Süsteemide diagnostika

1

2. Teoreetilised alused

2.1. Boole'i differentsiaalalgebra

2.2. Binaarsed otsustusdiagrammid (BDD)

2.3. Kõrgtasandi otsustusdiagrammid

Introduction to Theories: The Course Map

How to Go Beyond the Boolean World?

Two basic tasks:

- 1. Which test patterns are needed to detect a fault (or all faults)
- 2. Which faults are detected by a given test (or by all tests)

BDDs and Testing of Logic Circuits

Three interpretations of BDDs

Applicable only for simulation of input patterns

 $y = x_1 \lor x_2(x_3 \lor x_4 x_5) \lor x_6 x_7$

ALLINN UNIVERSITY OF TECHNOLOGY

2) BDD as adata structure:

Components		Relations	
Node	Var	\rightarrow	\downarrow
1	x ₁	#1	2
2	X ₂	3	6
3	X ₃	#1	4
4	X ₄	5	6
5	X ₅	#1	6
6	X ₆	7	#0
7	Х ₇	#1	#0

Applicable for simulation, fault simulation, test generation, timing simulation, signal probability calculation... etc. for many other circuit analysis tasks

Three interpretations of BDDs

2) BDD as a data structure:

Node	Var	\rightarrow	\downarrow
1	x_1	#1	2
2	X ₂	3	6
3	X ₃	#1	4
4	X ₄	5	6
5	X ₅	#1	6
6	X ₆	7	#0
7	X ₇	#1	#0

LINN UNIVERSITY OF TECHNOLOGY.

3) BDD as knowledge presentation:

RS Flip-Flop

$$q = c(S \lor q'\overline{R}) \lor \overline{c}q'$$

SR = 0 U - unknown value

The graph represents as much functional knowledge as we know about the circuit

(U – indeterminism)⁶

Mapping Between Circuit and SSBDD

4) BDD as a structural model of logic circuits

Each node in SSBDD represents a signal path:

Node x_{11} in SSBDD represents the **path** (x_1 , x_{11} , x_6 , y) in the circuit

The SAF-0(1) fault at the node x_{11} represents the SAF faults on the lines x_{11} , x_6 , y in the circuit \rightarrow fault collapsing 32 faults (16 lines) in the circuit \rightarrow 16 faults (8 nodes) in SSBDD

Test Generation with BD and BDD

Fault Analysis with SSBDDs

Algorithm:

- 1. Determine the activated path to find the fault candidates
- 2. Analyze the detectability of the each candidate fault (each node represents a subset of real faults)

Test Generation with SSBDDs

Test generation for: $x_{11} \equiv 0$

Structural BDD:

Functional Synthesis of BDDs

Shannon's Expansion Theorem: $y = F(X) = x_k F(X) \Big|_{x_k=1} \lor x_k F(X) \Big|_{x_k=0}$

TALLINNA IEHNIKAULIKOOL

Functional Synthesis of BDDs

Shannon's Expansion Theorem: $y = F(X) = x_k F(X) \Big|_{x_k=1} \lor x_k F(X) \Big|_{x_k=0}$

$$y = x_1(x_2(x_3 \lor x_4) \lor x_2) \lor x_1x_3x_4$$

BDDs and Complexity

Optimization (by ordering of nodes): BDDs for a 2-level AND-OR circuit

BDDs and Complexity

BDDs for an 8-bit data selector

1918 **Tallinna tehnikaülikool** Tallinn university of technology

BDDs and Complexity

U - unknown value

BDDs for Logic Gates

Elementary BDDs:

Given circuit:

SSBDD synthesis:

SSBDDs for a given circuit are built by **superposition** of BDDs for gates

© Raimund Ubar

Synthesis of SSBDD for a Circuit

Given circuit:

Superposition of BDDs:

1918 **TALLINNA TEHNIKAÜLIKOOL** TALLINN UNIVERSITY OF TECHNOLOGY

© Raimund Ubar

TALLINN UNIVERSITY OF TECHNOLOGY

Boolean Operations with SSBDDs

Boolean function: $y = x_1x_2 \lor x_3 (x_4 \lor x_5x_6) = x_1x_2 \lor x_3x_4 \lor x_3x_5x_6$

1-nodes of a **1-path** represent a term in the DNF: $x_3x_5x_6 = 1$

0-nodes of a **0-path** represent a term in the CNF: $\overline{x_1 \lor x_4 \lor x_5} = 0$

Boolean Operations with SSBDDs

Boolean function:

Inverted function (DeMorgan):

Dual function:

$$y^* = (x_1 \lor x_2) x_3$$
$$y^* \xrightarrow{x_1} \xrightarrow{x_3}$$

$$\overline{\mathbf{y}} = \overline{\mathbf{x}_1 \mathbf{x}_2 \vee \mathbf{x}_3} = (\overline{\mathbf{x}}_1 \vee \overline{\mathbf{x}}_2) \overline{\mathbf{x}}_3$$

Inverted dual function:

Boolean function:

$$y = x_1 x_2 \vee x_3 (x_4 \vee x_5 x_6)$$

Exchange of nodes:

Boolean function:

$$\mathbf{y} = \mathbf{x}_1 \mathbf{x}_2 \lor \mathbf{x}_3 \ (\mathbf{x}_4 \lor \mathbf{x}_5 \mathbf{x}_6)$$

Exchange of subgraphs:

Graph related properties:

- ✓ SSBDD is
 - planar
 - asyclic
 - traceable (Hamiltonian path)
 - for every internal node there exists a 1-path and 0-path
 - homogenous

Transformation of SSBDDs to BDDs

Mapping Between Circuit and SSBDD

From circuit to set of SSBDDs

Advantages of SSBDDs

- Linear complexity: a circuit is represented as a system of SSBDDs, where each fanout-free region (FFR) is represented by a separate SSBDD
- One-to-one correspondence between the nodes in SSBDDs and signal paths in the circuit
- This allows easily to extend the logic simulation with SSBDDs to simulation of faults on signal paths

Shared SSBDDs - S³BDD

- Extension of superposition procedure beyond the fanout nodes of the circuit
- Merging several functions in the same graphs by introducing multiple roots

Superpositioning of FFRs

Node of SSBDD \Rightarrow signal path up to fan-out stem Input of SSBDD \Rightarrow circuit down to primary inputs

SSBDDs vs. S³BDDs

Example: Comparison of two models: SSBDD and S³BDD

S³BDDs and Fault Collapsing

From 84 faults to 36 faults For SSBDD: 50 faults

How to Go Beyond the Boolean World?

Two basic tasks:

- 1. Which test patterns are needed to detect a fault (or all faults)
- 2. Which faults are detected by a given test (or by all tests)

Synthesis of S³BDD for a Circuit

Superposition of BDDs:

Given circuit C17

Each node in the S³BDD represents a signal path in the circuit

Testing a node in S³BDD means testing a signal path in the circuit

TALLINN UNIVERSITY OF TECHNOLOGY

Synthesis of S³BDD for a Circuit

Given circuit C17

© Raimund Ubar

Two-output circuit is represented by a single SSBDD with shared subgraphs

Superposition of BDDs:

Shared SSBDDs

Each node represents different paths (path segments) in the circuit

17

14

11

SSSBDD for 19		
Node	Path	
14	14 ₀ -19 (3)	
11	11 ₀ -19 (4)	
7	7-19 (4)	
15	15 ₀ -17 ₀ -19 (3)	
12	12 ₀ -14 ₁ -17 ₀ -19 (4)	
3	3-11 ₁ -14 ₁ -17 ₀ -19 (5)	
4	4-11 ₁ -14 ₁ -17 ₀ -19 (5)	

Structured Interpretation of S³BDDs

G	Nodes	Signal paths	L
	3	$3 - 15 - T_1$	3
G _{T1}	2	$2-9-10-15-T_1$	5
	T ₁	$T_1 - 7 - 9 - 10 - 15 - T_1$	6

Each node in the S3BDD represents a signal path in the circuit

Structured Interpretation of S³BDDs

G	Nodes	Signal paths	L
G _{T2}	8	$8 - 12 - 25 - T_2$	4
	$\neg T_2$	$T_2 - 5 - 21 - 23 - 26$	5
	9	9 - 11 - 18 - 20 - 21 - 23 - 26	7
G ₂₆	14	14 - 17 - 18 - 20 - 21 - 23 - 26	7
	4	4 - 19 - 20 - 21 - 23 - 26	6
	T ₃	$T_3 - 6 - 14 - 16 - 19 - 20 - 21 - 23 - 26$	9
	-1	-1 - 8 - 13 - 14 - 16 - 19 - 20 - 21 - 23 - 26	10

