
Technical University Tallinn, 

ESTONIA

Overview about TESTING: Testing World

Test

System

Fault 

dictionary

System 

model

Test generation

Fault simulation

Test 

result

Fault diagnosis

Go/No go 

Located defect

Test 

experiment

Test tools

(BIST)



Technical University Tallinn, 

ESTONIA

Test Related Basic Problems

Relationships between diferent test tasks

• Fault modeling

• Fault simulation

• Test generation

• Fault diagnosis

TEST

GENERATION
FAULT

MODELING
SYSTEM

FAULT DIAGNOSIS

FAULT SIMULATION

2



Research in ATI© Raimund Ubar

Test Related Basic Problems

F1 F2 F3 F4 F5 F6 F7

T1 0 1 1 0 0 0 0

T2 1 0 0 1 0 0 0

T3 1 1 0 1 0 1 0

T4 0 1 0 0 1 0 0

T5 0 0 1 0 1 1 0

T6 0 0 1 0 0 1 1

Fault table (Solutions of Diagnostic equations)

Test generation

Fault simulation

Fault 

modeling
E1 E2 E3

0 0 1

0 1 0

0 1 0

1 0 1

1 0 1

0 0 0

Test experiment data

How many 

rows 

and 

columns 

should be 

in the    

Fault Table?

Fault F5

located
Fault 

diagnosis

Virtual World
Real World



© Raimund Ubar

Why We Need Fault Models?

• Fault models are needed for 

• test generation, 

• test quality evaluation and 

• fault diagnosis

• To handle real physical defects is too difficult

• The fault model should

• reflect accurately the behaviour of defects, and

• be computationably efficient

• Usually combination of different fault models is 
used

• Fault model free approaches (!)

4



Technical University Tallinn, 

ESTONIA
5

Fault Modeling: Defects and Faults

• An instance of an incorrect
operation of the system being
tested is referred to as an
error

• The causes of the observed
errors may be design errors
or physical faults (defects)

• Physical defects do not allow a
direct mathematical treatment
of testing and diagnosis

• The solution is to deal with
logical fault models

System

Component

Defect

Error

Fault (model)

Defects, faults and errors



Technical University Tallinn, ESTONIA

Component

level

dy

Defect 

mapping

Divide & Conquer: Hierarchy is the Solution

System level

Wd

Logic level

Error

Hierarchical test: fault propagation

y*

6

x1

x2

x

3

x4

x5

Defect

Transistor level &

&

&

1

&

&

&

Logic level

R2M3

+M1

*M2

R
1

IN

RT Level



Technical University Tallinn, 

ESTONIA

System classes:
Combinational circuits

Sequential circuits

Finite State Machines

Data Flow Circuits

Microprocessors

Memories

Systems on Chip

Fault classes:
Stuck-at-Faults

Bridging faults

Opens

Delay Faults

Physical defects

Functional Faults

Fault Problems:
Multiple Faults

Fault Masking

Fault Dominance

Fault Equivalence

Fault Collapsing

Redundancy

Test Generation:
Deterministic

Random

Genetic

Test Optimization:
Test Compaction

Testability Design

Signature Analyzis

Fault Diagnosis:
Combinational

Sequential

Fault dictionaries

Testing:
External Test

Built-In Self-Test

Fault Simulation:
Single Fault

Parallel Fault

Parallel Pattern

Fault Analysis:
Deductive

Concurrent

Reversive

Models:
Structural

Functional

Procedural

Behavioral

Timing:
Synchronous

Asynchronous

Multi-Clocking

Hierarchy:
Bottom-up

Top-down

Jo-jo

Test Problems

12 dimensions

1 selected 

problems field

N-Dimensional Space of (46?) 



© Raimund Ubar

SAF-1

Broken wire

Bridge between wires
Wire “is hanging in then air ”
Capacity  Sequential behavior

Short in the transistor

Bridge between 

transistors

Broken transistor 

SAF-0

Faults and fault models

 Mani Soma

8



© Raimund Ubar

Transistor Level Stuck-open Faults

x1 x2

Y

VDD

VSS

x1

x2

x1 x2 y yd

0 0 1 1

0 1 0 0

1 0 0 Y’

1 1 0 0

NOR gate

Test sequence is 

needed:    00,10

9

x1 x2

Y

VDD

VSS

x2

x1

Stuck-open

No conducting path from VDD to VSS for “10”

The wire Y is floating  Capacity is working as a memory

x1

x2
Y1

0

1 1



© Raimund Ubar

Transistor Level Stuck-On Faults

x1 x2

Y

Stuck-on
VDD

VSS

x1

x2

x1 x2

Y

VDD

VSS

x1

x2

x1 x2 y yd

0 0 1 1

0 1 0 0

1 0 0 VY

1 1 0 0

NOR gate

Conducting path for “10”
)( NP

PDD
Y

RR

RV
V




RN

RP

10



Technical University Tallinn, 

ESTONIA

Fault Modeling: Logic Level Faults - SAF

1
x2

x1

Broken line

1
x2

x1

Bridge to ground

0V

Stuck-at-0

Stuck-at fault model:

Stuck-at-1

&
x2

x1

Broken line

1
x2

x1

Bridge to Power 

Supply

Vdd

Why logic fault models?

• complexity of simulation 
reduces (many physical faults 
may be modeled by the same 
logic fault)

• one logic fault model is 
applicable to many 
technologies

• logic fault tests may be used 
for physical faults whose effect 
is not completely understood

• they give a possibility to 
move from the lower 
physical level to the higher 
logic level

11



Technical University Tallinn, ESTONIA 12

Fault Cover and Fault Redundancy

• Fault cover is a measure of the number of detectable faults

• Why fault redundancy is an important and troublesame problem

– It makes test generation (search for a proper test pattern for the given fault

extremely time consuming)

• n – number of inputs of the circuit

• The search space is 2n where backtracks are needed

• If 64 inputs, then the search space is 264 = 1019

• Redundant fault needs the search throughout the full search space

If not done, the fault cover cannot be calculated trustworthy

• F – number of all faults

• FD – number of detected faults

• FC – fault coverage

• FR – number of redundant faults

• TE – test efficiency

– Fault coverage: FC = FD / F

– Test efficiency: TE = FD  / (F - FR)

Example:

Faults: F = 1000

Redundant faults: FR = 100

Detected faults: FD = 880

Fault coverage: FC = 880/1000 = 88%

Test efficiency: TE = 880/900 = 98%

Contradiction: between fault tolerance and fault coverage

conflict

conflict

No colution



Technical University Tallinn, ESTONIA

Problems with Testing: Multiple Faults

• Multiple stuck-fault (MSF) model is an extension of the single stuck-
fault (SSF) where several lines can be simultaneously stuck

• If  n - is the number of possible SSF sites, there are 2n possible SSFs, 
but there are 

But 3n -1 possible MSFs

• If we assume that the multiplicity of faults is no greater than  k , then 
the number of possible MSFs is 

• Ci
n - number of sets of i lines,      2i – number of faults on the set

Wire b

Wire a
0,1,x

0,1,x





k

i

ii

nCN
1

2}{
)!(!

!

ini

n
C i

n


<<  3n - 1



Technical University Tallinn, 

ESTONIA

Fault Modeling: Conditional SAF

Very complex faults can be translated (reduced) to SAF model:

Defect
0

1

0

1

Conditional fault

Pattern fault

Constrained SAF

Single faulty signal

X-fault

Byzantine fault

Bridges

Stuck-opens

Multiple faulty signal

SAF

Multiple 

fault

14

Resistive bridge fault



Technical University Tallinn, 

ESTONIA

&
&

x1

x2

x3

y
State q

Y = F(x1, x2, x3,q)

1

1

Y = F(x1, x2, x3)

0
Bridging fault

Complexity problem:

Number of single faults – 2n

Number of multiple faults – 3n -1

n – is number of wires

Things are 

even worse

Gate-Level Faults: SAF Model

15



Technical University Tallinn, ESTONIA 16

Delay Fault Models

Delay faults are tested

by test pattern pairs:                          

- the first test pattern

initializes the circuit, and 

- the second pattern

sensitizes the fault

&

&

&

00

&
A

D

C

Bx1

x2

x3

10

11

01

11

110

001

Delay fault models:        
- Gate delay fault (delay fault is lumped at a single gate, quantitative model)

- Transition fault (qualitative model, gross delay fault model, independent of 

the activated path)

- Path delay fault (sum of the delays of gates along a given path)

- Line delay fault (is propagated through the longest senzitizable path)

- Segment delay fault (tradeoff between the transition and the path delay fault

models)

FF

Clock

001



Technical University Tallinn, ESTONIA 17

17

Transition Delay and Path Delay Faults

1

&

&

1

&

&

1

&

&

Path delay

Transition 
delay

Segment delay

Numbers of faults:

- Transition faults:  2*(18 lines)=36
- Segment delay faults: 2*(12 segments) = 24
- Path delay daults: 2*(22 paths) 44



Technical University Tallinn, ESTONIA 18
18

Number of Paths in Circuits

Circuit Inputs Outputs Gates Levels Paths

c17 5 2 13 4 11

c32 36 7 203 18 83926

c499 41 32 275 12 9440

c880 60 26 469 25 8642

c1355 41 32 619 25 4173216

c1908 33 25 938 41 729057

c2670 233 140 1566 33 679960

c3540 50 22 1741 48 28676671

c5315 178 123 2608 50 1341305

c6288 32 32 2480 125 98943441738294937238

c7552 207 108 3827 44 726494

ISCAS’85 Family of benchmark circuits:



Technical University Tallinn, ESTONIA 19

Fault models Advantages Limitations

Gate delay All gates can be modeled • Distributed failures not 

considered

• Exact defect size not possible

Transition fault Easy to model all gates Distributed failures not 

considered

Path delay Distributed failures considered Impossible to enumerate all 

paths

Line delay • All gates are modeled

• Distributed failures considered

• Better coverage metric

• Additional fault coverage by 

using multi-path technique

• Existence of nonrobust test

• May fail for some shorter paths

Segment delay Considers general delay defect 

from spot to distributed failures

Longest delay path may not be 

tested

Copyright © A.K.Majhi, V.D.Agrawal 1997

Comparison of Delay Faults



Technical University Tallinn, 

ESTONIA
20

Universal Functional Faults

Exhaustive combinational fault model:

- exhaustive test patterns

- pseudoexhaustive test 

patterns

- exhaustive output line 

oriented test patterns

- exhaustive module 

oriented test patterns

Advantage: The way to hierarchical approach and 

to „conquer and divide“ strategy



Technical University Tallinn, 

ESTONIA
21

Fault Modeling: Register Level Faults

K: (If T,C)   RD  F(RS1, RS2, … RSm),   N

RTL statement:

K - label

T - timing condition

C - logical condition

RD - destination register

RS - source register

F - operation (microoperation)

 - data transfer

 N - jump to the next statement

Components of the statement:

(variable types) 
RT level faults:

K  K’ - label faults

T  T’ - timing faults

C  C’ - logical condition faults

RD  RD - register decoding faults

RS  RS - data storage faults

F  F’ - operation decoding faults

 - data transfer faults

 N - control faults

(F)  (F)’ - data manipulation faults

vs. Boolean formulas with Boolean variable

and SAF model (x  0, x  1)

Disadvantage: Too many fault dedicated models, abstraction, formalization and 

tool support are missing, test program generation is a manual work today



Technical University Tallinn, ESTONIA 22

Microprocessor Fault Model

Faults affecting the operation of microprocessor can be 

divided into the following classes: 

• addressing faults affecting register decoding

• addressing faults affecting the instruction decoding and –

sequencing functions;

• faults in the data-storage function;

• faults in the data-transfer function;

• faults in the data-manipulation function

Disadvantage: Formalization and tool support are missing, 

test program generation is a manual work today



Technical University Tallinn, 

ESTONIA
23

Summary of Overview

• Main tools and tasks

– Test generation

– Fault Simulation

– Fault Diagnosis

• Different fault types

– Logic faults, X-faults, Timing (delay) faults, High-Level faults

• Fault modeling

– Low-level fault models (SAF, transistor faults, bridging, delays)

– High-level fault models (RTL, microprocessors)

23



Technical University Tallinn, 

ESTONIA
24

Fault Simulation

24

F1 F2 F3 F4 F5 F6 F7

T1 0 1 1 0 0 0 0

T2 1 0 0 1 0 0 0

T3 1 1 0 1 0 1 0

T4 0 1 0 0 1 0 0

T5 0 0 1 0 1 1 0

T6 0 0 1 0 0 1 1

Fault table

Test generation

Fault simulation

Fault

modeling
E1 E2 E3

0 0 1

0 1 0

0 1 0

1 0 1

1 0 1

0 0 0

Test experiment data

Testing

How many

rows

and 

columns

should be

in the

Fault Table?

Fault F5 located

Fault diagnosis



Technical University Tallinn, 

ESTONIA
25

Comparison of Fault Simulation Methods

Fault simulation techniques:

• serial fault simulation

• parallel fault simulation

• deductive fault simulation

• concurrent fault simulation

• critical path analysis

• parallel critical path analysis

Common concepts:

• fault specification (fault collaps)

• fault insertion

• fault effect propagation

• fault discarding (dropping)

Comparison of methods:

Fault table

Faults Fi 

Test patterns Tj

Entry (i,j) = 1(0) if Fi is detectable 

(not detectable) by Tj 

25



Technical University Tallinn, 

ESTONIA
26

Single and Parallel Fault Simulation

Fault-free circuit:

Faulty circuit:

&
1

x1

x2 x3

z
y

0

1

0

0

0

&
1

x1

x2 x3

z
y

0

1

1

0

1

Inserted 

stuck-at-1 fault

Detected 

error

Parallel patterns

Fault-free circuit:

Faulty circuit:

&
1

x1

x2 x3

z
y

001

101

001

010

011

&
1

x1

x2 x3

z
y

001

101

111

010

111

Inserted 

stuck-at-1 fault

Detected 

error

Three test patterns

Single pattern



Technical University Tallinn, 

ESTONIA
27

Fault Simulation: Critical Path Tracing

&

&

1

1

1

2

3

4

5 a

c

b
1

1

0

0

0

0

0

1
1

y

Problems:
&

&

1

1

1
1/0

y

&

&

1

0

1
1

y

1/0

1

1

1/0

1

1

The critical path is not continuous

The critical path breaks on the fan-out 

Activated (critical) path 

is traced backwards

27



Technical University Tallinn, 

ESTONIA
28

Defect
0

1

0

1

Defect is detected

Fault model versions:

Conditional fault

Pattern fault

Constrained SAF

Cell aware test

SAF

1

10101 0 1

0

n

..

t

t-1

…

0

Simulation table

Test 

pattern

number

Detected SAF

Transition

fault

not detected

Transition

fault

detected

Lines in the

circuit

1

1

1

Bridging

fault

detected

(for all lines

with 1)
Transition fault

not detected

Simulation of Different Classes of Faults

1



Technical University Tallinn, 

ESTONIA
29

29

Wired AND model

x1

x2

x’1

x’2

&
x1

x2

x’1

x’2

W-AND:

&

X1 = 1

&

X3 = 1  0

y1 = 1  0
X2 = 

1

0  1

&
X4 = 0

X5 = 

1

y2 = 1

Testing of Bridging Fault Models



Technical University Tallinn, 

ESTONIA
30

Simulation of Bridging Faults

x1 x2 x3 x4 x5 x6 x7

1 0 1 0 1 1 0

0 1 1 0 0 1 0

Simulation table for SAF faults
(variables)

SAF fault

table
(nodes)

1 2 3 4 5 6 7

x 1 x 1 0 0 x

1 0 0 x x x 1

1 2 3 4 5 6 7

1 0 0 0

2 01 1 1 01 1

3 1 1 1 1

4 0 0 0

5 1 1 1

6 1 1 1

7 0 0 0

Bridging fault table

Nodes and variables:

Converting the SAF fault

table into Bridging fault table



Technical University Tallinn, 

ESTONIA
31

Turbo-Tester Data Formats

----------------

11110 hhlhhll LL

11001 lhhhllh HL

00011 lhhlhhh HH

10101 hlhhlhh HH

01000 lhhhhll LL

Simulation table

(variables)

01234 5678901 23

Fault table

(nodes)

25415 73078 69810 < variables

01234 56789 01234 < nodes

---------------

0X100 1XX10 00011

11XX1 X1000 01X01

XXXXX 00XX1 XX100

0001X XX00X 11X00

XXXXX X11X0 00011

STAT#    15 Nods,  14 Vars,  9 Grps,  5 Inps,  0 Cons,  2 Outs 

 

MODE#   STRUCTURAL 

 

 

VAR#   0:  (i_______)  "i_5" 

VAR#   1:  (i_______)  "i_4" 

VAR#   2:  (i_______)  "i_3" 

VAR#   3:  (i_______)  "i_2" 

VAR#   4:  (i_______)  "i_1" 

 

VAR#   5:  (________)  "i_3" 

GRP#    0: BEG =   0, LEN =   1 ----- 

   0   0:  (____) ( 0 0)  V = 2     "i_3" 

 

VAR#   6:  (________)  "inst_0>o" 

GRP#    1: BEG =   1, LEN =   2 ----- 

   1   0:  (I___) ( 1 0)  V = 5     "inst_0>i_1" 

   2   1:  (I___) ( 0 0)  V = 4     "i_1" 

 

VAR#   7:  (________)  "inst_1>o" 

GRP#    2: BEG =   3, LEN =   2 ----- 

   3   0:  (I___) ( 1 0)  V = 1     "i_4" 

   4   1:  (I___) ( 0 0)  V = 5     "inst_1>i_2" 

 

VAR#   8:  (________)  "inst_2>o" 

GRP#    3: BEG =   5, LEN =   2 ----- 

   5   0:  (I___) ( 1 0)  V = 7     "inst_2>i_1" 

   6   1:  (I___) ( 0 0)  V = 3     "i_2" 

 

VAR#   9:  (________)  "inst_3>o" 

GRP#    4: BEG =   7, LEN =   2 ----- 

   7   0:  (I___) ( 1 0)  V = 0     "i_5" 

   8   1:  (I___) ( 0 0)  V = 7     "inst_3>i_2" 

 

VAR#   10:  (________)  "inst_4>o" 

GRP#    5: BEG =   9, LEN =   2 ----- 

   9   0:  (I___) ( 1 0)  V = 8     "inst_4>i_1" 

   10   1:  (I___) ( 0 0)  V = 6     "inst_0>o" 

 

VAR#   11:  (________)  "inst_5>o" 

GRP#    6: BEG =   11, LEN =   2 ----- 

   11   0:  (I___) ( 1 0)  V = 9     "inst_3>o" 

   12   1:  (I___) ( 0 0)  V = 8     "inst_5>i_2" 

 

VAR#   12:  (_o______)  "o_2" 

GRP#    7: BEG =   13, LEN =   1 ----- 

   13   0:  (____) ( 0 0)  V = 11     "inst_5>o" 

 

VAR#   13:  (_o______)  "o_1" 

GRP#    8: BEG =   14, LEN =   1 ----- 

   14   0:  (____) ( 0 0)  V = 10     "inst_4>o" 

Circuit

Blue colour – variables

Red colour – nodes (fault locations)

Circuit

model



Technical University Tallinn, 

ESTONIA
32

Delay Fault Models

Delay faults are tested

by test pattern pairs:                          

- the first test pattern

initializes the circuit, and 

- the second pattern

sensitizes the fault

&

&

&

00

&
A

D

C

Bx1

x2

x3

10

11

01

11

110

001

Delay fault models:        
- Gate delay fault (delay fault is lumped at a single gate, quantitative model)

- Transition fault (qualitative model, gross delay fault model, independent of 

the activated path)

- Path delay fault (sum of the delays of gates along a given path)

- Line delay fault (is propagated through the longest senzitizable path)

- Segment delay fault (tradeoff between the transition and the path delay fault

models)

FF

Clock

001



Technical University Tallinn, 

ESTONIA
33

Simulation of Delay Faults

1 2 3 4

T1 0 1 1 0

T2 1 1 1 0

T3 1 0 1 1

T4 0 1 0 0

7 1 2 2 2

1 2 3 4

T1 0 1 1 0

T3 1 0 1 1

T2 1 1 1 0

T4 0 1 0 0

6 1 2 1 2

1 2 3 4

T1 0 1 1 0

T3 1 0 1 1

T4 0 1 0 0

T2 1 1 1 0

8 2 2 2 2

Number of all 

detected

delay faults

Numbers of detected

delay faults in 

columns

Optimization of the test sequence by reordering the patterns

Procedure (greedy algorithm): 

1) Find the test pair with maximum of the Hamming distance and 

set this pair as the first two patterns

2) Find for the second pattern the companion from the rest of 

patterns with maximum of the Hamming distance

3) Continue the algorithm till the next to the last pattern

Example: Converting of SAF fault table into the delay fault table

Full fault coverage is achieved



Research in ATI© Raimund Ubar

Fault Table based Diagnosis

F1 F2 F3 F4 F5 F6 F7

T1 0 1 1 0 0 0 0

T2 1 0 0 1 0 0 0

T3 1 1 0 1 0 1 0

T4 0 1 0 0 1 0 0

T5 0 0 1 0 1 1 0

T6 0 0 1 0 0 1 1

Fault F5 located

Faults F1 and F4 are not distinguishable

No match, diagnosis not possible

E1 E2 E3

0 0 1

0 1 0

0 1 0

1 0 1

1 0 1

0 0 0

Combinational fault diagnosis

34

Two phases:

1) The full test (all test patterns) is executed, and the result vector Ek is fixed

2) A match for Ek in the fault table with a column vector Fj is found

3) The colmn vector Fj refers to the fault Fj



Research in ATI© Raimund Ubar

Fault Diagnosis

Sequential (adaptive) fault diagnosis by Edge-Pin Testing

T1 F1,F4,F5,F6,F7

P
T2

P
F1,F4

F2, F3 T3

P
F3

F

F

F2

F

F5,F6,F7 T3

P
F5,F7

F

F6

T4

P
F7

F

F5

F1,F2

F3,F4

F5,F6

F7

F1 F2 F3 F4 F5 F6 F7

T1 0 1 1 0 0 0 0

T2 1 0 0 1 0 0 0

T3 1 1 0 1 0 1 0

T4 0 1 0 0 1 0 0

T5 0 0 1 0 1 1 0

T6 0 0 1 0 0 1 1

Diagnostic tree:

Two faults F1,F4 remain indistinguishable 

Not all test patterns used in the fault table are 

needed 

Different faults need for identifying test 

sequences with different lengths

The shortest test contains two patterns, 

the longest four patterns

35

Test patterns are executed in a sequence one-by-one. Depending on the test result, the next

pattern will be selected and executed. Beforehand a diagnostic tree can be constructed



Research in ATI© Raimund Ubar

Sequential Fault Diagnosis

Guided-probe testing inside the circuit

x8

No faultsP

F

x6

P

F

x4

x5,2

P

F

OR- x8 is faulty

x2

P

F

x3,1 P
F

NOR- x5 is faulty

x3

P

F

Line x3,1 is faulty

Line x3 is faulty
Line x2 is faulty

Line x2

is faulty
F

P

x3,2

P AND- x6 is faulty
F

x3

P

F

Line x3,2 is faulty

Line x3 is faulty

x2

x3

x4

x3,1

x3,2

x5,1

x5,2

x5

x6

x7

x8

1

1



1

Searh tree:

Faulty

circuit

Differently from the

previous methods, 

in this approach

multiple faults

can be independently

located



Research in ATI© Raimund Ubar

37

The Problem of Diagnosis: A Good Strategy

1 2 43 T1

1,2,3,4

T1

+

2

1

+

4

3

+

The average length of the

fault location procedure:

1 + 4  3 = 13/5 = 2,6

Fault

candidates

OK

T2

T2

1,2

T3

T3

T4

T4
+ 3,4

1

Let us begin from the

whole picture

Thereafter: divide and 

conquer



Research in ATI© Raimund Ubar

38

An Example of a Bad Strategy

1 2 43

T1

1

T1

+

1

The average length of the fault location procedure:

(1 + 2 + 3 + 4  2)/5 = 14/5 = 2,8

+

2

T3

3

T3

+ 3

The previous

result was :

2,6

T4

+

4

T4

4

OK

T2

T2

2

One-by-one search



Research in ATI© Raimund Ubar

39

Optimization Using Statistics

1 2 43 T4

T1

The average length of the fault location procedure:

(1  0,6 + 2  0,2 + 3  0,1 + 4  0,1  2) = 2,1

T2

1-4

T1

+

1
3,4

T3 3

+
+

2

2,3,4

T2

+
4

T4 4

OK

The previous

results were :

2,6 & 2,8

p=0,6 p=0,2

p=0,1

p=0,1

T3

Probability of faults

may be different in 

different modules



Technical University Tallinn, 

ESTONIA

Test Generation

F1 F2 F3 F4 F5 F6 F7

T1 0 1 1 0 0 0 0

T2 1 0 0 1 0 0 0

T3 1 1 0 1 0 1 0

T4 0 1 0 0 1 0 0

T5 0 0 1 0 1 1 0

T6 0 0 1 0 0 1 1

Fault table

Test generation

Fault simulation

Fault

modeling
E1 E2 E3

0 0 1

0 1 0

0 1 0

1 0 1

1 0 1

0 0 0

Test experiment data

Testing

How many

rows

and 

columns

should be

in the

Fault Table?

Fault F5 located

Fault diagnosis



Technical University Tallinn, 

ESTONIA
41

Test Generation Methods

Gate-level methods

 Functional testing: universal test sets

 Structural test generation

 Path activation conception

 Algorithms: D, Podem, Fan

 Test generation for multiple faults

 Test generation for sequential circuits

 Random test generation

 Genetic algorithms for test generation

High-level and hierarchical methods

 Test generation for digital systems

 Test generation for microprocessors



Technical University Tallinn, 

ESTONIA
42

Exhaustive Testing

Universal test sets

1. Exhaustive test (trivial test)

2. Pseudo-exhaustive test

Properties of (pseudo)exhaustive tests

1. Advantages (concerning the stuck at fault model):

- test pattern generation is not needed

- fault simulation is not needed

- no need for a fault model

- easily generated on-line by hardware

- redundancy problem is eliminated

- single and multiple stuck-at fault coverage is 100%

2. Shortcomings:

- long test length (2n patterns are needed, n - is the number of inputs)

- CMOS stuck-open fault problem



Technical University Tallinn, 

ESTONIA
43

Pseudo-exhaustive test sets:

– Output function verification

• maximal parallel testability

• partial parallel testability

– Segment function verification

Output function verification

216 = 65536

Exhaustive

test

Primitive 

polynomials

Pseudo-

exhaustive

parallel

>   16 

Pseudo-

exhaustive

sequential

>>  4x16 = 64 

4

4

4

4
Segment function verification

F &
1111

0101

0011

0101

0011

Pseudoexhaustive Testing



Technical University Tallinn, 

ESTONIA

Faults as Test Generation Objectives

Stuck-at 1 fault

&
1

 1

X1 = 0

X3 = 0  1

y = 0  1
X2 = 

1

1  0

(x3 = 0  1)    (y = 0  1)

Output is depending on input 

change

Path activation / Fault propagation

Fault propagation conditions

44



Technical University Tallinn, 

ESTONIA

Test Generation: Stuck-at-Faults (SAF)

Fault detection

• A test t = 1101 is simulated, 

both without and with the 

fault a/0

• The fault is detected since 

the output values in the two 

cases are different 

Why is fault detected?

• A fault a/0 is sensitized by 

the value 1 on a line a

• A path from the faulty line a

is sensitized (bold lines) to 

the primary output 

Structural gate-level testing: fault sensitization

0

45



&

 

&

0



A

B

C

D





1

1

0

1

0

1

1

a

1 0
1 0

0 1

1

0 1



Technical University Tallinn, 

ESTONIA

Fault Propagation Problem

&

1

Path activation

Fault “Stuck-at-1”

0

Fault 
activation

Correct 

signal

Error

1  0

Logic gate

1

Path
activation

Fault
Stuck-at-0

Fault 
activation

Correct 
signal

Error

1  0

x1

x2

x3 = 1
x4

x5

x6

x7

y

0

0

0 F (X)

Logic circuit

7654321 )( xxxxxxxy 



Technical University Tallinn, 

ESTONIA
47

Structural Test Generation: Main Principles

Single path fault propagation: 

&

&

&

&

&

&

&

1

2

3

4

5

6

7

71

72

73

a

b

c

d

e

y

Macro

D
D

D

D D

1

1

1

1

Fault sensitisation:

x7,1= D

Fault propagation:

x2 = 1, x1 = 1, b = 1, c = 1

Line justification:

x7= D = 0:   x3 = 1, x4 = 1

b = 1: (already justified)

c = 1: (already justified)

))(( 2,751,7213,76 xxxxxxxy 

Symbolic fault modeling:

D = 0  - if fault is missing

D = 1  - if fault is present

1

1

1

1

Test pattern



Technical University Tallinn, 

ESTONIA

Test Generation: Conditional SAF

x1

x2

x’1

x’2

&

X1 = 1

&

X3 = 1  0

y1 = 1  0
X2 = 1

0  1

&
X4 = 0

X5 = 1

y2 = 1

Defect0

1

0

1

Conditional fault

Pattern fault

Constrained SAF

Single faulty 

signal

X-fault

Byzantine fault

Bridges

Stuck-opens

Multiple faulty 

signal

SAF

Multiple 

fault

Generalization: Bridging Fault > Conditional SAF

Condition

SAF:

48

Bridge



Technical University Tallinn, 

ESTONIA
49

Boolean Derivatives

y

x

y = F(x)

Traditional algebra: speed

0
)(






kx

XF
0

)(






ix

XF

1
)(






ix

XF F(X) will change

if xi changes

0
)(






ix

XF F(X) will  not 

change

if xi changes

Boolean algebra: change

x 0,1, Y=F(X)

Y0,1

xi xk Test generation:
(Calculation of the value of 

reverse function)

),1(1 dXdYgX  

Reverse function: Y=F(X, dX)



Technical University Tallinn, 

ESTONIA
50

Boolean derivatives

Boolean function:

Y = F(x) = F(x1, x2, … , xn)

Boolean partial derivative:

),...,...(),...,...(
)(

11 nini

i

xxxFxxxF
x

XF






Test generation: ),1(1 dXdYgX  

= 1

),...1,...(),...0,...(
)(

11 nini

i

xxxFxxxF
x

XF





= 1

Simplified equation:



Technical University Tallinn, 

ESTONIA
51

Boolean Derivatives

Useful properties of Boolean derivatives:

These properties allow to simplify the Boolean differential equation 

to be solved for generating test pattern for a fault at xi

For F(x) not depending on xi

 

ii x

XG
XF

x

XGXF








 )(
)(

)()(

 

ii x

XG
XF

x

XGXF








 )(
)(

)()(

)( 323241 xxxxxx 

41)( xxXF 
3232)( xxxxXG 

Example:

 

ix

XG
xx

x

XGXF








 )()()(
41

2

Continue the same for
𝐺(𝑋)
 𝑥𝑖



Technical University Tallinn, 

ESTONIA
52

Calculation of Boolean Derivatives

- if F(x) is independent of xi

- if F(x) depends always on xi

0
)(






ix

XF

1
)(






ix

XF

Examples:

:)()( 32321 xxxxxXF  0
)(

2121

3





xxxx

x

XF

:)( 21 xxXF  1
)(

22

1





xx

x

XF

),...1,...(),...0,...(
)(

11 nini

i

xxxFxxxF
x

XF






Special cases for differential equations:



Technical University Tallinn, 

ESTONIA
53

Calculation of Boolean Derivatives

316254142321 ))((( xxxxxxxxxxxxy 

5

5
62414233121

5

6254
14233121

5

62541
4233121

5

6254142
33121

5

62541423
3121

5

))((

)))(((

)))(((

))))((((

x

x
xxxxxxxxxxx

x

xxxx
xxxxxxxx

x

xxxxx
xxxxxxx

x

xxxxxxx
xxxxx

x

xxxxxxxx
xxxx

x

y

































Calculation of the Boolean derivative:

Given:

Example:



Technical University Tallinn, 

ESTONIA
54

Calculation of Boolean derivatives

1...

)()())((

)()()(

2341

62414233121

5

5
62414233121

5















xxxx

xxxxxxxxxxx

x

x
xxxxxxxxxxx

x

y

Finding a solution of the differential equation:

𝑦
𝑥5

= 𝑥1 𝑥4 𝑥3(𝑥2  𝑥6) = 𝒙𝟏 𝒙𝟒 𝒙𝟑𝒙𝟐 = 1 

x1 = 0

x4 = 0

x3 = 1

x2 = 1Test pattern is found: 

The DNF will include all solutions



Research in ATI© Raimund Ubar

Topological view on        

Binary Decision Diagrams:

BDDs and Testing of Logic Circuits

x1

x2

y

x3

x4 x5

x6 x7

0

1
1

0

x1

x2

y

x 3

x4 x5

x6 x7

0

1

1

0

0

1

Path
activation

Fault
Stuck-at-0

Fault 
activation

Correct 
signal

Error

1  0

x1

x2

x3 = 1
x4

x5

x6

x7

y

0

0

0 F (X)

55

7654321 )( xxxxxxxy 



Technical University Tallinn, 

ESTONIA
56

316254142321 ))((( xxxxxxxxxxxxy 

1...

)()())((

)()()(

2341

62414233121

5

5
62414233121

5















xxxx

xxxxxxxxxxx

x

x
xxxxxxxxxxx

x

y

x1 x2
y

x3 x2 x4

x1 x4

x5

x2 x6

x1 x2

1

0

Test Generation with BD and BDD

BD:
BDD:

x1 x2 x3 x4 x5 x6 y

0 1 - 0 D - D

Test pattern:



Research in ATI© Raimund Ubar

Functional Synthesis of BDDs

Shannon’s Expansion Theorem:
01

)()()(



kk xkxk XFxXFxXFy

2432 )( xxxx 

43xx

43124321 ))(( xxxxxxxxy 

11
1

)(
x

XFx 01
1

)(
x

XFx

x1y
43 xx 

x2 1

x3

x4

xky
1

)(
kx

XF

0
)(

kx
XF

Using the Theorem

for BDD synthesis:

1

0

x3 x4 1

0 57



Research in ATI© Raimund Ubar

Functional Synthesis of BDDs

Shannon’s Expansion Theorem:
01

)()()(



kk xkxk XFxXFxXFy

43124321 ))(( xxxxxxxxy 

x1y x2 1

x3

x4

x3 x4 1

0

x1y

x3

x2 1

x3

x4

0

58

Optimization possibilities:

 Several terminal nodes with the same variables can be merged

 Equivalent terminal subgraphs can be also merged



Research in ATI© Raimund Ubar

Optimization (by ordering of nodes): BDDs for a 2-level AND-OR circuit

BDDs and Complexity

(2n) nodes (22n – 2) nodes

S.Minato, 1996

8
7
6
5

59



Research in ATI© Raimund Ubar

BDDs for an 8-bit data selector

S.Minato, 1996

BDDs and Complexity

60



Research in ATI© Raimund Ubar

BDDs and Complexity

61

D

C

q c

q’

D

Elementary BDDs

D Flip-Flop

JK Flip-Flop

c

q’

S

R q’

S

J

q

R

C

K

K

J
S

C

q

R

0

')'(





SR

qcRqScq

c

q’

S

R q’

R

U

RS Flip-Flop

U - unknown value

BDD optimization:
We may start synthesis:

• from the most important 

variable, or

• from the most repeated 

variable

q = cD  cq’



Research in ATI© Raimund Ubar

Test Generation with SSBDDs

62

x1

x2

&x21

x3
&

x4
&

&

1

x5

x6
&

&

x7

&

1
x8

x81

y

x22

&
&x82

82817654322211 )))((()( xxxxxxxxxxXfy 

X x1 x2 x3 x4 x5 x6 x7 x8 y

Xt 0 1 1 0 - - 0 1 1

Tested: x22  0, x3  0, x7  1, x81  0  

x1 x21 x81

x22 x3 x7

x6

x4 x5

x82

y 1

0
SSBDD – structure

aware BDD



Research in ATI© Raimund Ubar

BDDs for Logic Gates

1

x1

x2

x3

y x1 x2 x3

NOR

1x2

x3

y x1

x1

x2

x3

OR

SSBDD synthesis:
SSBDDs for a given circuit are built

by superposition of BDDs for gates

&

1

1

x1

x2

x3

x21

x22

y

a

b

How about a circuit?

63

Elementary BDDs:
x1

x2

x3

y

x1 x2 x3

& AND

1

0

1

0



Research in ATI© Raimund Ubar

Synthesis of BDD for a Circuit

&

1

1
x1

x2

x3

x21

x22
y

a

b

))((& 322211 xxxxbay 

a by

a x1

x21

Superposition of BDDs:

Superposition of Boolean functions:

Given circuit:

Compare to

Structurally 

Synthesized

BDD:

b x22

x3

ay x22

x3

b

x3

y x22x1

x21

a 64



Research in ATI© Raimund Ubar

Transformation of SSBDDs to FBDDs

x1
y x2

x1 x3 x4

x1
x2 x3

SSBDD:

x1
y x2

x3 x4

x1
y x2

x4 x3

x2

Optimized

FBDD:

x1
y x2

x4 x3

x2 x3

FBDD:

65

y x1 x2

x3 x4

x1
x2 x3



Research in ATI© Raimund Ubar

66

Test Generation with SSBDDs and FBDDs

&

&

&

1

&

x1

x2

x3
x4

y

Test generation for:

x11

x21

x12

x31

x13

x22

x32

x110

10

1

00

0

0

10

10

0

x11y x21

x12 x31 x4

x13
x22 x32

1
1 1

10

Structural BDD:

x1
y x2

x4 x3

x2

Functional 

BDD:

0

1
1

10

1

1

x1 x2 x3 x4   y
1    1 0 -

Test pattern:

1 0



Technical University Tallinn, 

ESTONIA

Complexity: Hierarchical Test Generation

&

&

&

1

&

x1

x2

x4
x5

y

x3
&

&

D

DD1

D1

D2

D2

1

1
1

1

0
0

Component under test
Component     

level test: D1 D2 D

0 0 0

0 1 1

1 0 1

Network level test:

x1 x2 x3 x4 x5 y

D2 0 D1 1 1 D

Symbolic test: contains 3 patterns

Error propagation {D}

Stimuli propagation {D1,D2}



Research in ATI© Raimund Ubar

The basic idea of 

simulation with BDDs:x
1

x
2

y

x
3

x
4

x
5

x
6

x
7

0

1
1

0

x
1

x
2

y

x
3

x
4

x
5

x
6

x
7

0

1

1

0

0

Generalization of BDDs

68

m

y
1

0

lm

l1

l0

G
y

Boolean functions represent the low
2-valued logic level

Is it possible to use the topological graph-
based modeling to generalize to higher
functional levels like RTL



Research in ATI© Raimund Ubar

Generalization of BDDs

m

y
1

0

lm

l1

l0

G
y m

Y 1

0

2

h

Fk
Fn

l0
l1

l2
lh

lk
lk+1

Fk+1

ln

lm

GY

Binary DD                                
2 terminal nodes and                 

2 edges from each node

General case of DD                                
n  2 terminal nodes and                 

n  2 edges from each node 

Novelty:   Boolean methods can be generalized in a 

straightforward way to higher functional levels

69



Research in ATI© Raimund Ubar

HLDD - High-Level Decision Diagrams

y4

y3 y1 R1 + R2

IN + R2

R1 * R2

IN* R2

y2

R2 0

1

2 0

1

0

1

0

1

0

R2

IN

R1

2

3

Control part:

Internal nodes in the HLDD

Data Part:              

Terminal nodes

R2M3

e
+M1

a

*M2

b





R1

IN 





c

d

y1 y2 y3 y4

Control Part

Data Part

RTL-statement:

K: (If T,C)  RD  F(RS1,RS2,…RSm),  N



Research in ATI© Raimund Ubar

Interpretation of HLDDs – Nodes and Faults

RTL-statement:

Terminal nodes

RTL-statement faults:

data storage, 

data transfer, 

data manipulation faults

Nonterminal nodes

RTL-statement faults:

label, 

timing condition, 

logical condition, 

register decoding, 

operation decoding,

control faults

K: (If T,C)  RD  F(RS1,RS2,…RSm),  N

71

R2M3

e
+M1

a

*M2

b





R1

IN 





c

d

y1 y2 y3 y4

Control part

Data part

y4

y3 y1 R1 + R2

IN + R2

R1* R2

IN* R2

y2

R2 0

1

2 0

1

0

1

0

1

0

R2

IN

R1

2

3

HLDD



Technical University Tallinn, ESTONIA

High Level Test Generation for Systems

R2M3

e
+M1

a

*M2

b





R1

IN 





c

d

y1 y2 y3 y4

y4

y3 y1 R1 + R2

IN + R2

R1 * R2

IN* R2

y2

R2 0

1

2 0

1

0

1

0

1

0

R2

IN

R1

2

3

Single path activation in a single DD
Data function R1* R2 is tested

Data path

Decision Diagram

RTL test generation with DDs: Scanning test 

Control:  y1 y2 y3 y4 = - 032 

Data:       For all specified pairs of (R1, R2) 

Test program:

72



Technical University Tallinn, ESTONIA

Test Program Synthesis for Digital Systems

R2M3

e
+M1

a

*M2

b





R1

IN 





c

d

y1 y2 y3 y4

High-level test generation with DDs: Scanning test program

Control:  y1 y2 y3 y4 = 0032 

Data:       For all specified pairs of (R1, R2) 

Test template:
Test program:

For j=1,n

Begin

Load R1 = IN(j1)

Load R2 = IN(j2)

y1 y2 y3 y4 = 0032: 

Read R2

End

IN(j1) IN(j2) R2(j)

Test data           Test results



Technical University Tallinn, 

ESTONIA

Test Generation with HLDDs for Systems

R2M3

e
+M1

a

*M2

b





R1

IN 





c

d

y1 y2 y3 y4

y4

y3 y1 R1 + R2

IN + R2

R1 * R2

IN* R2

y2

R2 0

1

2 0

1

0

1

0

1

0

R2

IN

R1

2

3

Multiple paths activation in a single DD
Control function y3 is tested

Data path

Decision Diagram

High-level test generation with DDs: Conformity test

Control:  For D = 0,1,2,3:  y1 y2 y3 y4 = 00D2 

Data:       Solution of R1+ R2  IN  R1  R1* R2

Test program:



Technical University Tallinn, 

ESTONIA

Test Generation with HLDDs for Systems

High-level test generation with DDs: Conformity test 

Test template:Test program:

For D = 0,1,2,3

Begin

Load R1 = IN1

Load R2 = IN2

Apply 

IN = IN3

y1 y2 y3 y4 = 00D2

Read R2

End

R2(D)

Control:  For D = 0,1,2,3:  y1 y2 y3 y4 = 00D2 

Data:       Solution of R1+ R2  IN  R1  R1* R2

R2M3

e
+M1

a

*M2

b





R1

IN 





c

d

y1 y2 y3 y4

Control path

Data path



Technical University Tallinn, 

ESTONIA

Scan-Path for Making Systems Transparent 

Hierarhical test generation with Scan-Path:

Bus

Scan-Out

M3

e
+M1

a

*M2

b





R1

IN 





c

d

y1 y2 y3 y4

Control Part

R2

Scan-In

Data Part

y4

y3 y1 R1 + R2

IN + R2

R1 * R2

IN* R2

y2

R2 0

1

2 0

1

0

1

0

1

0

R2

IN

R1

2

3



Research in ATI© Raimund Ubar

Microprocessor Modeling with HLDDs

Instruction set:

I1: MVI A,M A  IN

I2: MOV  R,A R  A

I3: MOV  M,R OUT  R

I4: MOV  M,A OUT  A

I5: MOV  R,M R  IN

I6: ADD  R A  A + R

I7: ORA  R A  A  R

I8: ANA  R A  A  R

I9: SUB R R  R - 1

I10: MOV C,R C R

I11: CMA  R,C R  C

I12: JMP PC, C PC = IN IF C=0 

For all Ik PC = PC + 1 

77

I R
3

A

OUT

4

HLDD-model of a microprocessor:
I IN

1
A

A

A + R
6

A  R
7

A  R
8

I A
2

R

IN
5

R

R - 1
9

C
11

I C
12

PC

PC + 1

IN
0

I R
10

C

C



Research in ATI© Raimund Ubar

Microprocessor Modeling with HLDDs

HLDD-based structure of the microprocessor

(from behavior to HLDDs to network):

78

I R
3

A

OUT

4

I IN
1

A

A

A + R
6

A  R
7

A  R
8

I A
2

R

IN
5

R

R - 1
9

C
11

I C
12

PC

PC + 1

IN
0

I R
10

C

C

OUT

R

A

IN

I

C

PC



Research in ATI© Raimund Ubar

Test Generation for Microprocessors

79

I C
12

PC

PC + 1

IN
0

I R
10

C

C

I IN
1

A

A

A + R
6

A  R
7

A  R
8

I A
2R

5

R

R - 1
9

C
11

IN

I R
3

OUT

4

A

HLDD-based structure of the microprocessor

(propagation of faults through paths in the

network):

OUT

R

A

IN

I

C

PC



Research in ATI© Raimund Ubar

Test Generation for Microprocessors

80

I C
12

PC

PC + 1

IN
0

I R
10

C

C

I IN
1

A

A

A + R
6

A  R
7

A  R
8

I A
2

R

5

R

R - 1
9

C
11

IN

I R
3

OUT

4

A

Scanning test program:

For j=1,n

I5: Load R = IN1(j)

I1: Load A = IN2(j)

I6: ADD A = A + R

I4: Read A

End For

IN1(j) IN2(j)
A

Test data       Signature



Research in ATI© Raimund Ubar

Test Generation for Microprocessors

Conformity test program:

For D=1,n

I5: Load R = IN(1)

I1: Load A = IN(2)

ID: D

I4: Read A

End For

Ij

A

Test data                Signature

Added effects:

1) Special type of test 

compaction:

• DD model

• Test program 

template

• Automated TPG

2) When testing all the 

functions of A with the 

same LOAD and READ 

conditions, the probability 

of fault masking will 

reduce

3) The faults of type “added 

erroneous actions” are 

as well easily tested

I IN
1

A

A

A + R
6

A  R
7

A  R
8

Control:  For D = 0,1,….12: ID

Data:       Solution of IN  (A + R)  (A  R)  (A  R)

Algorithm: 



Research in ATI© Raimund Ubar

82

OP B Mnemonic Semantic RT level operations

0
0 LDA A1, A READ memory R(A1) = M(A), PC = PC + 2
1 STA A2, A WRITE memory M(A) = R(A2), PC = PC + 2

1
0 MOV A1,A2 Transfer R(A1) = R(A2), PC = PC + 1

1 CMA A1,A2 Complement R(A1) =  R(A2), PC = PC + 1

2
0 ADD A1,A2 Addition R(A1) = R(A1)+ R(A2), PC = PC + 1

1 SUB A1,A2 Subtraction R(A1) = R(A1)- R(A2), PC = PC + 1

3
0 JMP A Jump PC = A

1 BRA A
Conditional jump

(Branch instruction)
IF C=1, THEN PC = A,

ELSE PC = PC + 2

Modeling of Microprocessors with HLDDs

Instruction code:

ADD A1 A2

OP=2. B=0. A1=3. A2=2

R(A1) = R(A1) + R(A2)   

R3 = R3 + R2

PC = PC+1

Instruction set

A1 = 0
R0

R0

0

OP B0

1 0 M(A)

1

0

B1

1 R(A2)

1

0

B2

2

1

0

R(A1) - R(A2)
3A1 = 3

R3

R3

0

1

R1, R2

R(A1)

R(A1)

R(A1) + R(A2)

R(A1)

A1 R0

0
R(A1)

R1

1

R2

2

R3
3

A2 R0

0
R(A2)

R1

1

R2

2

R3
3



Research in ATI© Raimund Ubar

83

HLDDs for MP InstrSet

A1 = 0
R0

R0

0

OP B0

1 0 M(A)

1

0

B1

1 R(A2)

1

0

B2

2

1

0

R(A1) - R(A2)
3A1 = 3

R3

R3

0

1

R1, R2

R(A1)

R(A1)

R(A1) + R(A2)

R(A1)

Registers and ALU
A1 R0

0
R(A1)

R1

1

R2

2

R3
3

A2 R0

0
R(A2)

R1

1

R2

2

R3
3

Register Decoding OP
0PC

1, 2

B

3

A

0

PC + 2

PC + 1

C

1

0

1

Program Counter

OP B
0M(A) 1

R(A2)

M(A)

01-3

Memory Access

Instruction code:

ADD A1 A2

OP=2. B=0. A1=3. A2=2

R3 = R3 + R2

PC = PC+1



Research in ATI© Raimund Ubar

84

Instruction register

OP1 OP2 OP3

DEC1 DEC2 DEC3

DATE PART
(ALU)

CONTROL PART

RAM 
(IN/OUT)

Data

Instructions

Addr

Modeling of Microprocessors with HLDDs

Microprocessor instruction set 
architecture

?

HLDD

OP1 OP1 OP1

4

16

64

3

3

12 control sub-tests
64 data part sub-tests

OP1+OP2+OP3

64

64 sub-tests



Research in ATI© Raimund Ubar

85

Fault Coverage Table and FC Measure

fi,k < fj,k

Functional
fault model:

j [fj  ZERO)]

i,j: k [(fi,k < fj,k] 

Fault coverage measure:
Percentage of 1-s 
in the fault coverage table

1 – means that
a constraint is satisfied
by at least one pair of data
operands



Research in ATI© Raimund Ubar

86

OP

LDA 0 AC=M

AND 1 AC=ACM

ADD 2 AC=ACM

SUB 3 AC=ACM

JMP 4 PC=A

STA 5 M=AC

JSR 6
PC=A

Jump to 
subroutine

Parwan Microprocessor : Instruction Set

OP I P

CLA 7 0 1 AC=0

CMA 7 0 2 AC= AC

CMC 7 0 4 C= C

ASL 7 0 8 AC=2AC

ASR 7 0 9 AC=AC/2

BRA_N 7 1 0 If negative

BRA_Z 7 1 2 If zero

BRA_C 7 1 4 If carry

BRA_V 7 1 8 If overflow



Research in ATI© Raimund Ubar

PC_A
P1 OP1

A1

PC_A + 2

P2 N A2

I
0

1

0 4,6

0-3, 5

7

7
OP3

10

PC_A + 1
OP2

7

PC_A

6

Z

C

V

PC_A + 2

2

4

8

0

0

0

0

1

1

1

Next PC offset calculation

Instruction addressing
OP. I. P

LOC(PC_A)
0-2550-15

PC_P PC_A

A
LOC(PC_A+1)

0-2550-15
PC_P PC_A

PC_P
OP1 P1

4

PC_P

Next memory page calculation

ALU Flags

OP

N

I

0 - 3

07

N
FN(AC,M’)

P
2,8,9

Fc2(AC)

C

V

OP

C

I

2,3

07

Fc1(AC,M’)

P
4,8

Fc2(AC)

OP

V

I

2,3

07

Fv1(AC,M’)

P
8

Fv2(AC)

OP

Z

I

0 - 3

07

Z
Fz(AC,M’)

P
2,8,9

Fc2(AC)

Output behaviour
M’ (A)

OP
5

AC

Addressing of 
memory

ALU Data Path
AC

P1
OP1 M’

AC & M’

AC + M’

AC - M’

AC

P3 0

I

OP3

0

1

M’’

0

0 0

1

2

3

7
OP2

1

AC

AC/2

2

8

9

AC

2AC

4
AC

Parwan: HLDD Model

M’
P A LOC(A,P)

0-2550-15
I

0

1
AC 0-255

87



Technical University Tallinn, 

ESTONIA

Fault Simulation: With BDDs

&

&

1

1

1

2

3

4

5 a

c

b
1

1

0

0

0

0

0

1
1

y

1 2

3 4

5

y

Problems:
&

&

1

1

1
1/0

y

&

&

1

0

1
1

y

1/0

1

1

1/0

1

1

The critical path is not continuous

The critical path breaks on the fan-out 



Research in ATI© Raimund Ubar

Fault Simulation with BDDs

89

82817654322211 )))((()( xxxxxxxxxxXfy 

X x1 x2 x3 x4 x5 x6 x7 x8 y

Xt 0 1 1 0 - - 0 1 1

Tested: x22  0, x3  0, x7  1, x81  0  

x1 x21 x81

x22 x3 x7

x6

x4 x5

x82

y 1

0

x1

x2

&x21

x3
&

x4
&

&

1

x5

x6
&

&

x7

&

1
x8

x81

y

x22

&
&x82



Research in ATI© Raimund Ubar

90

Fault Diagnosis with BDDs

Error

detected

Error signal traced

C...
Where 

to continue 
tracing?

Property 2:
If a test vector X

activates in SSBDD a 0-path (1-path) 

which travers a subset of nodes M, 

then only 0-nodes 

(1-nodes) have to be considered as fault 

candidates

Speeding-up simulation:

M  = {1,2,3,4,6,7} 

M* = {1,6,7} – by Property 2

M** = {6,7} – by Property 1

Fault diagnosis and 

fault simulation 

can be speed-up 

by using Property 2

Only 6 and 7 have to be considered

Fault diagnosis /  Fault simulation:

1

2 3

4

5

6 8 1

7

0

y

y

Sequential fault diagnosis by 

Signal Pinpointing


