0$

Structural BDD:

Functional BDD:

$$
\left.\begin{array}{lll|l}
\mathrm{x}_{1} & x_{2} & x_{3} & x_{4} \\
\hline \mathbf{1} & 1 & 0 & -1
\end{array}\right)
$$

Test pattern:

Functional Synthesis of BDDs

Shannon's Expansion Theorem: $\quad y=F(X)=\left.\left.x_{k} F(X)\right|_{x_{k}=1} \vee \overline{x_{k}} F(X)\right|_{x_{k}=0}$

Using the Theorem for BDD synthesis:

Functional Synthesis of BDDs

Shannon's Expansion Theorem: $y=F(X)=\left.\left.x_{k} F(X)\right|_{x_{k}=1} \vee \bar{x}_{k} F(X)\right|_{x_{k}=0}$

$$
y=x_{1}\left(\overline{x_{2}}\left(x_{3} \vee x_{4}\right) \vee x_{2}\right) \vee \overline{x_{1}} x_{3} x_{4}
$$

BDDs and Complexity

Optimization (by ordering of nodes): BDDs for a 2-level AND-OR circuit BDD optimization: We start synthesis:

- from the most

(a) Circuit.

(c) In the worst order.

BDDs and Complexity

(a) In the best order.

(b) In the worst order.

BDDs for an 8-bit data selector

BDDs and Complexity

Elementary BDDs

BDD optimization:
We may start synthesis:

- from the most important variable, or
- from the most repeated variable

$$
q=c\left(S \vee q^{\prime} \bar{R}\right) \vee \bar{c} q^{\prime}
$$

$$
S R=0
$$

U - unknown value

Elementary BDDs:

BDDs for Logic Gates

Given circuit:

SSBDD synthesis:
 SSBDDs for a given circuit are built by superposition of BDDs for gates

Synthesis of SSBDD for a Circuit

Given circuit:

Compare to
Superposition of Boolean functions:

$$
y=a \& b=\left(x_{1} \vee x_{21}\right)\left(\overline{x_{22}} \vee x_{3}\right)
$$

Superposition of BDDs:

Boolean Operations with SSBDDs

Properties of SSBDDs

Boolean function: $y=x_{1} x_{2} \vee x_{3}\left(x_{4} \vee x_{5} x_{6}\right)=x_{1} x_{2} \vee x_{3} x_{4} \vee x_{3} x_{5} x_{6}$

1-nodes of a 1-path represent a term in the DNF: $\quad x_{3} x_{5} x_{6}=1$

0 -nodes of a 0-path represent a term in the CNF: $\quad{\overline{\mathbf{x}_{1} \vee X_{4} \vee X_{5}}}^{5}=0$

Boolean Operations with SSBDDs

Boolean function: Inverted function (DeMorgan):

$$
\begin{aligned}
& y=x_{1} x_{2} \vee x_{3} \\
& y \rightarrow x_{1}
\end{aligned}
$$

Dual function:

$$
y^{*}=\left(x_{1} \vee x_{2}\right) x_{3}
$$

$\bar{y}=\overline{\mathbf{x}_{1} \mathbf{x}_{2} \vee \mathbf{x}_{3}}=\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \overline{\mathbf{x}}_{3}$

Inverted dual function:

$$
\begin{aligned}
& \overline{\mathbf{y}} *=\bar{x}_{1} \bar{x}_{2} \vee \overline{\mathbf{x}}_{3} \\
& \overline{\mathbf{y}} * \cdots \bar{x}_{3}
\end{aligned}
$$

Properties of SSBDDs

Boolean function:
$y=x_{1} x_{2} \vee x_{3}\left(x_{4} \vee x_{5} x_{6}\right)$

Exchange of nodes:

Properties of SSBDDs

Boolean function:
$y=x_{1} x_{2} \vee x_{3}\left(x_{4} \vee x_{5} x_{6}\right)$

Exchange of subgraphs:

Properties of SSBDDs

Graph related properties:

\checkmark SSBDD is

- planar
- asyclic
- traceable (Hamiltonian path)
- for every internal node there exists a 1-path and 0-path
- homogenous

Transformation of SSBDDs to BDDs

SSBDD:

Mapping Between Circuit and SSBDD

From circuit to set of SSBDDs

Advantages of SSBDDs

\checkmark Linear complexity: a circuit is represented as a system of SSBDDs, where each fanout-free region (FFR) is representred by a separate SSBDD
\checkmark One-to-one correspondence between the nodes in SSBDDs and signal paths in the circuit
\checkmark This allows easily to extend the logic simulation with SSBDDs to simulation of faults on signal
 paths

Shared SSBDDs - S³BDD

\checkmark Extension of superposition procedure beyond the fanout nodes of the circuit
\checkmark Merging several functions in the same graphs by introducing multiple roots

Superpositioning of FFRs
Node of SSBDD \Rightarrow signal path up to fan-out stem Input of SSBDD \Rightarrow circuit down to primary inputs

SSBDDs vs. S^{3} BDDs

Example: Comparison of two models: SSBDD and S ${ }^{3}$ BDD

Network of
3 sub-circuits:

The whole circuit is represented by a single $S^{3} B D D$

S³BDDs and Fault Collapsing

Fault collapsing:

From 84 faults to 36 faults
For SSBDD: 50 faults

How to Go Beyond the Boolean World?

Two basic tasks:

1. Which test patterns are needed to detect a fault (or all faults)
2. Which faults are detected by a given test (or by all tests)

Synthesis of S³BDD for a Circuit

Superposition of BDDs:

Given circuit C17

Each node in the S^{3} BDD represents a signal path in the circuit
Testing a node in S^{3} BDD means testing a signal path in the circuit

Synthesis of S^{3} BDD for a Circuit

Given circuit C17

Two-output circuit is represented by a single SSBDD with shared subgraphs

Superposition of BDDs:

Shared SSBDDs

Each node represents different paths (path segments) in the circuit

SSSBDD for 19	
Node	Path
14	$14_{0}-19(3)$
11	$11_{0}-19(4)$
7	$7-19(4)$
15	$15_{0}-17_{0}-19(3)$
12	$12_{0}-14_{1}-17_{0}-19(4)$
3	$3-11_{1}-14_{1}-17_{0}-19(5)$
4	$4-11_{1}-14_{1}-17_{0}-19(5)$

Structured Interpretation of S^{3} BDDs

S3BDD represents two subcircuits

G	Nodes	Signal paths	L
$\mathrm{G}_{\mathrm{T} 1}$	$\neg 3$	$3-15-\mathrm{T}_{1}$	3
	2	$2-9-10-15-\mathrm{T}_{1}$	5
	$\mathrm{~T}_{1}$	$\mathrm{~T}_{1}-7-9-10-15-\mathrm{T}_{1}$	6

Each node in the S3BDD represents a signal path in the circuit

Structured Interpretation of S^{3} BDDs

G	Nodes	Signal paths	L
$\mathrm{G}_{\mathrm{T} 2}$	8	$8-12-25-\mathrm{T}_{2}$	4
G_{26}	$\neg \mathrm{~T}_{2}$	$\mathrm{~T}_{2}-5-21-23-26$	5
	9	$9-11-18-20-21-23-26$	7
	14	$14-17-18-20-21-23-26$	7
	4	$4-19-20-21-23-26$	6
	$\mathrm{~T}_{3}$	$\mathrm{~T}_{3}-6-14-16-19-20-21-23-26$	9
	$\neg 1$	$\neg 1-8-13-14-16-19-20-21-23-26$	10

