Design for Testability

Outline

- Ad Hoc Design for Testability Techniques
- Method of test points
- Multiplexing and demultiplexing of test points
- Time sharing of I/O for normal working and testing modes
- Partitioning of registers and large combinational circuits
- Scan-Path Design
- Scan-path design concept
- Controllability and observability by means of scan-path
- Full and partial serial scan-paths
- Non-serial scan design
- Classical scan designs

Ad Hoc Design for Testability Techniques

Method of Test Points:

Improving controllability and observability:

Block 1 is not observable, Block 2 is not controllable

1- controllability:
CP = 0 - normal working mode
CP = 1 - controlling Block 2 with signal 1

0 - controllability:
CP = 1 - normal working mode CP = 0-controlling Block 2 with signal 0

Ad Hoc Design for Testability Techniques

Method of Test Points:

Block 1 is not observable, Block 2 is not controllable

Improving controllability:

Normal working mode:
CP1 = 0, CP2 = 1
Controlling Block 2 with 1 :
CP1 = 1, CP2 = 1
Controlling Block 2 with 0 :
CP2 $=0$

Normal working mode:
CP2 $=0$
Controlling Block 2 with 1:
$C P 1=1, C P 2=1$
Controlling Block 2 with 0 :
$C P 1=0, C P 2=1$

Ad Hoc Design for Testability Techniques

Multiplexing monitor points:

To reduce the number of output pins for observing monitor points, multiplexer can be used:
2^{n} observation points are replaced by a single output and n inputs to address a selected observation point

Disadvantage:
Only one observation point can be observed at a time

Number of additional pins: $\quad(\mathrm{n}+1)$ Number of observable points: [2n]

Advantage: $(\mathrm{n}+1) \ll 2^{\mathrm{n}}$

Ad Hoc Design for Testability Techniques

Multiplexing monitor points:

To reduce the number of output pins for observing monitor points, multiplexer can be used:

To reduce the number of inputs, a counter (or a shift register) can be used to drive the address lines of the multiplexer

Disadvantage:

Only one observation point can be observed at a time

Reset for counter?

Number of additional pins: 2 Nmber of observable points: [2]

Advantage: $\mathbf{2}<\mathbf{n} \ll \mathbf{2}^{\text {n }}$

Ad Hoc Design for Testability Techniques

Multiplexing monitor points:

Ad Hoc Design for Testability Techniques

Demultiplexer for implementing control points:

Ad Hoc Design for Testability Techniques

Demultiplexer for implementing control points:

To reduce the number of input pins for controlling testpoints, demultiplexer and latch register are used

Number of additional pins: $\quad(\mathrm{n}+1)$ Number of control points: $\quad 2^{n-1}<N \leq 2^{n}$

$$
\text { Advantage: }(n+1) \ll N
$$

Ad Hoc Design for Testability Techniques

Demultiplexer for implementing control points:

Number of additional pins: 2
Number of control points: N
Advantage: $2 \ll \mathbf{N}$

To reduce the number of inputs for addressing, a counter (or a shift register) can be used to drive the address lines of the demultiplexer

Disadvantage:

N clock times are required between test vectors to set up the proper control values

Time-sharing of outputs for monitoring

To reduce the number of output pins for observing monitor points, timesharing of working outputs can be introduced: no additional outputs are needed

To reduce the number of inputs, again counter or shift register can be used if needed

Number of additional pins: Number of control points:

Advantage: $1 \ll \mathbf{N}$
Test time decreases

Time-sharing of inputs for controlling

Number of additional pins:1

Number of control points: N

Advantage: $1<\mathbf{N}$
Test time decreases

Time-sharing of inputs for controlling

Example: DFT with MUX-s and DMUX-s

Given a circuit:

- CP1 and CP2 are not controllable
- CP3 and CP4 are not observable

DFT task: Improve the testability by using a single control input, no additional inputs/outputs allowed

Example: DFT with MUX-s and DMUX-s

Given a circuit:
CP3 and CP4 are not observable
\rightarrow Improving the observability

		T	Mode
Coding:	MUX		
	$\mathbf{0}$	Norm.	$\mathbf{0}$
	1	Test	1

Result: A single pin T (test mode) is needed

Example: DFT with MUX-s and DMUX-s

Given a circuit: CP1 and CP2 are not controllable \rightarrow Improving the controllability

Example: DFT with MUX-s and DMUX-s

Ad Hoc Design for Testability Techniques

Examples of good candidates for control points:

- control, address, and data bus lines on bus-structured designs
- enable/hold inputs of microprocessors
- enable and read/write inputs to memory devices
- clock and preset/clear inputs to memory devices (flip-flops, counters, ...)
- data select inputs to multiplexers and demultiplexers
- control lines on tristate devices

Examples of good candidates for observation points:

- stem lines associated with signals having high fanout
- global feedback paths
- redundant signal lines
- outputs of logic devices having many inputs (multiplexers, parity generators)
- outputs from state devices (flip-flops, counters, shift registers)
- address, control and data busses

Ad Hoc Design for Testability Techniques

Logical redundancy:

Redundancy should be avoided:

- If a redundant fault occurs, it may invalidate some test for nonredundant faults
- Redundant faults cause difficulty in calculating fault coverage
- Much test generation time can be spent in trying to generate a test for a redundant fault

Redundancy intentionally added:

- To eliminate hazards in combinational circuits
- To achieve high reliability (using error detecting circuits)

Hazard control circuitry:

Redundant AND-gate Fault $\equiv 0$ not testable

Additional control input added:
T = 1 - normal working mode
T = 0 - testing mode

Ad Hoc Design for Testability Techniques

Fault redundancy:

Testable error control circuitry:
Error control circuitry:

$E=1$ if decoder is fault-free
Fault $\equiv 1$ not testable

Additional control input added:
T $\equiv 0$ - normal working mode T=1 - testing mode

Ad Hoc Design for Testability Techniques

Partitioning of registers (counters):

16 bit counter divided into two 8-bit counters:

Instead of $\mathbf{2 ~}^{16}=65536$
clocks, $2 \times 2^{8}=512$
clocks needed
If tested in parallel, only 256 clocks needed

CP: Tester Clock

Ad Hoc Design for Testability Techniques

Partitioning of large combinational circuits:

The time complexity of test generation and fault simulation grows faster than a linear function of circuit size

Partioning of large circuits reduces the test cost

I/O sharing of normal and testing modes is used

Three modes can be chosen:

- normal mode
- testing C1
- testing C2 (bolded blue lines)

How many additional inputs are needed?

Scan-Path Design

The complexity of testing is a function of the number of feedback loops and their length

The longer a feedback loop, the more clock cycles are needed to initialize and sensitize patterns

Scan-register is a aregister with both shift and parallel-load capability

T=0-normal working mode
T=1-scan mode
Normal mode : flip-flops are connected to the combinational circuit

Test mode: flip-flops are disconnected from the combinational circuit and connected to each other to form a shift register

Design for Testability \& Control Points

Two possibilities for improving controllability/observability

Two problems with CP-s: access and minimization

Parallel Scan-Path

In parallel scan path flipflops can be organized in more than one scan chain Advantage: time \downarrow
Disadvantage: \# pins \uparrow

Partial Scan-Path

In partial scan instead of full-scan, it may be advantageous to scan only some of the flip-flops

Example: counter - even bits joined in the scanregister

Linear Scan-Path vs Tree Architecture

Linear SCAN:

Tree architecture of SCAN:
L. Chen et al. „Design of optimal scan tree based on compact Test patterns", IEEE Trans. on Comp., 2015

Partial Scan Path

Scan-In Hierarhical test generation with Scan-Path:

Testing with Minimal DFT

Hierarhical test generation with Scan-Path:

If the control flow sequences are short, only a single or few flip-flops of datadependent flag-FF-s are included into the scan-path

Random Access Scan

In random access scan each flip-flop in a logic network is selected individually by an address for control and observation of its state Example:

Delay fault testing

DFT for Random BIST \& Functional BIST

Selection of Test Points

Test point selection approaches

- Improving testability for any set of pseudo-random patterns (Pseudorandom BIST)
- Testability measures are used to characterize the controllability and observability of the circuit (independently of the test applied)
- Improving testability for a given implementation based sequence of vectors (Functional BIST)
- Fault simulation is used for measuring the fault coverage

Methods that are used:

- logic simulation,
- fault simulation,
- evaluation (measuring) of controllability and observability

The Problem of Safe/Redundant faults

Are these redundant faults?

Application software may not use a part of system HW (e.g. Debugging Module, Floating Point Unit), or a part of instruction set (e.g. multiplication)

Safe faults cannot produce any failure due to the specific (HW or SW) constraints the system matches during its normal operation

Adhoc Iterative DFT Improvement

High-Level Functional BIST

Example: Functional BIST for Pipe-Lined Circuits

Two solutions

MISR monitors on every register
MISR monitors on part of the register (Combine blocks with good coverage)

HL-FBIST Synthesis

Start-From-Big method

HL-FBIST Synthesis

Start-From-Small method

Distributed BIST Synthesis

Selection of Test Points

Method: Simulation of given test patterns

- Identification of the faults that are detected
- The remaining faults are classified as
- A: Faults that were not excited
- B: Faults at gate inputs that were excited but not propagated to the gate output
- C: Faults that were excited but not propagated to circuit output
- The faults A and B require control points for their detection
- The faults C may be detected by either by observation points or by control points
- Control points selection should be carried out before observation points selection

Classification of Not-Detected Faults

Class C:

Selection of Test Points

Classification of faults

Given test:

No	Test patterns									Fault table						
	Inputs					Intern. points			Inputs					Intern. points		
	1	2	3	4	5	a	b	c	1	2	3	4	5	a	b	c
1	0	0	1	0	1	0	0	0	1	1	-	1	-	1	1	1
2	0	1	0	1	1	1	0	1	1 -	-	-	0	0	-	-	0
3	0	1	0	1	0	1	0	0	1-	-	1	-	1	-	1	1
		$x_{2} / 0$														

Not detected faults:
Class Faults Missing signals
A
A $\quad \boldsymbol{b} / \mathbf{0}: \quad b=1 \quad$ is missing
B $\quad x_{3} / 0: \quad x_{3} a=11$ is missing
B $\quad \boldsymbol{a} / \mathbf{0}: \quad x_{3} \mathrm{a}=11$ is missing
C $\quad \mathbf{x}_{2} / \mathbf{0}: \mid x_{1} x_{2}=01 \quad$ OK

Selection of Test Points

Classification of faults

Given test:

No	Test patterns								Fault table							
	Inputs					Intern. points			Inputs					Intern. points		
	1	2	3	4	5	a	b	c	1	2	3	4	5	a	b	C
1	0	0	1	0	1	0	0	0	1	1	-	1	-	1	1	1
2	0	1	0	1	1	1	0	1	-	-	-	0	0	-	-	0
3	0	1	0	1	0	1	0	0	-	-	1	-	1	-	1	1

Not detected faults:
Class Faults Missing signals

| A | $\boldsymbol{x}_{1} / \mathbf{0}:$ | $x_{1}=1 \quad$ is missing |
| :--- | :--- | :--- | :--- |
| A | $\boldsymbol{b} / \mathbf{0}:$ | $b=1 \quad$ is missing |
| B | $\boldsymbol{x}_{\mathbf{3}} / \mathbf{0}:$ | $x_{3} \mathrm{a}=11$ is missing |
| B | $\boldsymbol{a} / \mathbf{0}:$ | $x_{3} \mathrm{a}=11$ is missing |
| C | $\boldsymbol{x}_{\mathbf{2}} / \mathbf{0}:$ | $x_{1} x_{2}=01 \quad$ OK |

Selection of Test Points

Classification of faults

Given test:

No	Test patterns								Fault table							
	Inputs					Intern. points			Inputs					Intern. points		
	1	2	3	4	5	a	b	c	1	2	3	4	5	a	b	c
1	0	0	1	0	1	0	0	0	1	1	-	1	-	1	1	1
2	0	1	0	1	1	1	0	1	-	-	-	0	0	-		0
3	0	1	0	1	0	1	0	0	-	-	1	-	1	-	1	1

$\int_{x_{1} / 0} x_{x_{2} / 0} x_{3} / 0 \quad a / 0 \quad b / 0$

Not detected faults:
Class Faults Missing signals

| A | $\boldsymbol{x}_{1} / \mathbf{0}:$ | $x_{1}=1 \quad$ is missing |
| :--- | :--- | :--- | :--- |
| A | $\boldsymbol{b} / \mathbf{0}:$ | $b=1 \quad$ is missing |
| B | $\boldsymbol{x}_{3} / \mathbf{0}:$ | $x_{3} \mathrm{a}=11$ is missing |
| B | $\mathbf{a} / \mathbf{0}:$ | $x_{3} \mathrm{a}=11$ is missing |
| C | $\boldsymbol{x}_{\mathbf{2}} / \mathbf{0}:$ | $x_{1} x_{2}=01 \quad$ OK |

Selection of Test Points

Classification of faults

Given test:

No	Test patterns									Fault table						
	Inputs					Intern. points			Inputs					Intern. points		
	1	2	3	4	5	a	b	c	1	2	3	4	5	a	b	c
1	0	0	1	0	1	0	0	0	1	1	-	1	-	1	1	1
2	0	1	0	1	1	1	0	1	-	-	-	0	0	-	-	0
3	0	1	0	1	0	1	0	0	-	-	1	-	1	-	1	1
$\begin{array}{ccc} & \uparrow \uparrow & \uparrow \\ / 0 & x_{2} / 0 & x_{3} / 0 \\ a / 0 & b / 0 \end{array}$																

Not detected faults:
Class Faults Missing signals

A	$\boldsymbol{x}_{1} / \mathbf{0}:$	$x_{1}=1$	is missing
A	$\boldsymbol{b} / \mathbf{0}:$	$b=1$	is missing
B	$\boldsymbol{x}_{3} / \mathbf{0}:$	$x_{3} a=11$	is missing
B	$\boldsymbol{a} / \mathbf{0}:$	$x_{3} a=11$	is missing
C	$\boldsymbol{x}_{\mathbf{2}} / \mathbf{0}:$	$x_{1} x_{2}=01$	OK

Selection of Test Points

Classification of faults

Given test:

No	Test patterns								Fault table							
	Inputs				Intern. points				Inputs					Intern points		
	1	2	3	4	5	a	b	c	1	2	3	4	5	a	b	c
1	0	0	1	0	1	0	0	0	1	1	-	1	-	1	1	1
2	0	1	0	1	1	1	0	1	-	-	-	0	0	-		0
3	0	1	0	1	0	1	0	0	-	-	1	-	1	-	1	1
$\mu \uparrow \uparrow \uparrow\rangle$ $\begin{array}{lllll} \\ / 0 & x_{2} / 0 & x_{3} / 0 & a / 0 & b / 0\end{array}$																

Not detected faults:
Class Faults Missing signals

A	$\boldsymbol{x}_{1} / \mathbf{0}:$	$x_{1}=1 \quad$ is missing	
A	$\boldsymbol{b} / \mathbf{0}:$	$b=1 \quad$ is missing	
B	$\boldsymbol{x}_{3} / \mathbf{0}:$	$x_{3} \mathrm{a}=11$	is missing
B	$\boldsymbol{a} / \mathbf{0}:$	$x_{3} \mathrm{a}=11$	is missing
C	$\boldsymbol{x}_{2} / \mathbf{0}:$	$x_{1} x_{2}=01 \quad$ OK, but	
path activation x_{3} is missing			

Selection of Test Points: Procedure

1. Selection of control points:

		F1	F2	F3	F4	F5	F6	F7	F8	F9		Faults, not detected
	CP1	1	1	1			1					
Control	CP2		1	1	1			1		1		
point \longrightarrow	СР3			1		1			1		\longleftrightarrow	Selected
candidates	CP4			1		1	1		1			points
	CP5	1					1	1		1		

Selection of Test Points: Procedure

1. Selection of control points:

- Once control point candidates are identified for the faults A and B, a minimum number of control points (CP) can be identified
- This can be formulated as a minimum coverage problem where a minimum CPs are selected such that at least one CP candidate is included for each fault in A and B

Selection of Test Points: Procedure

1. Selection of observation points:

Selection of Test Points: Procedure

2. Selection of observation points

- Once CPs selected, the test patterns are augmented, fault simulation is performed

C

- The fault class C is updated
- For each fault, in C the circuit lines to which the effect of the fault propagates, are identified as a potential observation point candidates
- A minimum covering problem is formulated and solved to find the observation points to be added

Minimization of observation points

	F1	F2	F3	F4	F5	F6	F7	F8	F9
OP1	1		1	1					
OP2	1	1		1			1		1
OP3		1			1			1	
OP4			1		1	1		1	
OP5	1					1	1		1

Selection of Test Points

Corrected circuit:

Minimization of control points:

Not detected faults:
Class A: $x_{1} / 0, b / 0$
Class B: $x_{3} / 0, a / 0$,
Control point coverage:

To		ot de	ected	aults	
		$\mathrm{x}_{1} / 0$	$x_{3} / 0$	a $/ 0$	b/0
Potential control points	$x_{1}=1$	+	+	+	+
	$x_{3}=1$		+	+	+
	$a=1$		+	+	+
	$b=1$				+

No	Test patterns							
	Inputs					Intern. points		
	1	2	3	4	5	a	b	c
1	0	0	1	0	1	0	0	0
2	0	1	0	1	1	1	0	1
3	0	1	0	1	0	1	0	0

Insertion of Test Points

Test point for $x_{1} / 0$

All faults detected:
Class A: $x_{1} / 0, b / 0$ Class B: $x_{3} / 0, a / 0$,

$T_{1}=1$		Test patterns							
	No	Inputs					Intern. points		
pattern is		1	2	3	4	5	a	b	c
to be	1	0	0	1	0	1	0	0	0
with	2	0	1	0	1	1	1	0	1
$T_{1}=1$	3	0	1	0	1	0	1	0	0

Corrected circuit:

Insertion of Test Points

Two test points:

Selected test points:

Class A: $x_{1} / 0 \rightarrow x_{1}=1$ (control point) Class C: $x_{2} / 0$ (observation point)

Corrected circuit:

Selection of Test Points - Tradeoff Problem

Minimization of monitoring points:

To reduce the number of output pins for observing monitor points, EXOR gates can be used:

HW cost and time compaction
T-test time

Selection of Test Points

Minimization of monitoring points:

To reduce the number of output pins for observing monitor points, signature analyzers can be used:

HW cost and time compaction
T- test time With SA - Accurate

With EXOR - Not accurate

Boundary Scan Standard

Boundary Scan Architecture

Boundary Scan Architecture

Boundary Scan Cell

Used at the input or output pins

Boundary Scan Working Modes

SAMPLE mode:

Get snapshot of normal chip output signals (monitoring mode)

Boundary Scan Working Modes

PRELOAD mode:

Put data on boundary scan chain before next instruction

Boundary Scan Working Modes

EXTEST instruction:

Test off-chip circuits and board-level interconnections

Boundary Scan Working Modes

INTEST instruction

Feeds external test patterns in and shifts responses out

Boundary Scan Working Modes

Bypass instruction:
Bypasses the corresponding chip using 1-bit register

Boundary Scan Working Modes

IDCODE instruction:

Connects the component device identification register serially between TDI and TDO in the Shift-DR TAP controller state

Allows board-level test controller or external tester to read out component ID
Required whenever a JEDEC identification register is included in the design

Fault Detection with Boundary Scan

Any Bridge Detection with Boundary Scan

The problem is: which fault

Open
(SAF/0)
or
Short

Assume stuck-at-0
Kautz showed in 1974 that a sufficient condition to detect any pair of short circuited nets was that the "horizontal" codes must be unique for all nets. Therefore the test length is $] \log _{2}(\mathrm{~N})[$

Any Fault Detection with Boundary Scan

All 0 -s and all 1-s are forbidden codes because of stuck-at faults Therefore the final test length is $] \log _{2}(\mathrm{~N}+2)[$ (for testing SAF without masking by shorts)

Fault Diagnosis with Boundary Scan

To improve the diagnostic resolution we have to add one bit more

Synthesis of Testable Circuits

$$
y=x_{1} x_{3} \vee x_{1} x_{2}
$$

Test generation:

4 test patterns are needed

Synthesis of Testable Circuits

Two implementations for the same circuit:

$$
y=x_{1} x_{3} \vee x_{1} x_{2}
$$

Here:
4 test patterns are needed
$\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}$

Test generation start

Here:
Only 3 test patterns are needed

Synthesis of Testable Circuits

Test generation method:

$$
y=1 \oplus x_{3} \oplus x_{1} \oplus x_{1} x_{3} \oplus x_{1} x_{2}
$$

Roles of test patterns:
$X_{1} X_{2} X_{3}$

Synthesis of Testable Circuits

Given: $y=x_{1} x_{3} \vee x_{1} x_{2}$

$$
y=c_{0} \oplus c_{1} x_{3} \oplus c_{2} x_{2} \oplus c_{3} x_{2} x_{3} \oplus c_{4} x_{1} \oplus c_{5} x_{1} x_{3} \oplus c_{6} x_{1} x_{2} \oplus c_{7} x_{1} x_{2} x_{3}
$$

Calculation of constants:

$\mathbf{f}_{\mathbf{i}}$	$\mathbf{x}_{\mathbf{1}} \mathbf{x}_{\mathbf{2}} \mathbf{x}_{\mathbf{3}}$	\mathbf{y}	$\mathbf{\Sigma}$					
\mathbf{f}_{0}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{C}_{0}=\mathbf{f}_{0}=1$	\quad	New circuit:
:---								
$y=1 \oplus x_{3} \oplus x_{1} \oplus x_{1} x_{3} \oplus x_{1} x_{2}$								

