Overview: Testability Evaluation

Outline

- Quality Policy of Electronic Design
- Tradeoffs of Design for Testability
- Testability measures
- Heuristic measures
- Probabilistic measures
- Calculation of testability
- Parker - Mc Cluskey method
- Cutting method
- Conditional probabilities based method

Quality Policy

Chips from manufactory

For example, yield is 60\%. Other chips are faulty

Defect level means:
How many faulty chips from 40\% escape?

Introduction: The Problem is Money?

How to succeed?

Try too hard!
How to fail?
Try too hard!
(From American Wisdom)

Conclusion:
"The problem of testing can only be contained not solved"

Design for Testability

The problem is - QUALITY:

Yield (Y)
P,n

Defect level (DL) P_{a}

Design for testability
Testing
P - probability of a defect
n - number of defects
P_{a} - probability of accepting a bad product
$Y=(1-P)^{n} \quad$ - probability of producing a good product

Design for Testability

The problem is - QUALITY:

Yield (Y)

Defect level (DL)

P,n
P_{a}
$D L=\frac{P_{a}}{(1-P)^{n}+P_{a}}=1-(1-P)^{n-m}=1-Y^{\frac{n-m}{n}}=1-Y^{\left(1-\frac{m}{n}\right)}=1-Y^{(1-T)}$
n - number of defects
\boldsymbol{m} - number of faults tested
P - probability of a defect
P_{a} - probability of accepting a bad product
T - test coverage

Design for Testability

The problem is - Money:

$$
D L=1-Y^{(1-T)}
$$

Goal: $D L \downarrow \leftarrow T \uparrow \leftarrow$ Testability $\uparrow \quad 10 \quad 50 \quad 90$
Paradox: Testability $\uparrow \rightarrow D L \uparrow(Y \downarrow)$

Design for Testability

Technical tradeoff:

Goal: $D L \downarrow \leftarrow T \uparrow \leftarrow$ Testability \uparrow Paradox: Testability $\uparrow \rightarrow D L \uparrow(Y \downarrow)$

DFT: Resynthesis or adding extra hardware

Economic tradeoff:

$\boldsymbol{C}($ Design + Test $)<\boldsymbol{C}($ Design $)+\boldsymbol{C}$ (Test)

Cost of quality

Design for Testability

Economic tradeoff:

Testability Criteria

Qualitative criteria for Design for testability:

Testing cost:

- Test generation time
- Test application time
- Fault coverage
- Test storage cost (test length)
- Availability of Automatic Test Equipment

The cost of re-design for testability:

- Performance degradation
- Area overhead
- I/O pin demand

Testability of Design Types

General important relationships:

1. T (Sequential logic) < T (Combinational logic)

Solutions: Scan-Path design strategy
2. T (Control logic) < T (Data path)

Solutions: Data-Flow design, Scan-Path design strategies
3. T (Random logic) < T (Structured logic)

Solutions: Bus-oriented design, Core-oriented design
4. T (Asynchronous design) < T (Synchronous design)

Testability of Design Types

1. T (Sequential logic) < T (Combinational logic

Solution: Scan-Path design strategy

Testability of Design Types

Scan-Path Based Testing

How to test million transistors?

H.-J.Wunderlich, U Stuttgart

Testability of Design Types

3. T (Random logic) < T (Structured logic)

Solutions: Bus-oriented design, Core-oriented design

Random logic, structure is hidden

Testability Estimation Rules of Thumb

Circuits less controllable

- Decoders
- Circuits with feedback
- Counters
- Clock generators
- Oscillators
- Self-timing circuits
- Self-resetting circuits

Circuits less observable

- Circuits with feedback
- Embedded
- RAMs
- ROMs
- PLAs
- Error-checking circuits
- Circuits with redundant nodes

Bad Testability: Fault Redundancy

Redundant gates (bad design):

Fault Redundancy

Hazard control circuit:

Redundant AND-gate Fault $\equiv 0$ is not testable

Error control circuitry

$E=1$ if decoder is fault-free Fault $\equiv 1$ is not testable

Hard to Test Faults

Evaluation of testability:

Controllability for 1 needed

- Controllability
- C_{0} (${ }^{(1)}$
- $\mathrm{C}_{1}(\mathrm{~J})$
- Observability
- $\mathrm{O}_{\mathrm{Y}}(k)$
- $\mathrm{O}_{\mathrm{Z}}(k)$
- Testability

Consequeces of Bad Testability

\checkmark Expected impact of good testability

- Reduces cost of deterministic test generation
- Reduces cost of testing (time, memory space, length of test)
\checkmark Redundant faults
- don't need to be tested, because the functionality of the circuit remains correct
- if you don't know that the not-covered fault is redundant, the lower fault coverage will mean ambiguiety - under-estimating the test result
\checkmark Hard-to-test faults
- cause reduction of the test quality in random testing
- in deterministic testing the problem is solved at higher cost

Testability Analysis Methods

\checkmark Fault simulation - a very slow but exact method
\checkmark Toggling - a faster method, but only approximate

- Logic simulation can be repeated a number of times with different data sets
- Toggling on a node of a digital circuit means „to switch from 0 to 1, or from 1 to 0"
- Circuit activity can be measured by counting the toggles
\checkmark Disadvantage:
- Toggling is only a means to characterize the controllability of signals, but not the real testability
\checkmark Calculation of testability measures
- Heuristic methods
- Probabilistic methods

Testability Analysis with Fault Simulation

Fault table
As a result of
fault simulation

	F_{1}	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	$\mathrm{~F}_{4}$	$\mathrm{~F}_{5}$	$\mathrm{~F}_{6}$	$\mathrm{~F}_{7}$
$\mathrm{~T}_{1}$	0	1	1	0	0	0	0
$\mathrm{~T}_{2}$	1	0	0	1	0	0	0
$\mathrm{~T}_{3}$	1	1	0	1	0	1	0
$\mathrm{~T}_{4}$	0	1	0	0	1	0	0
$\mathrm{~T}_{5}$	0	0	1	0	1	1	0
$\mathrm{~T}_{6}$	0	0	1	0	0	1	1

Fault detectability spectrogramm

The lower
testability measure
 the frequence, the lower the testability

DFT Using Control Points

To ways for improving testability with inserting of control points:

Improving controllability

Control points are inserted to places where
controllability or observability are low

To select control points, the testability measures are to be calculated

Heuristic Testability Measures

Controllability calculation: AND gate

Measure: minimum number of nodes that must be set to produce 0 or 1
For inputs: $\mathrm{C}_{0}(\mathrm{x})=\mathrm{C}_{1}(\mathrm{x})=1$
For other signals: recursive calculation starting from inputs

Heuristic Testability Measures

Controllability calculation: AND gate

Measure: minimum number of nodes that must be set to produce 1
For inputs: $C_{0}(x)=C_{1}(x)=1$
For other signals: recursive calculation starting from inputs

$$
c_{1}\left(x_{1}\right)=1 \underbrace{2}
$$

Heuristic Testability Measures

Controllability calculation: OR gate

Measure: minimum number of nodes that must be set to produce 0
For inputs: $C_{0}(x)=C_{1}(x)=1$
For other signals: recursive calculation starting from inputs

Heuristic Testability Measures

Controllability calculation: EXOR gate

Measure: minimum number of nodes that must be set in order to produce 0
For inputs: $C_{0}(x)=C_{1}(x)=1$
For other signals: recursive calculation starting from inputs

$$
\begin{gathered}
C_{0}\left(x_{k}\right)=\min \left\{\left[C_{0}\left(x_{i}\right)+C_{0}\left(x_{j}\right)\right],\right. \\
\left.\left[C_{1}\left(x_{i}\right)+C_{1}\left(x_{j}\right)\right]\right\}+1= \\
\min \{(23+12),(18+20)\}+1= \\
\min (35,38)+1=36 \\
C_{1}\left(x_{k}\right)=\min (30,43)+1=31
\end{gathered}
$$

Heuristic Testability Measures

Controllability calculation:

Measure: minimum number of nodes that must be set in order to produce 0 or 1
For inputs: $C_{0}(x)=C_{1}(x)=1$
For other signals: recursive calculation rules:

$$
\begin{aligned}
& C_{0}(y)=\min \left\{C_{0}\left(x_{1}\right), C_{0}\left(x_{2}\right)\right\}+1 \\
& C_{1}(y)=C_{1}\left(x_{1}\right)+C_{1}\left(x_{2}\right)+1
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{C}_{1}(\mathrm{y})=\min \left\{\mathrm{C}_{1}\left(\mathrm{x}_{1}\right), \mathrm{C}_{1}\left(\mathrm{x}_{2}\right)\right\}+1 \\
& \mathrm{C}_{0}(\mathrm{y})=\mathrm{C}_{0}\left(\mathrm{x}_{1}\right)+\mathrm{C}_{0}\left(\mathrm{x}_{2}\right)+1
\end{aligned}
$$

$$
\begin{array}{ll}
x_{1} \\
x_{2} & C_{0}(y)=\min \left\{\left(C_{0}\left(x_{1}\right)+C_{0}\left(x_{2}\right)\right),\left(C_{1}\left(x_{1}\right)+C_{1}\left(x_{2}\right)\right)\right\}+1 \\
C_{1}(y)=\min \left\{\left(C_{0}\left(x_{1}\right)+C_{1}\left(x_{2}\right)\right),\left(C_{1}\left(x_{1}\right)+C_{0}\left(x_{2}\right)\right)\right\}+1
\end{array}
$$

Heuristic Testability Measures

Observability calculation:

Measure: minimum number of nodes which must be set for fault propagating
For outputs: $O(y)=1$
For other signals: recursive calculation starting from outputs

$$
\begin{aligned}
& O\left(x_{i}\right)=O\left(x_{k}\right)+C_{1}\left(x_{j}\right)+1= \\
& =23+11+1=35
\end{aligned}
$$

$$
C_{1}\left(x_{j}\right)=11
$$

Heuristic Testability Measures

Observability calculation:

Measure: minimum number of nodes which must be set for fault propagating
For outputs: $O(y)=1$
For other signals: recursive calculation rules:

$$
\begin{aligned}
& x-\& y \\
& O(x)=O(y)+1
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}-\& \quad y \quad O\left(x_{1}\right)=O(y)+C_{1}\left(x_{2}\right)+1 \\
& x_{2}-\&
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}-1 \\
& x_{2}-1
\end{aligned} \quad O\left(x_{1}\right)=O(y)+C_{0}\left(x_{2}\right)+1
$$

$$
\begin{aligned}
& \left.x_{1}-\oplus \quad O \quad x_{1}\right)=O(y)+1 \\
& x_{2}-\oplus \quad y
\end{aligned}
$$

Heuristic Testability Measures

Testability calculation:

Measure: sum of controllability and observability

$$
\begin{aligned}
& T(x \equiv 0)=C_{1}(x)+O(x) \\
& T(x \equiv 1)=C_{0}(x)+O(x)
\end{aligned}
$$

Heuristic Testability Measures

Controllability and observability:

	Controllabilies		Obs.
x	$\mathrm{C}_{0}(\mathrm{x})$	$\mathrm{C}_{1}(\mathrm{x})$	$\mathrm{O}(\mathrm{x})$
1	1	1	10
2	1	1	12
3	1	1	11
4	1	1	11
5	1	1	10
6	1	1	10
7	3	2	9
7_{1}	3	2	11
7_{2}	3	2	9
7_{3}	3	2	9
a	4	2	9
b	4	2	7
c	4	2	7
d	4	2	7
e	5	5	4
y	8	5	1

Heuristic Testability Measures

Testability calculation:

$$
\begin{aligned}
& T(x \equiv 0)=C_{1}(x)+O(x) \\
& T(x \equiv 1)=C_{0}(x)+O(x)
\end{aligned}
$$

	Controllabilies			Obs.
x	$\mathrm{C}_{0}(\mathrm{x})$	$\mathrm{C}_{1}(\mathrm{x})$	$\mathrm{O}(\mathrm{x})$	$\mathrm{T}(\mathrm{x} \equiv 0)$
1	1	1	10	11
2	1	1	12	13
3	1	1	11	12
4	1	1	11	12
5	1	1	10	11
6	1	1	10	11
7	3	2	9	11
7_{1}	3	2	11	13
7_{2}	3	2	9	11
7_{3}	3	2	9	11
a	4	2	9	11
b	4	2	7	9
c	4	2	7	9
d	4	2	7	9
e	5	5	4	9
y	8	5	1	6

Why the testability of y is the lowest?

Probabilistic Testability Measures

Controllability calculation:

Measure: probability to produce 0 or 1 at the given nodes $p_{x i}=p\left(x_{i}=1\right)=1$
For inputs: $\mathrm{C}_{0}(\mathrm{i})=1-\mathrm{p}_{\mathrm{xi}} \quad \mathrm{C}_{1}(\mathrm{i})=\mathrm{p}_{\mathrm{xi}}$
For other signals: recursive calculation rules:

$$
x-\& y
$$

$$
\begin{aligned}
& x_{1}-1-y \begin{array}{l}
p_{y}=1-\left(1-p_{x 1}\right)\left(1-p_{x 2}\right) \\
\left.x_{2}=p_{x 1}+p_{x 2}-p_{x 1} p_{x 2}\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{x}_{1} \mp \boldsymbol{\&}-\mathbf{y} \quad p_{y}=\prod_{i=1}^{n} p_{x i} \\
& \mathbf{x}_{\mathbf{n}}
\end{aligned} \left\lvert\, \begin{aligned}
& \mathbf{x}_{1} \underset{\mathbf{x}_{\mathbf{n}}}{\vdots} \mathbf{1}-\mathbf{y} p_{y}=1-\prod_{i=1}^{n}\left(1-p_{x i}\right)
\end{aligned}\right.
$$

Paradoxes of Probabilistic Measures

Probabilities of reconverging fanouts:

$$
\begin{aligned}
p_{y} & =\left(1-p_{\mathrm{x} 1}\right) p_{\mathrm{x} 2}+\left(1-p_{\mathrm{x} 2}\right) p_{\mathrm{x} 1} \\
& =0,25+0,25=0,5 \\
p_{y} & =1-\left(1-p_{\mathrm{a}}\right)\left(1-p_{\mathrm{b}}\right) \\
& =1-0,75^{\star} 0,75=0,44
\end{aligned}
$$

Signal correlations:

$$
x-\sqrt[x_{1}]{x_{2}} \&-y \quad p_{y}=p_{x 1} p_{x 1}=p_{x}^{2}=p_{x}
$$

Calculation of Signal Probabilities

SSBDD based algorithm:

$$
p_{\mathrm{y}}=\mathrm{x}_{1}\left(1-\mathrm{x}_{2}\right)+\left(1-\mathrm{x}_{1}\right) \mathrm{x}_{2}=0,5
$$

Parker - McCluskey algorithm:

$$
\begin{aligned}
& p_{y}=1-\left(1-p_{\mathrm{a}}\right)\left(1-p_{\mathrm{b}}\right)= \\
& =1-\left(1-p_{x 1}\left(1-p_{x 2}\right)\right)\left(1-p_{x 2}\left(1-p_{x 1}\right)\right)= \\
& =1-\left(1-p_{x 1}+p_{x 1} p_{x}\right)\left(1-p_{x}+p_{x 1} p_{x}\right)= \\
& =1-\left(1-p_{x 2}+p_{x} p_{x 2}-p_{x 1}+p_{x 1} p_{x 2}-p_{x 1}^{2} p_{x 2}+\right. \\
& \left.+p_{x 1} p_{x 2}-p_{x 1} p_{x 2}^{2}+p_{x 1}^{2} p^{2}{ }_{x 2}\right)= \\
& =1-\left(1-p_{x 2}+p_{x 1} p_{x 2}-p_{x 1}+p_{x 1} p_{x 2}-p_{x 1} p_{x 2}+\right. \\
& \left.+p_{x 1} p_{x 2}-p_{x 1} p_{x 2}+p_{x 1} p_{x 2}\right)=\text { The exponents } \\
& \text { are removed } \\
& =p_{x 2}-p_{x 1} p_{x 2}+p_{x 1}-p_{x 1} p_{x 2}+p_{x 1} p_{x 2}- \\
& \left.-p_{x 1} p_{\mathrm{x} 2}+p_{\mathrm{x} 1} p_{\mathrm{x} 2}-p_{\mathrm{x} 1} p_{\mathrm{x} 2}\right)= \\
& =p_{x 1}+p_{x 2}-2 p_{x 1} p_{x 2}=0,5
\end{aligned}
$$

Calculation of Signal Probabilities

Two methods: (1) from INP to OUT, (2) from OUT to INP

For all inputs: $p_{k}=\mathbf{1 / 2}$

Fast calculation gate by gate:

$$
\begin{aligned}
& p_{a}=1-p_{1} p_{2}=0,75, \\
& p_{b}=0,75, \quad p_{c}=0,43, \quad p_{y}=0,22
\end{aligned}
$$

Parker - McCluskey algorithm:

$$
\begin{aligned}
p_{y} & =p_{c} p_{2}=\left(1-p_{a} p_{b}\right) p_{2}= \\
& =\left(1-\left(1-p_{1} p_{2}\right)\left(1-p_{2} p_{3}\right)\right) p_{2}= \\
& =p_{1} p_{2}^{2}+p_{2}^{2} p_{3}-p_{1} p_{2}^{3} p_{3}= \\
& =p_{1} p_{2}+p_{2} p_{3}-p_{1} p_{2} p_{3}=0,38
\end{aligned}
$$

Probabilistic Testability Measures

Parker-McCluskey:

For all inputs: $p_{k}=1 / 2$

Observability:

$$
\begin{aligned}
& p(\partial y / \partial a=1)=p_{b} p_{2}= \\
& \quad=\left(1-p_{2} p_{3}\right) p_{2}=p_{2}-p_{2}^{2} p_{3} \\
& \quad=p_{2}-p_{2} p_{3}=0,25
\end{aligned}
$$

Testability:

$$
\begin{aligned}
p(a & \equiv 1)=p(\partial y / \partial a=1)\left(1-p_{a}\right)= \\
& =\left(p_{2}-p_{2} p_{3}\right)\left(p_{1} p_{2}\right)= \\
& =p_{1} p_{2}^{2}-p_{1} p_{2}^{2} p_{3}= \\
& =p_{1} p_{2}-p_{1} p_{2} p_{3}=0,125
\end{aligned}
$$

Calculation of Signal Probabilities

Parker - McCluskey algorithm:

$$
\begin{aligned}
& p_{y}=1-\left(1-p_{a}\right)\left(1-p_{b}\right)= \\
& =1-\left(1-p_{x 1}\left(1-p_{x}\right)\right)\left(1-p_{x}\left(1-p_{x}\right)\right)= \\
& =1-\left(1-p_{x 1}+p_{x 1} p_{x 2}\right)\left(1-p_{x}+p_{x 1} p_{x}\right)= \\
& =1-\left(1-p_{x 2}+p_{x 1} p_{x 2}-p_{x 1}+p_{x 1} p_{x 2}-p_{x 1}^{2} p_{x 2}+\right. \\
& \left.+p_{x 1} p_{x 2}-p_{x 1} p^{2}{ }_{x 2}+p_{x 1}^{2} p_{x 2}^{2}\right)= \\
& =1-\left(1-p_{x 2}+p_{x 1} p_{x 2}-p_{x 1}+p_{x 1} p_{x 2}-p_{x 1} p_{x 2}+\right. \\
& \left.+p_{x} p_{x 2}-p_{x 1} p_{x 2}+p_{x 1} p_{x}\right)= \\
& =p_{x 2}-p_{x 1} p_{x 2}+p_{x 1}-p_{x 1} p_{x 2}+p_{x 1} p_{x 2}- \\
& \left.-p_{x 1} p_{x 2}+p_{x 1} p_{x 2}-p_{x 1} p_{x}\right)= \\
& =p_{x 1}+p_{x 2}-2 p_{x 1} p_{x 2}=0,5
\end{aligned}
$$

Calculation of Signal Probabilities

Cutting method

Idea:

- The complexity of exact calculation is reduced by using lower and higher bounds of probabilities

Technique:

- Reconvergent fan-outs are cut except of one
- Probability range of $[0,1]$ is assigned to all the cut lines
- The bounds are propagated by straightforward calculation

New independent probabilities (no correlation)

Probability to be used in calculations (no correlation)

Lower and higher bounds for the probabilities of the cut lines:

$$
p_{71}:=(0 ; 1), p_{72}:=(0 ; 1), p_{73}:=0,75
$$

Calculation of Signal Probabilities

Cutting method

Technique:

- Reconvergent fan-outs are cut except of one
- Probability range of $[0,1]$ is assigned to all the cut lines
- The new probabilities are propagated by straightforward calculation

Lower and higher bounds for the probabilities of the cut lines:
$p_{71}:=(0 ; 1), p_{72}:=(0 ; 1), p_{73}:=0,75$

Calculation of Signal Probabilities

- For all inputs:
$p_{k}=0,5$
- Reconvergent fan-outs are cut except of one 7_{1} and 7_{2}
- Probability range of $[0,1]$ is assigned to all the cut lines 7_{1} and 7_{2}
- The bounds are propagated by straightforward calculation

Calculation of Signal Probabilities

Method of conditional probabilities

$P(y)=p(y / x=0) p(x=0)+p(y / x=1) p(x=1)$

Conditional probabilitiy

Calculation of Signal Probabilities

Method of conditional

probabilities

$$
P(y)=p(y / x=0) p(x=0)+p(y / x=1) p(x=1)
$$

Idea of the method:

Conditional probabilitiy

Two conditional probabilities are calculated along the paths (NB! not bounds as in the case of the cutting method)
Since no reconvergent fanouts are on the paths, no danger for signal correlations

Calculation of Signal Probabilities

Method of conditional probabilities
$p(y)=\sum_{i \in(0,1)} p(y /(x=i) p(x=i)$

NB! Conditional probabilities
$P_{k} \sim\left[P_{k}{ }^{0}=p\left(x_{k} / x_{7}=0\right), P_{k}{ }^{1}=p\left(x_{k} / x_{7}=1\right)\right]$
are propagated, not bounds as in the cutting method.
For all inputs: $p_{k}=1 / 2$

$$
p_{y}=p\left(y / x_{7}=0\right)\left(1-p_{7}\right)+p\left(y / x_{7}=1\right) p_{7}=(1 / 2 \times 1 / 4)+(11 / 16 \times 3 / 4)=41 / 64
$$

Random Pattern Test Length

Terminology

- Detection probabilities:
- n-th step detection probability of a fault
- n-th step detection probability of a fault set
- Worst fault - that fault having the lowest detection probablity of any fault in the Network (independently of probabilities for other faults)
- Escape Probability of a Fault Set: the probability that at least one member of the fault set will not be detected by the random pattern test
- For an n-step test, the escape probability of a fault set is denoted \boldsymbol{e}_{n}
- The escape probability and the detection probability sum to one
- Escape probability is the quality measure of the random pattern test

Higher escape probabilities will require longer random pattern tests

Random Pattern Test Length

The faults are said to have conjoint test sets if their corresponding test sets share at least one vector

A Venn diagram showing the detection probabilities of two faults.
p_{1} - is the probability that a randomly selected vector will detect fault f_{1} but not f_{2} p_{2} - is the probability that a randomly selected vector will detect fault f_{2} but not f_{1} p_{3} - is the probability that the vector will detect both faults

The detection probability of fault f_{1} is $p_{1}+p_{3}$, and that of fault f_{2} is $p_{2}+p_{3}$ If $p_{3}=0$, then the corresponding test sets are disjoint

Random Pattern Test Length

A Venn diagram showing the detection probabilities of two faults.
The escape probability of the fault-set for the disjoint case is given by

$$
e_{n}=\left(1-p_{1}\right)^{n}+\left(1-p_{2}\right)^{n}-\left[1-\left(p_{1}+p_{2}\right)\right]^{n} .
$$

In order to compute the minimum random test length n that detects the fault set with escape probability no larger than threshold e_{t}, it is necessary to compute n that satisfies

$$
e_{n}<e_{t}
$$

Random Pattern Test Length

The random test length due to k faults with disjoint test sets, each with detection probability p is bounded by

$$
\begin{aligned}
& N_{k D}^{U}=\left\lceil\frac{\ln \left(e_{t} / k\right)}{\ln (1-p)}\right\rceil \\
& N_{k D}^{L}=\left\lceil\frac{\ln \left(e_{t} / k\right)-\ln \left(1-e_{t} / 2\right)}{\ln (1-p)}\right\rceil
\end{aligned}
$$

For practical values of p and e_{t} (values much less than one) the formula can be approximated by

$$
N_{k D}^{U} \cong\left\lceil\frac{\ln k-\ln e_{t}}{p}\right\rceil
$$

For the case where $e_{t}=10^{-3}$ (the confidence 99,9\%

$$
N_{k \infty}^{U} \cong\left\lceil\frac{6.9+\ln k}{p}\right\rceil
$$

Example: Random pattern test $11 / p$ can detect as many as $k=50$ hard faults, each having a detection probability with a conficence of 99,9 \%

Literature: Jacob Savir, Paul H. Bardell „On random pattern test length". IEEE Trans. on Comp., 1984

Random Pattern Test Length

Examples

for the case of confidence of
$e_{t}=99,9 \%$
Test length as the function of the size of the set of hard faults k and for practical values of $p<1$

k	$\operatorname{In} \mathrm{k}$	In k-In e	(Lnk-Lne)/p
1	0	7	690776
10	2	9	921034
20	3	10	990349
30	3	10	1030895

$$
N_{k D}^{U} \cong\left\lceil\frac{\ln k-\ln e_{t}}{p}\right\rceil
$$

Test length as the function of the fault detection probability p for the size of the set of hard faults $k=1$

+			
\mathbf{k}	$\ln \mathbf{k}$	p	$\operatorname{lne} / \ln (1-\mathrm{p})$
1	0	0,01	687
1	0	0,001	6904
1	0	0,0001	69074
1	0	0,00001	690772

BDDs and Testing of Logic Circuits

$$
y=x_{1} \vee x_{2}\left(x_{3} \vee x_{4} x_{5}\right) \vee x_{6} x_{7}
$$

Two types of BDDs

Test generation for: $\mathrm{x}_{11} \equiv 0$

Structural BDD:

Functional BDD:

Test pattern:

$$
\begin{aligned}
& \mathrm{x}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \mathrm{x}_{4} \\
& \hline 1 \mathrm{y} \\
& \hline 10- \\
& \hline 1
\end{aligned} \Rightarrow 0
$$

Calculation of Signal Probabilities with BDDs

Using BDDs:

$$
\begin{aligned}
p_{y} & =p\left(L_{1}\right)+p\left(L_{2}\right)= \\
& =p_{1} p_{21} p_{23}+\left(1-p_{1}\right) p_{22} p_{3} p_{23}= \\
& =p_{1} p_{2}+\left(1-p_{1}\right) p_{2} p_{3}=0,38
\end{aligned}
$$

SSBDD

Calculation of Signal Probabilities

SSBDD based algorithm:

$$
p_{\mathrm{y}}=\mathrm{x}_{1}\left(1-\mathrm{x}_{2}\right)+\left(1-\mathrm{x}_{1}\right) \mathrm{x}_{2}=0,5
$$

Parker - McCluskey algorithm:

$$
\begin{aligned}
& p_{y}=1-\left(1-p_{\mathrm{a}}\right)\left(1-p_{\mathrm{b}}\right)= \\
& =1-\left(1-p_{x 1}\left(1-p_{x 2}\right)\right)\left(1-p_{x 2}\left(1-p_{x 1}\right)\right)= \\
& =1-\left(1-p_{x 1}+p_{x 1} p_{x}\right)\left(1-p_{x}+p_{x 1} p_{x}\right)= \\
& =1-\left(1-p_{x 2}+p_{x} p_{x 2}-p_{x 1}+p_{x 1} p_{x 2}-p_{x 1}^{2} p_{x 2}+\right. \\
& \left.+p_{x 1} p_{x 2}-p_{x 1} p_{x 2}^{2}+p_{x 1}^{2} p^{2}{ }_{x 2}\right)= \\
& =1-\left(1-p_{x 2}+p_{x 1} p_{x 2}-p_{x 1}+p_{x 1} p_{x 2}-p_{x 1} p_{x 2}+\right. \\
& \left.+p_{x 1} p_{x 2}-p_{x 1} p_{x 2}+p_{x 1} p_{x 2}\right)=\text { The exponents } \\
& \text { are removed } \\
& =p_{x 2}-p_{x 1} p_{x 2}+p_{x 1}-p_{x 1} p_{x 2}+p_{x 1} p_{x 2}- \\
& \left.-p_{x 1} p_{\mathrm{x} 2}+p_{\mathrm{x} 1} p_{\mathrm{x} 2}-p_{\mathrm{x} 1} p_{\mathrm{x} 2}\right)= \\
& =p_{x 1}+p_{x 2}-2 p_{x 1} p_{x 2}=0,5
\end{aligned}
$$

Example: RT Level Probabilistic Testing

Functional testing

$$
\begin{aligned}
& P\left(\mathrm{OUT}=F_{1}\right)=p_{1}=0.5 \\
& P\left(\mathrm{OUT}=F_{2}\right)=p_{2}=p_{q}^{*} p(x=0)=0.5^{*} 0.2=0.1 \\
& P(\text { Det of } f 2)=\boldsymbol{p}_{2}^{*} \boldsymbol{p}_{F 2}=\mathbf{0 . 1} * 0.05=\mathbf{0 . 0 0 5}
\end{aligned}
$$

Generalization of BDDs

Binary DD
2 terminal nodes and
2 edges from each node

General case of DD

$\mathrm{n} \geq 2$ terminal nodes and
$\mathrm{n} \geq 2$ edges from each node

Novelty: Boolean methods can be generalized in a straightforward way to higher functional levels

Register Transfer Level DDs

Hierarchical calculation of probabilities:

Probability of $p\left(\boldsymbol{R}_{2}=\boldsymbol{R}_{1}{ }^{\prime} \times \boldsymbol{R}_{2}{ }^{\prime}\right)$
$p\left(R_{2}=R_{1}{ }^{\prime} \times R_{2}{ }^{\prime}\right)=p\left(y_{4}=2\right) \times p\left(y_{3}=3\right) \times p\left(y_{2}=0\right)$
Probability of testing $R_{1} * R_{2} \rightarrow p\left(\boldsymbol{R}_{2}=\boldsymbol{R}_{1} * \boldsymbol{R}^{\prime}{ }_{2}\right) * \boldsymbol{p}\left(\boldsymbol{R}_{\mathbf{1}}, \boldsymbol{R}_{2}{ }_{2}\right)$

$p\left(R_{1}, R_{2}\right)$ - can be calculated for the low gate-level multiplier model
All $p(y=k)$ - can be calculated for the low level control part model

Register Transfer Level DDs

LFSR-based BIST

Calculating Probabilities on BDDs

Example:

$$
\begin{aligned}
& L_{1}=\left(1,2_{1}, 2_{3}\right) \\
& L_{2}=\left(1,2_{2}, 3,2_{3}\right) \\
& p_{y}=p_{1} p_{2}+\left(1-p_{1}\right) p_{2} p_{3}=0,375
\end{aligned}
$$

Calculating Probabilities for RT-Level Circuits

Gate-level calculation:
$p_{y}=\sum_{L_{k} \in L(1)} \quad \prod_{X \in X_{k}} p_{x}$
RT-level calculation:

Calculating Observabilities RT-Level Data Paths

Gate-level calculation:
DD for RTL Data Path:

$$
p_{y}=\sum_{L_{k} \in L(1)}^{\Sigma} \prod_{x \in X_{k}} p_{x}
$$

RT-level calculation:

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{y}=\mathrm{z}\left(\mathrm{~m}^{7}\right)\right)=\Sigma \quad \Pi \mathrm{P}(\mathrm{x}=\mathrm{e}) \\
& L_{i} \in L\left(m_{0}, m^{T}\right) \quad x \in X_{i}
\end{aligned}
$$

Example:
$\mathrm{P}\left(R_{2}=R_{1} * R_{2}\right)=\mathrm{P}\left(y_{4}=2\right) \mathrm{P}\left(y_{3}=3\right) \mathrm{P}\left(y_{2}=0\right)=$

$=0.3^{*} 0.25$ * $0.5=0.04$

