
Technical University Tallinn, ESTONIA

Built-In Self-Test

Outline
• Motivation for BIST

• Testing SoC with BIST

• Test per Scan and Test per Clock

• HW and SW based BIST

• Exhaustive and pseudoexhaustive test generation

• Pseudorandom test generation with LFSR

• Hybrid BIST

• Response compaction methods

• Signature analyzers

Technical University Tallinn, ESTONIA

Testing Challenges: SoC Test

Cores have to be tested on chip

Source: Elcoteq
Source: Intel

Technical University Tallinn, ESTONIA

Self-Test in Complex Digital Systems

SoC

SRAM
Peripheral
Component
Interconnect

SRAM

CPU

Wrapper

Core
Under
Test

ROM

MPEG UDL
DRAM

Test Access
Mechanism

Test Access
Mechanism

Sink

SoC

Source

Test architecture components:

• Test pattern source & sink

• Test Access Mechanism

• Core test wrapper

Solutions:

• Off-chip solution

– need for external ATE

• Combined solution

– mostly on-chip, ATE

needed for control

• On-chip solution

– BIST

Technical University Tallinn, ESTONIA

Self-Test in Complex Digital Systems

SoC

SRAM
Peripheral
Component
Interconnect

SRAM

CPU

Wrapper

Core
Under
Test

ROM

MPEG UDL
DRAM

Sink

SoC

Source

Test architecture components:

• Test pattern source & sink

• Test Access Mechanism

• Core test wrapper

Solutions:

• Off-chip solution

– need for external ATE

• Combined solution

– mostly on-chip, ATE

needed for control

• On-chip solution

– BIST

Technical University Tallinn, ESTONIA

What is BIST

• On circuit

– Test pattern generation

– Response verification

• Random pattern

generation,

very long tests

• Response compression

BIST

Control Unit

Circuitry Under Test

CUT

Test Pattern Generation (TPG)

Test Response Analysis (TRA)

IC

Technical University Tallinn, ESTONIA

SoC BIST

System on Chip

Core 2

Core 3 Core 4 Core 5

Embedded Tester

Core 1

Test access

mechanismBIST BIST

BISTBISTBIST

Test

Controller

Tester

Memory

Optimization:
- testing time 

- memory cost 

- power consumption 

- hardware cost 

- test quality 

Technical University Tallinn, ESTONIA

Built-In Self-Test

• Motivations for BIST:
– Need for a cost-efficient testing (general motivation)

– Doubts about the stuck-at fault model

– Increasing difficulties with TPG (Test Pattern Generation)

– Growing volume of test pattern data

– Cost of ATE (Automatic Test Equipment)

– Test application time

– Gap between tester and UUT (Unit Under Test) speeds

• Drawbacks of BIST:
– Additional pins and silicon area needed

– Decreased reliability due to increased silicon area

– Performance impact due to additional circuitry

– Additional design time and cost

Technical University Tallinn, ESTONIA

BIST in Maintenance and Repair

• Useful for field test and diagnosis (less expensive
than a local automatic test equipment)

• To overcome the disadvantages of software tests for
field test and diagnosis (nonBIST):
– Low hardware fault coverage

– Low diagnostic resolution

– Slow to operate

• Hardware BIST benefits:
– Lower system test effort

– Improved system maintenance and repair

– Improved component repair

– Better diagnosis

– Possibility to use the functionality of microprocessors

Technical University Tallinn, ESTONIA

BIST Techniques

• BIST techniques are classified:

– on-line BIST - includes concurrent and nonconcurrent techniques

– off-line BIST - includes functional and structural approaches

• On-line BIST - testing occurs during normal functional operation

– Concurrent on-line BIST - testing occurs simultaneously with normal

operation mode, usually coding techniques or duplication and

comparison are used

– Nonconcurrent on-line BIST - testing is carried out while a system is in

an idle state, often by executing diagnostic software or firmware routines

• Off-line BIST - system is not in its normal working mode, usually on-chip test

generators and output response analyzers or microdiagnostic routines

– Functional off-line BIST is based on a functional description of the

Component Under Test (CUT) and uses functional high-level fault models

– Structural off-line BIST is based on the structure of the CUT and uses

structural fault models (e.g. SAF)

Technical University Tallinn, ESTONIA

Detailed BIST Architecture

Source: VLSI Test: Bushnell-Agrawal

Technical University Tallinn, ESTONIA

BIST: Test Generation Methods

Universal test sets

1. Exhaustive test (trivial test)

2. Pseudo-exhaustive test

Properties of exhaustive tests

1. Advantages (concerning the stuck at fault model):

- test pattern generation is not needed

- fault simulation is not needed

- no need for a fault model

- redundancy problem is eliminated

- single and multiple stuck-at fault coverage is 100%

- easily generated on-line by hardware

2. Shortcomings:

- long test length (2n patterns are needed, n - is the number of inputs)

- CMOS stuck-open fault problem

Technical University Tallinn, ESTONIA

Exhaustive and Pseudo-Exhaustive Testing

Exhaustive combinational fault model:

- exhaustive test patterns

- pseudoexhaustive test

patterns

- exhaustive output line

oriented test patterns

- exhaustive module

oriented test patterns

Technical University Tallinn, ESTONIA

Wrapper

BIST

BIST: Pseudoexhaustive Testing

Pseudo-exhaustive test sets:

Output function verification

• maximal parallel testability

• partial parallel testability

Output function verification

216 = 65536

Exhaustive

test

Primitive

polynomials

Pseudo-

exhaustive

parallel

> 16

Pseudo-

exhaustive

sequential

>> 4x16 = 64

4

4

4

4

F
Module function verification

Module Under Test

F
&

1111

0101

0011

Subcircuits for internal signal

propagation

Primary

inputs

Primary

output

Technical University Tallinn, ESTONIA

Testing ripple-carry adder

Output function verification (maximum parallelity)

c0 a0 b0 c1 a1 b1 c2 a2 b2 c3 …

1 0 0 0 0 0 0 0 0 0 0

2 0 0 1 0 0 1 0 0 1 0

3 0 1 0 0 1 0 0 1 0 0

4 0 1 1 1 0 0 0 1 1 1

5 1 0 0 0 1 1 1 0 0 0

6 1 0 1 1 0 1 1 0 1 1

7 1 1 0 1 1 0 1 1 0 1

8 1 1 1 1 1 1 1 1 1 1

Exhaustive test generation for n-bit adder:

Good news:

Bit number n - arbitrary

Test length - always 8 (!)

0-bit testing 2-bit testing1-bit testing 3-bit testing … etc

Bad news:

The method is correct

only for ripple-carry adder

Technical University Tallinn, ESTONIA

Pseudo-Exhaustive Test for Multiplier

Multiplication with

traditional “paper

and pencil” method

&
+

&
+

&
+

&
+

&
+

&
+

&
+

&
+

&
+

a0a1a2a3

&

+
&

+
&

+
s2s3s4s5

b0 = 0

b3 = 0

b1 = 1

b2 = 1

s0 = 0s1 = a0

c
2

c
3

c
4

Multiplier arraySelectable multiplicands
Multipliers

Two

examples

Technical University Tallinn, ESTONIA

No …
4-bit 3-bit 2-bit 1-bit 0-bit

a4 b4 c4 a3 b3 c3 a2 b2 c2 a1 b1 c1 a0 b0

1 … 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 … 0 1 0 0 1 0 0 1 0 0 1 0 0 1
3 … 1 0 0 1 0 0 1 0 0 1 0 0 1 0
4 … 1 1 0 0 0 1 1 1 0 0 0 1 1 1
5 … 0 0 1 1 1 0 0 0 1 1 1 0 0 0
6 … 0 1 1 0 1 1 0 1 1 0 1 1 1 1
7 … 1 0 1 1 0 1 1 0 1 1 0 1 1 1
8 … 1 1 1 1 1 1 1 1 1 1 1 1 1 1

N

6-bit 5-bit 4-bit 3-bit 2-bit 1-bit 0-bit

c6a7a6 c5a6a5 c4a5a4 c3a4a3 c2a3a2 c1a2a1 a1a0

1 0

2 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 0

3 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1

4 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 1 0

5 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1

6 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1

7 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0

8 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1

9 1

10 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0

11 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1

carry multiplier array

Pseudo-Exhaustive Test for Multiplier

Replication of columns with

pseudo-exhaustive patterns for

Adder

Multiplier

This table is

replicated and all

replications are

repeated for all

shifted b = (…11…)

Technical University Tallinn, ESTONIA

Exhaustively Self-Testing Multiplier

BIST
Built-in Self-Test

Multiplier

operands:

Shifted 11

00000011

00000110

11000000

Multiplicand

operands:

generated

with FSM

and

replicated

Test length:

(n-1)  11

Technical University Tallinn, ESTONIA

Pseudoexhaustive Test Optimization

Simple iterative algorithm for test pattern generation:

Output function verification

x1

x2

x3

x4

F1(x1, x2)

F2(x1, x3)

F3(x2, x3)

F4(x2, x4)

F5(x1, x4)

F6(x3, x4)

0011

0101

F1

0101F2

Exhaustive testing - 16

Pseudo-exhaustive, full parallel – 4 (not possible)

Pseudo-exhaustive, partially parallel - 6

F3

01

10

00 1F4 1

- 0

F5

10

Partial parallelism

Technical University Tallinn, ESTONIA

Combined Pseudo-Exhaustive-Random Testing

K1

K2

K4

K3

Circuit with 4

cones

A set of Partial Pseudo-Exhaustive tests can be combined with
(1) Pseudorandom BIST or

(2) Stored Deterministic test set

PE2

PE3

PE4

Pseudo-

Random Test

Combined PE-PR TestSegmented

LFSR

Technical University Tallinn, ESTONIA

Problems with Exhaustive Testing

x1 x2

Y

VDD

VSS

x1

x2

x1 x2 y yd

0 0 1 1

0 1 0 0

1 0 0 Y’

1 1 0 0

NOR gate test:

Stuck-off

(open)

x1 x2

Y

VDD

VSS

x2

No conducting path from VDD to VSS for “10”

x1

Test sequence

is needed:

00,10

Problem: Sequential fault class - Transistor Level Stuck-off Faults

Technical University Tallinn, ESTONIA

Problems with Exhaustive Testing

A short will change the circuit

into sequential one,

and you will need because of that

24 = 16 input patterns

Instead of 23 = 8

&
&

x1

x2

x3

y

Y = F(x1, x2, x3)

Bridging fault
State q

Y = F(x1, x2, x3,q)

1

0

Problem: Sequential fault class - Bridging Fault Sequentiality

Technical University Tallinn, ESTONIA

General Architecture of BIST

BIST

Control Unit

Circuitry Under Test

CUT

Test Pattern Generation (TPG)

Test Response Analysis (TRA)

• BIST components:

– Test pattern generator

(TPG)

– Test response

analyzer (TRA)

• TPG & TRA are usually

implemented as linear

feedback shift registers

(LFSR)

• Two widespread

schemes:

– test-per-scan

– test-per-clock

Technical University Tallinn, ESTONIA

Built-In Self-Test

Scan Path

Scan Path

Scan Path

.

.

.

CUT

Test pattern
generator

Test response
analysator

BIST
Control

• Assumes existing scan

architecture

• Drawback:

– Long test application time

Test per Scan:

Initial test set:

T1: 1100

T2: 1010

T3: 0101

T4: 1001

Test application:

1100 T 1010 T 0101T 1001 T

Number of clocks = (4 x 4) + 4 = 20

Technical University Tallinn, ESTONIA

Built-In Self-Test

Test per Clock:
• Initial test set:

• T1: 1100

• T2: 1010

• T3: 0101

• T4: 1001

• Test application:

• 1 10 0 1 0 1 0 01 01 1001

• Number of clocks = 8 < 20

Combinational Circuit

Under Test

Scan-Path Register

T1 T4T3 T2

Assume, this is

the full test

sequence needed

Technical University Tallinn, ESTONIA

Pattern Generation

• Store in ROM – too expensive

• Exhaustive – too long

• Pseudo-exhaustive – preferred

• Pseudo-random (LFSR) – preferred

• Binary counters – use more hardware than LFSR

• Modified counters

• Test pattern augmentation (Hybrid BIST)

 LFSR combined with a few patterns in ROM

 LFSR with bit flipping

 LFSR with bit fixing

Technical University Tallinn, ESTONIA

LFSR Based Testing: Some Definitions

• Exhaustive testing – Apply all possible 2n patterns to a circuit with

n inputs

• Pseudo-exhaustive testing – Break circuit into small blocks

(overlapping if needed) and test each exhaustively

• Pseudo-random testing – Algorithmic pattern generator that

produces a subset of all possible tests with most of the properties of

randomly-generated patterns

• LFSR – Linear feedback shift register, hardware that generates

pseudo-random pattern sequence

• BILBO – Built-in logic block observer, extra hardware added to

flip-flops so they can be reconfigured as an LFSR pattern

generator or response compacter, a scan chain, or as flip-flops

Technical University Tallinn, ESTONIA

Pattern Generation

Pseudorandom test generation by LFSR:

• Using special LFSR registers

– Test pattern generator

– Signature analyzer

• Several proposals:

– BILBO

– CSTP

• Main characteristics of LFSR:

– polynomial

– initial state

– test length

BIST

Control Unit

Circuitry Under Test

CUT

Test Pattern Generation (TPG)

Test Response Analysis (TRA)

Technical University Tallinn, ESTONIA

Pseudorandom Test Generation

LFSR – Linear Feedback Shift Register:

x x2 x3 x4

Polynomial: P(x) = x4 + x3 + 1

Standard LFSR

x3x2 x4x

Modular LFSR

Technical University Tallinn, ESTONIA

Pseudorandom Test Generation

LFSR – Linear Feedback Shift Register:

Polynomial: P(x) = x4 + x3 + 1

x3x2 x4x

Why modular LFSR is useful for BIST?

UUT

Test patterns

Test

responses

Technical University Tallinn, ESTONIA

Problems with BIST: Hard to Test Faults

Time

F
a

u
lt

 C
o

v
e

r
a

g
e

Problem: Low fault coverage
The main motivations

of using random

patterns are:
- low generation cost

- high initial efeciency
1 2n-1

Patterns from LFSR:

Hard

to test

faults

1 2n-1

Dream solution: Find LFSR such that:

Hard

to test

faults

Pseudorandom

test window:

Start

(seed)
Finish

Technical University Tallinn, ESTONIA

Scan-based BIST

Bit-flipping

BIST

Pseudorandom Test Generation

H.-J. Wunderlich, G. Kiefer. Bit flipping BIST. Proc. ICCAD, Nov. 1996, pp.337-343.

Technical University Tallinn, ESTONIA

Pseudorandom Test Generation

N.A. Touba, E.J. McCluskey. Bit-fixing in pseudorandom sequences for scan BIST. IEEE

Trans. on CAD of IC and Systems, Vol.20, No.4, Apr.2001.

Bit-fixing BIST

Technical University Tallinn, ESTONIA

Pseudorandom Test Generation

LFSR – Linear Feedback Shift Register:

Polynomial: P(x) = x4 + x3 + 1

x3x2 x4x

Why modular LFSR is useful for BIST?

UUT

Test patterns

Test

responses

Technical University Tallinn, ESTONIA

BILBO BIST Architecture

Working modes:

B1 B2

0 0 Normal mode

0 1 Reset

1 0 Test mode

1 1 Scan mode

Testing modes:

CC1: LFSR 1 - TPG

LFSR 2 - SA

CC2: LFSR 2 - TPG

LFSR 1 - SA

LFSR 1

CC1

LFSR 2

CC2

B1

B2

B1

B2

Technical University Tallinn, ESTONIA

BILBO BIST Architecture

Working modes:

B1 B2

0 0 Normal mode

0 1 Reset

1 0 Test mode

1 1 Scan mode

LFSR 1

CC1

B1

B2

B1

B2
LFSR 2

CC2TPG + SA

Testing modes:

CC1, CC2 Tested in parallel:

LFSR 1

LFSR 2

Technical University Tallinn, ESTONIA

Reconfiguration of the LFSR

OR

MUX

Unit Under Test

0 1 2 3

MUX
B1

B2

Ti Ti+1

&

&

&

&

Reset

Normal

4 working

modes

LFSR FEEDBACK

Test
&

Signature

analyzer

mode

To

Ti+2

Scan

From

Ti-1

Technical University Tallinn, ESTONIA

Shift Feedback

Pseudorandom Test Generation - LFSR

x x2 x3 x4

Polynomial: P(x) = x4 + x3 + 1
t x x2 x3 x4 t x x2 x3 x4

1 0 0 0 1 9 0 1 0 1

2 1 0 0 0 10 1 0 1 0

3 0 1 0 0 11 1 1 0 1

4 0 0 1 0 12 1 1 1 0

5 1 0 0 1 13 1 1 1 1

6 1 1 0 0 14 0 1 1 1

7 0 1 1 0 15 0 0 1 1

8 1 0 1 1 16 0 0 0 1

X3

X2

X1

X4X3

=

Two approaches to LFSR simulation:

X4 (t + 1)

X3 (t + 1)

X2 (t + 1)

X1 (t + 1)

1

0

0

h3

0

1

0

h2

0

0

0

1

0

0

1

h1

=

X4 (t)

X3 (t)

X2 (t)

X1 (t)

1 0 0

Matrix calculation:

Technical University Tallinn, ESTONIA

• Irreducible polynomial – cannot be factored, is divisible
only by itself

• Any polynomial with all even exponents can be factored and
hence is reducible

• Irreducible polynomial of degree n is characterized by:
– An odd number of terms including 1 term

– Divisibility into xk + 1, where k = 2n – 1

• An irreducible polynomial of degree n is primitive if it
divides the polynomial xk + 1 for k = 2n – 1, but not for any
smaller positive integer k

Theory of LFSR: Primitive Polynomials

Properties of Polynomials:

123  xx
x7 + 1

Technical University Tallinn, ESTONIA

Theory of LFSR: Examples

Polynomials of degree n=3 (examples):

123  xx

Primitive polynomials:

13  xx

The polynomials will divide evenly the polynomial x7 + 1

but not any one of k<7, hence, they are primitive

They are also reciprocal: coefficients are 1011 and 1101

k = 2n – 1= 23 – 1=7

Reducible polynomials (non-primitive):

)1)(1(1

)1)(1(1

223

23





xxxxx

xxxx

Primitive polynomial

Technical University Tallinn, ESTONIA

Theory of LFSR: Examples

Is a primitive polynomial?124  xx

Irreducible polynomial of
degree n is characterized by:

- An odd number of terms
including 1 term?

Yes, it includes 3 terms

- Divisibility into 1 + xk,
where k = 2n – 1

1

1

1

1

1

3

357

57

579

9

91113

1113

111315

15















x

xxx
xx

xxx
x

xxx
xx

xxx
x

35911 xxxx 

124  xx

Divisibility check:

is non-primitive?124  xx

No, there is remainder

Technical University Tallinn, ESTONIA

Theory of LFSR: Examples

100

110

111

011

101

010

001

100

Simulation of the behaviour of LFSR by polynomial:

Primitive polynomials

13  xx

x x2 x3

Technical University Tallinn, ESTONIA

Theory of LFSR: Examples

100

110

111

011

101

010

001

100

100

010

101

110

111

011

001

100

100

010

001

100

010

001

100

010

100

110

011

001

100

110

011

001

Comparison of test sequences generated:

123  xx

Primitive polynomials

13  xx 1 1 233  xxxx

Non-primitive polynomials

Technical University Tallinn, ESTONIA

Non-primitive polynomial

x4 + x2 + 1

Theory of LFSR: Examples

x x2 x3 x4

0001

1000

0100

1010

0101

0010

0001

1001

1100

1110

1111

0111

0011

1001

0110

1011

1101

0110

Primitive polynomial

x4 + x + 1

x x2 x3 x4

0001

1000

1100

1110

1111

0111

1011

0101

1010

1101

0110

0011

1001

0100

0010

0001

Technical University Tallinn, ESTONIA

Theory of LFSR: Examples

Primitive polynomial

x4 + x + 1

x x2 x3 x4

0001

1000

1100

1110

1111

0111

1011

0101

1010

1101

0110

0011

1001

0100

0010

0001

Zero generation:

x x2 x3 x4

1

1000

1100

1110

1111

0111

1011

0101

1010

1101

0110

0011

1001

0100

0010

0001

0000

0000

The code 0000 is missing

Technical University Tallinn, ESTONIA

Pseudorandom Testing with LFSR

1

&

&

x1

x2

x3

x21

x22

y

a

b
x4

1

0

1

For testing the fault x21  1

the test patterns 0001, 0101

and 1001 can be used

Primitive polynomial

x4 + x + 1

0001

1000

1100

1110

1111

0111

1011

0101

1010

1101

0110

0011

1001

0100

0010

0001

No match in the blue sequence

Red patterns are test patterns x x2 x3 x4

100
(0)(-)

-

LFSR Circuit Under test

Technical University Tallinn, ESTONIA

Pseudorandom Testing with LFSR

1

&

&

x1

x2

x3

x21

x22

y

a

b
x4

1

0

1

x x2 x3 x4

100
(0)(-)

-

0

0

Be careful: no proper patterns can be generated using the seed 0110

0110

1011

1101

0110

0001

1000

0100

1010

0101

0010

0001

1001

1100

1110

1111

0111

0011

1001

Non-primitive polynomial

x4 + x2 + 1

x x2 x3 x4

For testing the fault x21  1

the test patterns 0001, 0101

and 1001 can be used

Blue patterns are not testing the fault

Technical University Tallinn, ESTONIA

Theory of LFSR: Primitive Polynomials

Number of primitive

polynomials of

degree N

N No

1 1

2 1

4 2

8 16

16 2048

32 67108864

N Primitive Polynomials

1,2,3,4,6,7,15,22 1 + X + Xn

5,11, 21, 29 1 + X2 + Xn

10,17,20,25,28,31 1 + X3 + Xn

9 1 + X4 + Xn

23 1 + X5 + Xn

18 1 + X7 + Xn

8 1 + X2 + X3 + X4 + Xn

12 1 + X + X3 + X4 + Xn

13 1 + X + X4 + X6 + Xn

14, 16 1 + X + X3 + X4 + Xn

Table of primitive polynomials up to degree 31

Technical University Tallinn, ESTONIA

Theory of LFSR: Primitive Polynomials

Examples of PP (exponents of terms):

n other n other

1 0 9 4 0

2 1 0 10 3 0

3 1 0 11 2 0

4 1 0 12 7 4 3 0

5 2 0 13 4 3 1 0

6 1 0 14 12 11 1 0

7 1 0 15 1 0

8 6 5 1 0 16 5 3 2 0

x13 + x4 + x3 + x + 1

x3 + x + 1

Technical University Tallinn, ESTONIA

BIST: Fault Coverage

Time

F
a

u
lt

 C
o

v
e

ra
g

e

Pseudorandom Test generation by LFSR:

Motivation for LFSR:

- low generation cost

- high initial efeciency

BIST

Control Unit

Circuitry Under Test

CUT

Test Pattern Generation (TPG)

Test Response Analysis (TRA)

Drawback: 100% fault coverage is difficult to achieve

Technical University Tallinn, ESTONIA

BIST: Fault Coverage

Time

F
a

u
lt

 C
o

v
e

ra
g

e

Pseudorandom Test generation by LFSR:

Reasons of the high initial efficiency:

A circuit may implement functions

A test vector partitions the functions into 2 equal

sized equivalence classes (correct circuit in one of

them)

The second vector partitions into 4 classes etc.

After m patterns the fraction of functions

distinguished from the correct function is

n22

Motivation for LFSR:

- low generation cost

- high initial efeciency

,2
12

1

1

2

2 






m

i

in

n

nm 21 

© Raimund Ubar

Fault Coverage: Functional View

0%

First

pattern

Test quality:

50%

3.

87,5%
4.

93,75%

100%

75%
Second

pattern

1

2

64

..
.

Why we need 264

patterns

Fault

coverage 100%

Number of

patterns

All columns in
truth table
can be removed
where
for yellow pattern
the result is 1

Technical University Tallinn, ESTONIA

100% will be

reached only

after 2n test

patterns

0%

Faulty

functions

covered by

1. pattern
Faulty

functions

covered by

2. pattern

50%

75%
3. pattern

4. pat. 87,5%

93,75%

100%

,2
12

1

1

2

2 






m

i

in

n

nm 21 

Explanation of the formula

of fault coverage:

BIST: Fault Coverage

all

functions

tested

functions

n – number of inputs,

m – number of test patterns,

i – share of each pattern

1) General case:

n = 2, m = 1, i = 1:

15

8

15

2
2

12

1 31

1

12

2

2

2








i

2) Example:

Technical University Tallinn, ESTONIA

BIST: Structural Approach to Test

Testing of structural faults:

1

2

n

Combinational

circuit

under test

Fault coverage

100%

Number of

patterns

4

4. pat.

Not tested

faults 3. patttern

2. pattern

Faults

covered by

1. pattern

Deterministic test approach:

Technical University Tallinn, ESTONIA

BIST: Two Approaches to Test

Testing of

functions:

Testing of

faults:

100% will be reached

when all faults from

the fault list are

covered

100% will be

reached only

after 2n test

patterns

0%

Faulty

functions

covered by

1. pattern
Faulty

functions

covered by

2. pattern

50%

75%
3. pattern

4. pat. 87,5%

93,75%

100%

100%

Testing of

faults

Testing of

functions

4. pat.

Not tested

faults

Faults

covered by

1. pattern

2. pattern

3. patttern

Deterministic

test approach:

Technical University Tallinn, ESTONIA

Problems with BIST: Hard to Test Faults

Time

F
a

u
lt

 C
o

v
e

r
a

g
e

Problem: Low fault coverage
The main motivations

of using random

patterns are:
- low generation cost

- high initial efeciency
1 2n-1

Patterns from LFSR:

Pseudorandom

test window:

Hard

to test

faults

1 2n-1

Dream solution: Find LFSR such that:

Hard

to test

faults

Technical University Tallinn, ESTONIA

Deterministic Scan-Path Test

Test per Clock:
• Initial test set:

• T1: 1100

• T2: 1010

• T3: 0101

• T4: 1001

• Test application:

• 1 10 0 1 0 1 0 01 01 1001

• Number of clocks = 8 < 20

Combinational Circuit

Under Test

Scan-Path Register

T1 T4T3 T2

How to generate

the shortest

sequence by

LFSR

Technical University Tallinn, ESTONIA

Deterministic Synthesis of LFSR

Generation of the polynomial and seed for the given test sequence

(1) 100x0

(2) x1010

(3) 10101

(4) 01111

1) Given test

sequence:

2) Creation of the

shortest bit-stream:

10010 1 01111

1

0

This deterministic test set is generated by ATPG

However, only patterns which detects the hard-to-

test faults can be chosen

3) Expected shortest

LFSR sequence:

01111 (4)

1 0111

0 1011

1 0101 (3)

0 1010 (2)

0 0101

1 0010 (1)

Seed Shift

LFSRStates

of

the

LFSR

Technical University Tallinn, ESTONIA

Deterministic Synthesis of LFSR

Expected shortest

LFSR sequence:

01111 (4)

1 0111

0 1011

1 0101 (3)

0 1010 (2)

0 0101

1 0010 (1)

01111

10111

01011

10101

01010

00101

System of linear equations: akx1bkx2ckx3dkx4ekx5=fk

x

x1

x2

x3

x4

x5

1

0

1

0

0

1

=

Generation of the polynomial and seed for the given test sequence

x x2 x3 x4 x5

x1 x2 x3 x4 x5

We are looking for the values of xi

:
fk

akbkckdkek xj

Next

input

signal

into

LFSR

Currrent

state

of the

LFSR

k=1,2…6

j=1,2,,,5

fk

k j
k

Technical University Tallinn, ESTONIA

Deterministic Synthesis of LFSR

01111

10111

01011

10101

01010

00101

System of linear equations:

Generation of the polynomial and seed for the given test sequence

x

x1

x2

x3

x4

x5

1

0

1

0

0

1

=

1

2

3

4

5

6

01000

10000

00100

00010

00001

00001

Solving the equation by Gaussian

elimination with swapping of rows

Rows: Results:

x

x1

x2

x3

x4

x5

0

1

0

0

1

1

=

1,2,4,6

4,6

1,3

2,4

1,3,6

akx1bkx2ckx3dkx4ekx5 = fk, k= 1,2,..,6

fk

f2

f3

4) Solution: x1 x2 x3 x4 x5

1 0 0 0 1

(1) 01111 1

(3) 01011 1

(1  3) 00100 0 k=3

(4) 10101 0

(6) 00101 1

(4  6) 10000 1 k=2

Examples:

Technical University Tallinn, ESTONIA

Deterministic Synthesis of LFSR

Generation of the polynomial and seed for the given test sequence

Solving the equation by Gaussian

elimination with swapping of rows
akx1bkx2ckx3dkx4ekx5 = fk, k= 1,2,..,6

fk
01000
x1x2x3x4x5

= 0 = 0x2

10000
x1x2x3x4x5

= 1 = 1x1

00100
x1x2x3x4x5

= 0 = 0x3

00010
x1x2x3x4x5

= 0 = 0x4

00001
x1x2x3x4x5

= 1 = 1x5

01000

10000

00100

00010

00001

00001

x

x1

x2

x3

x4

x5

0

1

0

0

1

1

=

fk

4) Solution: x1 x2 x3 x4 x5

1 0 0 0 1

Technical University Tallinn, ESTONIA

Deterministic Synthesis of LFSR

Embedding deterministic test patterns into LFSR sequence:

x x2 x3 x4 x5

x1 x5

5) Polynomial: x5 + x + 1 Seed: 01111

(1) 100x0

(2) x1010

(3) 10101

(4) 01111

Given

deterministic

test

sequence:

LFSR sequence:

(1) 01111 (4)

(2) 10111

(3) 01011

(4) 10101 (3)

(5) 01010 (2)

(6) 00101

(7) 10010 (1)

4) Solution: x1 x2 x3 x4 x5

1 0 0 0 1

Technical University Tallinn, ESTONIA

Which Test Patterns to Select for as HTF?

Fault detection

frequences for the

given random test

sequence

Easily

detectable

faults

Hard-to-test

faults (HTF)

Different faults

Frequences of fault detection

For deterministic LFSR

based BIST, only the

patterns which detects

HTFs can be chosen

for the synthesis process

Technical University Tallinn, ESTONIA

Other Problems with Pseudorandom Test

Time

F
a

u
lt

 C
o

v
e

r
a

g
e

Problem: low fault coverageThe main motivations of

using random patterns

are:

- low generation cost

- high initial efeciency

If Reset = 1 signal has probability 0,5 then

counter will not work and

1 for AND gate may never be produced

Counter

Decoder

&

Reset

1LFSR

S4

S0

S1 S5

S2

S3

A = 1

A = 0

B = 0 B = 1

Technical University Tallinn, ESTONIA

Sequential BIST

A DFT technique of BIST for sequential circuits is proposed

The approach proposed is based on all-branches coverage metrics

which is known to be more powerful than all-statement coverage

S4

S0

S1 S5

S2

S3

A = 1

A = 0

B = 0 B = 1

S4

S0

S1 S5

S2

S3

A = 1

A = 0

B = 0 B = 1

S4

S0

S1 S5

S2

S3

A = 1

A = 0

B = 0 B = 1

Technical University Tallinn, ESTONIA

Sequential BIST

• Status signals entering the

control part are made

controllable

• In the test mode we can force

the UUT to traverse all the

branches in the FSM state

transition graph

• The proposed idea of

architecture requires small

device area overhead since a

simple controller can be

implemented to manipulate

the control signals

Digital System

FSM

Datapath

control signals status

signals

reset

clock

primary
inputs

primary outputs

masked

status bits

MUX

test/normal
mode (TM)

observation
points

Technical University Tallinn, ESTONIA

Example for Sequential BIST

M 3

e
+M1

a

*M2

b





R1

IN 





c

d

y1 y2 y3 y4

Control Part

R2

Data Part

Technical University Tallinn, ESTONIA

BIST: Different Techniques

Pseudorandom testing of sequential circuits:

The following rules suggested:

• clock-signals should not be random

• control signals such as reset, should be activated

with low probability

• data signals are chosen randomly

Microprocessor testing

• A test generator picks randomly an instruction

and generates random data patterns

• By repeating this sequence a specified number of

times it will produce a test program which will

test the microprocessor by randomly exercising

its logic

Pseudorandom Test generation by LFSR:

Full identification is

achieved only after 2n input

combinations have been

tried out (exhaustive test)

A better fault model

(stuck-at-0/1)

may limit the number of

partitions necessary

,2
12

1

1

12

2 






m

i

n

n

nm 21 

Technical University Tallinn, ESTONIA

BIST: Weighted pseudorandom test

&
G

1

2

3

PI1

PI2

Calculation of signal probabilities:

For PI1 : P = 0.15

For PI2 and PI3 : P = 0.6

For PI4 - PI6 : P = 0.4

1

1

1

Probability of detecting the fault 1

at the input 3 of the gate G:

1) equal probabilities (p = 0.5):

P = 0.5  (0.25 + 0.25 + 0.25)  0.53 =

= 0.5  0.75  0.125 =

= 0.046

2) weighted probabilities:

P = 0.85 

 (0.6  0.4 + 0.4  0.6 + 0.62) 

 0.63 =

= 0.85  0.84  0.22 =

= 0.16

 1

PI3

PI4
PI5
PI6

LFSR

Technical University Tallinn, ESTONIA

BIST: Weighted pseudorandom test

Hardware implementation of weight generator

LFSR

&&&

MUXWeight select

Desired weighted value Scan-IN

1/21/41/81/16

Technical University Tallinn, ESTONIA

BIST: Weighted pseudorandom test

Problem: random-pattern-resistant faults

Solution: weighted pseudorandom testing

The probabilities of pseudorandom signals are

weighted, the weights are determined by circuit

analysis

NCV – non-controlling value

The more faults that must be tested

through a gate input, the more the other

inputs should be weighted to NCV

&

Faults to

be tested
1 NCV

Propagated

faults

NDI - number of primary inputs

for each gate determined by

the back-trace cone

&

NDIG

NDII
I

G

NDI - relative measure of the

number of faults to be

detected through the gate

Technical University Tallinn, ESTONIA

BIST: Weighted pseudorandom test

NCV - noncontrolling value

The more faults that must be tested

through a gate input, the more the other

inputs should be weighted to NCV

&Faults

to be

tested

1 NCV

Propagated

faults

&

NDIG

NDII
I

G

R I = NDIG / NDII

R I - the desired ratio of the

NCV (1) to the controlling

value (0) for each gate input

Technical University Tallinn, ESTONIA

BIST: Weighted pseudorandom test

Example:

R 1 = NDIG / NDII = 6/1 = 6

R 2 = NDIG / NDII = 6/2 = 3

R 3 = NDIG / NDII = 6/3 = 2

&
G

1

2

3

PI

PI

PI

PI
PI

PI

More faults must be detected

through the third input than

through others

This results in the other inputs

being weighted more heavily

towards NCV

Technical University Tallinn, ESTONIA

BIST: Weighted pseudorandom test

&
G

1

2

3

PI

PI

PI

PI
PI

PI

W0, W1 - weights of the signals

are calculated by backtracking

Calculation of signal weights:

Function W0IN W1IN
AND W0G RI  W1G

NAND W1G RI  W0G

OR RI  W0G W1G

NOR RI  W1G W0G

W0G = 1

W1G = 1

Calculation of W0, W1 for inputs

R 2 = 3

W02 = 1

W12 = 3

R 3 = 2

W03 = 1

W13 = 2

R 1 = 6

W01 = 1

W11 = 6

Technical University Tallinn, ESTONIA

BIST: Weighted pseudorandom test

&
G

1

2

3

W01 = 1

W11 = 6

W03 = 1

W13 = 2

W02 = 1

W12 = 3

1

1

1

PI1

PI2

PI6

PI5

PI4

PI3

R 1 = 1

W01 = 6

W11 = 1

R 1 = 2

W01 = 2

W11 = 3

R 1 = 3

W01 = 3

W11 = 2

Backtracing from all the

outputs to all the inputs

of the given cone

Weights are calculated for

all gates and inputs

Function W0I W1I
OR RI  W0G W1G

NOR RI  W1G W0G

Calculation of signal weights:

Technical University Tallinn, ESTONIA

BIST: Weighted pseudorandom test

Calculation of signal probabilities:

PI1 : W0 = 6 W1 = 1 P1 = 1/7 = 0.15

PI2 and PI3 : W0 = 2 W1 = 3 P1 = 3/5 = 0.6

PI4 - PI6 : W0 = 3 W1 = 2 P1 = 2/5 = 0.4

&
G

1

2

3

1

1

1

PI1

PI2

PI6

PI5

PI4

PI3

R 1 = 1

W01 = 6

W11 = 1

R 1 = 2

W01 = 2

W11 = 3

R 1 = 3

W01 = 3

W11 = 2

Technical University Tallinn, ESTONIA

BIST: Weighted pseudorandom test

&
G

1

2

3

PI

PI

PI

PI
PI

PI

Calculation of signal probabilities:

For PI1 : P1 = 0.15

For PI2 and PI3 : P1 = 0.6

For PI4 - PI6 : P1 = 0.4

1

1

1

Probability of detecting the fault 1

at the input 3 of the gate G:

1) equal probabilities (p = 0.5):

P = 0.5  (0.25 + 0.25 + 0.25)  0.53 =

= 0.5  0.75  0.125 =

= 0.046

2) weighted probabilities:

P = 0.85 

 (0.6  0.4 + 0.4  0.6 + 0.62) 

 0.63 =

= 0.85  0.84  0.22 =

= 0.16

 1

Technical University Tallinn, ESTONIA

The Main BIST Problems

• On circuit

– Test pattern generation

– Response verification

• Random pattern generation,

Very long tests

Hard-to-test faults

• Response compression

Aliasing of results

BIST

Control Unit

Circuitry Under Test

CUT

Test Pattern Generation (TPG)

Test Response Analysis (TRA)

IC

Technical University Tallinn, ESTONIA

Pseudorandom Test Generation

LFSR – Linear Feedback Shift Register:

x x2 x3 x4

Polynomial: P(x) = x4 + x3 + 1

Standard LFSR

x3x2 x4x

Modular LFSR

Technical University Tallinn, ESTONIA

BIST: Signature Analysis

1 x x2

x3

x4

Polynomial: P(x) = x4 + x3 + 1

Signature analyzer:
Standard LFSR

UUT

Response

string

Modular LFSR

x2x1 x4

x3

Response in compacted

by LFSR

The content of LFSR after

test is called signature

Technical University Tallinn, ESTONIA

BIST: Signature Analysis

x2 x 1x4

x3

Parallel Signature Analyzer:

UUT

x2 x 1x4

x3

UUT
Multiple Input Signature

Analyser (MISR)

Single Input Signature Analyser

Technical University Tallinn, ESTONIA

Special Cases of Response Compression

1. Parity checking

2mod)()(
1





m

i

irRP
UUT

Test
T

ri

Pi-1

2. One counting





m

i

irRP
1

)(

UUT
Test ri

Counter
3. Zero counting





m

i

irRP
1

)(

Technical University Tallinn, ESTONIA

4. Transition counting

UUT
Test

T

ri

ri-1)()(
2

1



m

i

ii rrRP

a) Transition 01

5. Signature analysis

&

)()(
2

1



m

i

ii rrRP

b) Transition 10

UUT
Test

T

ri

ri-1

&

Special Cases of Response Compression

Technical University Tallinn, ESTONIA

Theory of LFSR

The principles of CRC (Cyclic Redundancy Coding) are used

in LFSR based test response compaction

Coding theory treats binary strings as polynomials:

R = rm-1 rm-2 … r1 r0 - m-bit binary sequence (binary string)

R(x) = rm-1 x
m-1 + rm-2 x

m-2 + … + r1 x + r0 - polynomial in x

Example:

11001  R(x) = x4 + x3 + 1

Only the coefficients are of interest, not the actual value of x

However, for x = 2, R(x) is the decimal value of the bit string

Technical University Tallinn, ESTONIA

Theory of LFSR

Arithmetic of coefficients:

- linear algebra over the field of 0 and 1: all integers mapped into either 0 or 1

- mapping: representation of any integer n by remainder r

resulting from the division of n by 2:

n = 2m + r, r  { 0,1 } or r = n (modulo 2)

Linear - refers to the arithmetic unit (modulo-2 adder), used in CRC

generator (linear, since each bit has equal weight upon the output)

Examples (addition, multiplication):

x4 + x3 + x + 1

+ x4 + x2 + x

x3 + x2 + 1

x4 + x3 + x + 1

 x + 1

x5 + x4 + x2 + x

x4 + x3 + x + 1

x5 + x3 + x2 + 1

Technical University Tallinn, ESTONIA

Theory of LFSR

Characteristic Polynomials:







0

2

210)(
m

m

m

m

m xcxcxcxccxG

Division of

polynomials

x
x

xx

xx
xx

xx

xxx

xx

1
1

1

1 1

1

2

2

3

23

24

342

2











 Quotient

Remainder

DividendDivider

Technical University Tallinn, ESTONIA

BIST: Signature Analysis

Division of one polynomial P(x) by another

G(x) produces a quotient polynomial Q(x),

and if the division is not exact, a remainder

polynomial R(x)
)(

)(
)(

)(

)(

xG

xR
xQ

xG

xP


Example:

1

1
1

1)(

)(
35

2
23

35

37











xxx

x
xx

xxx

xxx

xG

xP

Remainder R(x) is used as a check word in data transmission

The transmitted code consists of the message P(x) followed by the check word R(x)

Upon receipt, the reverse process occurs: the message P(x) is divided by known

G(x), and a mismatch between R(x) and the remainder from the division indicates

an error

Technical University Tallinn, ESTONIA

BIST: Signature Analysis

In signature testing we mean the use of CRC

encoding as the data compressor G(x) and

the use of the remainder R(x) as the signature

of the test response string P(x) from the UUT

Signature is the CRC code word
)(

)(
)(

)(

)(

xG

xR
xQ

xG

xP


Example:

1)(

)(
35

37






xxx

xxx

xG

xP

Signature

1 0 1 = Q(x) = x2 + 1

1 0 1 0 1 1 1 0 0 0 1 0 1 0

1 0 1 0 1 1

0 0 1 0 0 1 1 0

1 0 1 0 1 1

0 0 1 1 0 1 = R(x) = x3 + x2 + 1

P(x)

G(x)

Technical University Tallinn, ESTONIA

x5

BIST: Hardware for Signature Analysis

1)(

)(
35

37






xxx

xxx

xG

xP

1 0 1

1 0 1 0 1 1 1 0 0 0 1 0 1 0

1 0 1 0 1 1

0 0 1 0 0 1 1 0

1 0 1 0 1 1

0 0 1 1 0 1 = R(x) = x3 + x2 + 1

Signature

Dvision process can be

mechanized using LFSR

Divisor polynomial G(x) is

defined by the feedback

connections

x1 x2 x3 x4 x5

G(x)

Shifted into LFSRIN: 01 010001

P(x)

G(x)

Compressor

P(x)

Response

x5 x4 x3 x2 x1

11 000
0

010011

1 1 0 1 0 1

Technical University Tallinn, ESTONIA

BIST: Signature Analysis

Aliasing:

UUT
Response

SA

L N

L - test length

N - number of stages in

Signature Analyzer

Lk 2

All possible responses

Faulty

response

Correct

response

All possible signatures

Nk 2

N << L

Technical University Tallinn, ESTONIA

BIST: Signature Analysis

Aliasing:

UUT
Response

SA

L N

L - test length

N - number of stages in

Signature Analyzer

Lk 2 - number of different possible responses

No aliasing is possible for those strings with L - N leading zeros since they are

represented by polynomials of degree N - 1 that are not divisible by characteristic

polynomial of LFSR

Probability of aliasing:

12

12








L

NL

P N
P

2

1
1L

12 NL ---- Aliasing is possible

000000000000000 ... 00000 XXXXX

L N

Technical University Tallinn, ESTONIA

BIST: Signature Analysis

x2 x 1x4

x3

Parallel Signature Analyzer:

UUT

x2 x 1x4

x3

UUT
Multiple Input Signature

Analyser (MISR)

Single Input Signature Analyser

?

Technical University Tallinn, ESTONIA

BIST: Signature Analysis

Signature calculating for multiple outputs:

LFSR - Test Pattern Generator

Combinational circuit

LFSR - Signature analyzer

Multiplexer

LFSR - Test Pattern Generator

Combinational circuit

LFSR - SA

Multiplexer

Technical University Tallinn, ESTONIA

BIST Architectures

BIST

Control Unit

Circuitry Under Test

CUT

Test Pattern Generation (TPG)

Test Response Analysis (TRA)

• BIST components:

– Test pattern generator (TPG)

– Test response analyzer (TRA)

– BIST controller

• A part of a system (hardcore)

must be operational to execute a

self-test

• At minimum the hardcore usually

includes power, ground, and

clock circuitry

• Hardcore should be tested by

– external test equipment or

– it should be designed self-

testable by using various forms of

redundancy

General Architecture of BIST

Technical University Tallinn, ESTONIA

BIST: Joining TPG and SA

1 x x2 x3 x4

LFSR

UUT

Response string for

Signature Analysis

Test Pattern (when generating tests)

Signature (when analyzing test responses)

FF FF FF FF

Two functionalities of LFSR:

Technical University Tallinn, ESTONIA

Pseudorandom Test Generation

LFSR – Linear Feedback Shift Register:

Polynomial: P(x) = x4 + x3 + 1

x3x2 x4x

Why modular LFSR is useful for BIST?

UUT

Test patterns

Test

responses

Instead of BILBO we have now CSTP architecture

Technical University Tallinn, ESTONIA

BIST Architectures

Test per Clock:

Disjoint TPG and SA:

BILBO

LFSR - Test Pattern Generator

Combinational circuit

LFSR - Signature analyzer

Joint TPG and SA:

CSTP - Circular Self-Test

Path:

LFSR - Test Pattern Generator

& Signature analyser

Combinational circuit

Technical University Tallinn, ESTONIA

BIST: Circular Self-Test Architecture

Circuit Under Test

FF FFFF

Technical University Tallinn, ESTONIA

BIST: Circular Self-Test Path

CSTP CSTP

CSTP

CSTP CSTP

CC CC

CC

CC

CC

R R

Technical University Tallinn, ESTONIA

BIST Embedding Example

M1 M2

M3

M5

LFSR1

M4

MISR1

BILBO

M6

MUX

CSTP

LFSR2

MISR2

MUXLFSR, CSTP  M2  MISR1

M2  M5  MISR2 (Functional BIST)

CSTP  M3  CSTP

LFSR2  M4  BILBO

Concurrent

testing:

Technical University Tallinn, ESTONIA

BIST Architectures

Test Pattern Generator

MISR

S
c
a
n

 c
h

a
in

CUT

...

STUMPS:

Self-Testing Unit Using MISR

and Parallel Shift Register

Sequence Generator

CUT

S
c
a
n

 c
h

a
in

LOCST: LSSD On-Chip Self-Test

Error

Test

Controller
SI SO

TPG SA

CUT

BS BS

Scan Path

IC

Technical University Tallinn, ESTONIA

Scan-Based BIST Architecture

Copyright: D.Xiang 2003

PS – Phase shifter

Scan-Forest

Scan-Trees

Scan-Segments (SC)

Weighted scan-

enables for SS

Compactor - EXORs

Technical University Tallinn, ESTONIA

Problems with BIST

Time

F
a

u
lt

 C
o

v
e

ra
g

e

Problems:

• Very long test

application time

• Low fault

coverage

• Area overhead

• Additional delay

Possible solutions

• Weighted

pseudorandom test

• Combining

pseudorandom test

with deterministic data

– Multiple seed

– Bit flipping

• Hybrid BIST

Time

F
a

u
lt

 C
o

v
e

ra
g

e

The main motivations of

using random patterns

are:

- low generation cost

- high initial efeciency

Technical University Tallinn, ESTONIA

Problems with BIST: Hard to Test Faults

Time

F
a

u
lt

 C
o

v
e

r
a

g
e

Problem: Low fault coverage
The main motivations

of using random

patterns are:
- low generation cost

- high initial efeciency
1 2n-1

Patterns from LFSR:

Pseudorandom

test window:

Hard

to test

faults

1 2n-1

Dream solution: Find LFSR such that:

Hard

to test

faults

Technical University Tallinn, ESTONIA

Deterministic Synthesis of LFSR

Generation of the polynomial and seed for the given test sequence

(1) 100x0

(2) x1010

(3) 10101

(4) 01111

1) Given test

sequence:

2) Creation of the

shortest bit-stream:

10010 1 01111

1

0

This deterministic test set is generated by ATPG

However, only patterns which detects the hard-to-

test faults can be chosen

3) Expected shortest

LFSR sequence:

01111 (4)

1 0111

0 1011

1 0101 (3)

0 1010 (2)

0 0101

1 0010 (1)

Seed Shift

LFSRStates

of

the

LFSR

Technical University Tallinn, ESTONIA

Hybrid Built-In Self-Test

Hybrid test set contains

pseudorandom and

deterministic vectors

Pseudorandom test is improved

by a stored test set which is

specially generated to target the

random resistant faults

Optimization problem:

Pseudorandom Test Determ. Test

Where should be this breakpoint?

PRPG

CORE UNDER

TEST

. . .
. . .

. . .

ROM

.

SoC

Core

MISR

B
IS

T
 C

o
n

tr
o

ll
er

Deterministic patterns

Pseudorandom

patterns

Technical University Tallinn, ESTONIA

k rDET(k) rNOT(k) FC(k) t(k)

1 155 839 15.6% 104
2 76 763 23.2% 104
3 65 698 29.8% 100
4 90 608 38.8% 101
5 44 564 43.3% 99

10 104 421 57.6% 95
20 44 311 68.7% 87
50 51 218 78.1% 74

100 16 145 85.4% 52
200 18 114 88.5% 41

411 31 70 93.0% 26

954 18 28 97.2% 12

1560 8 16 98.4% 7

2153 11 5 99.5% 3

3449 2 3 99.7% 2

4519 2 1 99.9% 1

4520 1 0 100.0% 0

Optimization of Hybrid BIST

Cost of BIST:

 Total Cost

 CTOTAL

Figure 2: Cost calculation for hybrid BIST

Cost of

pseudorandom test

patterns CGEN

Number of remaining

faults after applying k

pseudorandom test

patterns  rNOT(k)

Cost of stored

test CMEM

Number of pseudorandom

test patterns applied, k

faults

faults

not detected

(fast analysis)

tests needed

(slow analysis)
PR test

length

PR test length k

tests

FAST estimation

SLOW analysis

CTOTAL =  k +  t(k)

 t(k)

 k

min CTOTAL

Det. TestPseudorandom Test
How to convert #faults to #tests

Brake point

Technical University Tallinn, ESTONIA

Deterministic Test Length Estimation

i

F

F D k (i) F P E k (i)

i *

F*

 T D E k (i) 

100%

 T D F k  j i

Fault

coverage

Number of

patterns

Deterministic test (DT)

Pseudorandom test (PT)

Deterministic test length estimation

For each PT length i* we

determine

- PT fault coverage F*, and

- the imaginable part of DT

FDk(i) to be needed for the

same fault coverage

Then the remaining part of DT

TDE
k(i) will be the estimation of

the DT length

Fast estimation for the

length of deterministic test:

Brake

point

search

Second idea for estimation:

estimating number of patterns

Technical University Tallinn, ESTONIA

k rDET(k) rNOT(k) FC(k) t(k)

1 155 839 15.6% 104
2 76 763 23.2% 104
3 65 698 29.8% 100
4 90 608 38.8% 101
5 44 564 43.3% 99

10 104 421 57.6% 95
20 44 311 68.7% 87
50 51 218 78.1% 74

100 16 145 85.4% 52
200 18 114 88.5% 41

411 31 70 93.0% 26

954 18 28 97.2% 12

1560 8 16 98.4% 7

2153 11 5 99.5% 3

3449 2 3 99.7% 2

4519 2 1 99.9% 1

4520 1 0 100.0% 0

Deterministic Test Length Estimation

Cost of BIST:

 Total Cost

 CTOTAL

Figure 2: Cost calculation for hybrid BIST

Cost of

pseudorandom test

patterns CGEN

Number of remaining

faults after applying k

pseudorandom test

patterns  rNOT(k)

Cost of stored

test CMEM

Number of pseudorandom

test patterns applied, k

faults

faults not

detected

(fast analysis)

tests needed

(slow analysis)
PR test

length

PR test length k

tests

FAST estimation

SLOW analysis

CTOTAL =  k +  t(k)

 t(k)

 k

min CTOTAL

Det. TestPseudorandom Test
How to convert #faults to #tests

Brake point

Technical University Tallinn, ESTONIA

Calculation of the Deterministic Test Cost

Two possibilities to find the length of deterministic data for each

possible breakpoint in the pseudorandom test sequence:

ATPG based approach

For each breakpoint of P-
sequence, ATPG is used

Fault table based approach

A deterministic test set with fault
table is calculated

For each breakpoint of
P-sequence, the fault table is
updated for not yet detected
faults

FAST estimation
Only fault coverage is calculated

ATPG

Detected

Faults

All PR patterns?

Yes

End

No

Next PR

pattern

ATPG based:

ATPG

Fault table

update

All PR patterns?

Yes

End

No

Next PR

pattern

Fault table based:

Technical University Tallinn, ESTONIA

Calculation of the Deterministic Test Cost

ATPG based approach

For each breakpoint of P-sequence, ATPG is used

ATPG

Detected

Faults

All PR patterns?

Yes

End

No

Next PR

pattern

ATPG based:

R1 R2 Rk Rk+1 Rk+2 Rn

Faults

detected

by

pseudo-

random

patterns

New detected

faults

Task for

ATPG

Task for

fault

simulator

Faults to be

detected

by

deterministic

patterns

T1

T2

.

.

.

.

Tn

Tn+1

Tp

Brake point

Technical University Tallinn, ESTONIA

Calculation of the Deterministic Test Cost

ATPG

Fault table

update

All PR patterns?

Yes

End

No

Next PR

pattern

Fault table based: T1

T2

.

.

.

.

Tn

Tn+1

Tp

R1 R2 Rk Rk+1 Rk+2 Rn

Faults

detected

By

pseudo-

random

patterns

To be detected

faults

Task for

fault

simulator

Fault table based approach

A deterministic test set with fault table is calculated

For each breakpoint of P-sequence, the fault table is updated and remaining det.
patterns are determined

Fault table

for full

deterministic

test

Updated

fault

tabel

Find deteministic patterns

to update the

pseudorandom test

Technical University Tallinn, ESTONIA

Calculation of the Deterministic Test Cost

ATPG

Fault table

update

All PR patterns?

Yes

End

No

Next PR

pattern

Fault table based:

Fault table based approach

A deterministic test set with fault table is calculated

For each breakpoint of P-sequence, the fault table is updated and remaining det.
patterns are determined

Pseudo-random

patterns

Deterministic

patterns
Fault table

coverage

P3

P2

P1

D1

D3

D2

Technical University Tallinn, ESTONIA

Experimental Data: HybBIST Optimization

Pseudorandom Test Det. Test

Finding optimal brakepoint in the pseudorandom sequence:

LMAX

LOPT SMAX
SOPT

Pseudorandom Test Det. TestOptimized hybrid test process:

Circuit LMAX LOPT SMAX SOPT Bk CTOTAL

C432 780 91 80 21 4 175

C499 2036 78 132 60 6 438

C880 5589 121 77 48 8 505

C1355 1522 121 126 52 6 433

C1908 5803 105 143 123 5 720

C2670 6581 444 155 77 30 2754

C3540 8734 297 211 110 7 1067

C5315 2318 711 171 12 23 987

C6288 210 20 45 20 4 100

C7552 18704 583 267 61 51 3694

Technical University Tallinn, ESTONIA

Hybrid BIST with Reseeding

Time

F
a

u
lt

 C
o

v
e

r
a

g
e

Problem: low fault coverage  long PR testThe motivation of using

random patterns is:

- low generation cost

- high initial efeciency

1 2n-1

Solution: many seeds:
Pseudorandom

test:

Hard

to test

faults

1 2n-1

Pseudorandom

test:

Technical University Tallinn, ESTONIA

Hybrid BIST with Reseeding

1 2n-1

Using many seeds:
Pseudorandom test (with diferent polynomials):

Problems:

Which polynomials and

seeds should be used for

the blocks?

Technical University Tallinn, ESTONIA

Store-and-Generate Test Architecture

• ROM contains deterministic data for BIST control to target hard-to-test-faults

• Each pattern Pk in ROM serves as an initial state of the LFSR for test pattern
generation (TPG) - seeds

• Counter 1 counts the number of pseudorandom patterns generated starting
from Pk - width of the windows

• After finishing the cycle for Counter 2 is incremented for reading the next
pattern Pk+1 – for starting the new window

Pseudorandom test windows

Seeds

ROM TPG UUT

ADR

Counter 2 Counter 1

RD

CL

Seeds

Window# seeds

Technical University Tallinn, ESTONIA

Store-and-Generate vs. Hybrid BIST

UUT

ROM

Hybrid BIST method

Deterministic test pattern

Seed

Store and generate method (Reseeding)

LFSR

Technical University Tallinn, ESTONIA

HBIST Optimization Problem

1 2n-1

Using many seeds:
Pseudorandom test:

Deterministic

test (seeds):

Pseudo-

random

sequences:

Block

size:

Seed 1

Seed 1

Seed 2

Seed 2

Seed n
Seed n

Constraints

Problems:

How to calculate the

number and size of

blocks?

Which deterministic

patterns should be the

seeds for the blocks?

Minimize L at given M and

L

Memory

100% FC

100% FC

Technical University Tallinn, ESTONIA

Hybrid BIST Optimization Algorithm 1

ATPG patterns

Pattern selection
PR

i

Pseudorandom
sequence

FC(PR
i
)

Modified
ATPG pattern

table

Detected faults subtraction,
optimization of ATPG patterns

Deterministic test patterns

with 100% quality are

generated by ATPG

The best pattern is selected

as a seed

A pseudorandom block is

produced and the fault table

of ATPG patterns is updated

The procedure ends when

100% fault coverage is

achieved

Algorithm is based on

D-patterns ranking

D-patterns are ranked

Technical University Tallinn, ESTONIA

Hybrid BIST Optimization Algorithm 2

Deterministic test patterns

with 100% quality are

generated by ATPG

All P-blocks are generated

for all D-patterns and

ranked

The best P-block is selected

included into sequence and

updated

The procedure ends when

100% fault coverage is

achieved

…

…

PTmin

PT*

Deterministic test vector (seed) DTi
Pseudorandom test sequence PRi

Pseudorandom sequence removed with the
block length optimization

Algorithm is based on

P-blocks ranking

P-blocks are ranked

Technical University Tallinn, ESTONIA

Cost Curves for Hybrid BIST with Reseeding

C1908

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 500 1000 1500 2000 2500 3000

0

20

40

60

80

100

120

140

Test length L Memory cost M

M(b)

L1(b)

L2(b)

Block size

b

Two possibilities for reseeding:

Constant block length (less HW overhead)

Dynamic block length (more HW overhead)

Technical University Tallinn, ESTONIA

Functional Self-Test

• Traditional BIST solutions use special hardware for pattern

generation on chip, this may introduce area overhead and

performance degradation

• New methods have been proposed which exploit specific functional

units like arithmetic blocks or processor cores for on-chip test

generation

• It has been shown that adders can be used as test generators for

pseudorandom and deterministic patterns

• Today, there is no general method how to use arbitrary functional

units for built-in test generation

Technical University Tallinn, ESTONIA

Hybrid Functional BIST

• To improve the quality of FBIST we introduce the method of
Hybrid FBIST

• The idea of Hybrid FBIST consists in using the mixture of

– functional patterns produced by the microprogram (no additional HW is
needed), and

– additional stored deterministic test patterns to improve the total fault
coverage (HW overhead: MUX-es, Memory)

• Tradeoffs should be found between

– the testing time and

– the HW/SW overhead cost

Technical University Tallinn, ESTONIA

Example: Functional BIST for Divider

Register

block

Control

ALU

Signature analyser

Functional

test

Data

K

Samples from N=120 cycles

K*N
Fault

simulator

Fault

coverage

Test patterns (samples) are

produced on-line

during the working mode

DB=64

SB=105

Data

compression:

N*SB / DB = 197

Functional BIST quality analysis for

K pairs of operands B1, B2

Technical University Tallinn, ESTONIA

Example: Functional BIST Quality for Divider

Fault coverage of FBIST compared to Functional test

Functional testing Functional BIST
Data

B1 B2 Total B1 B2 Total

4/2 13.21 15.09 14.15 35.14 40.57 29.72

7/2 21.23 16.98 19.10 38.44 47.64 29.25

6/3 19.34 31.6 25.47 41.04 39.62 42.45

8/2 25.47 10.38 17.92 32.07 40.57 25.00

9/4 8.96 5.66 7.31 36.56 47.64 25.47

9/3 32.55 26.89 29.72 43.63 46.07 40.57

12/6 13.44 8.02 18.87 36.08 39.62 32.55

14/2 18.16 25.00 11.32 37.50 49.06 25.94

15/3 29.48 31.13 27.83 47.88 50.00 45.75

2/4 7.8 7.55 8.02 29.01 20.75 33.02

Aver. 18.96 17.83 17.97 37.74 42.15 32.97

Gain 1.0 1.0 1.0 2.0 2.4 1.8

Reference

Result


Go/NoGo

UUT

Reference

Result


Go/NoGo

UUT

Signature

Traditional

Functional

test
FBIST

FBIST: collection and analysis of samples during the working mode

Fault coverage is better, however, still very low (ranging from 42% to 70%)

HW

overhead

Technical University Tallinn, ESTONIA

Hybrid Built-In Self-Test

Hybrid test set contains

pseudorandom and

deterministic vectors

Pseudorandom test is improved

by a stored test set which is

specially generated to target the

random resistant faults

Optimization problem:

Pseudorandom Test Determ. Test

Where should be this breakpoint?

PRPG

CORE UNDER

TEST

. . .
. . .

. . .

ROM

.

SoC

Core

MISR

B
IS

T
 C

o
n

tr
o

ll
er

Deterministic patterns

Pseudorandom

patterns

Technical University Tallinn, ESTONIA

Hybrid Functional BIST for Divider

Register

block
ALU

Signature analyser

Deterministic

test set

Data

K

M
Automatic

Test Pattern

Generator

Random

resistant

faults

Test patterns are

stored in the

memory

MUX

Register

block
ALU

Signature analyser

Deterministic

test set

Data

K

M
Automatic

Test Pattern

Generator

Random

resistant

faults

Test patterns are

stored in the

memory

MUX

Hybrid Functional BIST implementation

Pseudorandom Test Determ. Test

Where should be this breakpoint?

Technical University Tallinn, ESTONIA

Cost Functions for Hybrid Functional BIST

Total cost:

CTotal = CFB_Total +CD_Total

The cost of functional test part:

CFB_Total = CFB_Const + CFB_T + CFB_M

The cost of deterministic test part:

CD_Total = CD_Const + CD_T + CD_M

CFB_Const, CD_Const - HW/SW overhead

CFB_T, CD_T - testing time cost

,  - weights of time and

memory expenses

CFB_T + CFB_M

CD_Const

Cost

CTotal = CFB_Total +CD_Total

CFB_Const

Length of

FBIST

Opt.

cost

Opt. length

CD_T + CD_M

Problem: minimize CTotal

Technical University Tallinn, ESTONIA

Functional test part
Determ. test

part Total

cost
k Nj N

FC

%

Total

cost
D

Total

cost

0 0 0 100 0 58 6148 6148

1 108 108 66,8 140 24 2544 2684

2 105 213 76,7 277 18 1908 2185

3 113 326 83,3 518 17 1802 2320

4 108 434 85,5 690 16 1696 2386

5 110 544 88,4 864 15 1590 2454

Hybrid Functional BIST Quality

k – number of

operands used

in the FBIST

The fault

coverage

increases if

k increases

Hyb FBIST with multiple seeds (data operands)

Technical University Tallinn, ESTONIA

Functional Self-Test with DFT

Example: N-bit multiplier

Register

block
ALU

Signature analyser

Data

K

N cycles

T

MUX

F

Improving

controllability

EXOR

Improving

observability

Technical University Tallinn, ESTONIA

Hybrid BIST for Multiple Cores

SoC

 C3540

 C1908 C880 C1355

Embedded Tester
 C2670

Test access
mechanismBIST BIST

BISTBISTBIST

Test
Control ler

Tester
Memory

Embedded tester for testing multiple cores

Deterministic

test patterns:

C880

C1355

C1908

C2670

C3540

Pseudorandom

or functional

test patterns

generated

on-line

Technical University Tallinn, ESTONIA

Hybrid BIST for Multiple Cores

Deterministic test (DT)

Pseudorandom test (PT)

How to pack

knapsack?

How to

compress the

test sequence?

Technical University Tallinn, ESTONIA

Total Test Cost Estimation

COST P,k

COST T,k

COST

j

COST D,k

j min

COST
E*
T

j* k

Solution

E

E

DT cost

Pseudorandom test

(PT) length

Total cost

PT cost

Total cost

solution

Using total cost solution

we find the PT length:

Using PT length, we calculate

the test processes for all cores:

PT length solution

136

86

40

19

48

50

46

21

13

25

6

4

4

2

73

123

169

205

203

190

0 50 100 150 200

c499

c1355

c5315

c1908

c880

c6288

c432
Deterministic

Pseudorandom

Total Test

Technical University Tallinn, ESTONIA

Cost of BIST:

 Total Cost

 CTOTAL

Figure 2: Cost calculation for hybrid BIST

Cost of

pseudorandom test

patterns CGEN

Number of remaining

faults after applying k

pseudorandom test

patterns rNOT(k)

Cost of stored

test CMEM

Number of pseudorandom

test patterns applied, k

faults

PR test length k

tests

FAST estimation

SLOW analysis

CTOTAL =  k +  t(k)

 t(k)

 k

min CTOTAL

Det. TestPseudorandom Test

How to avoid the calculation of

the very expensive full DT  t(k)

cost curve?

Two problems:

1) Calculation of DT  t(k)

cost is difficult

2) We have to optimize n (!)

processes

Multi-Core Hybrid BIST Optimization

Technical University Tallinn, ESTONIA

Deterministic Test Length Estimation

i

F

F D k (i) F P E k (i)

i *

F*

 T D E k (i) 

100%

 T D F k  j i

Fault coverage

Pseudorandom

test length

Deterministic test (DT)

Pseudorandom test (PT)

Deterministic test length estimation for a single core

For each PT length i* we

determine

- PT fault coverage F*, and

- the imaginable part of DT

FDk(i) to be used for the

same fault coverage

Then the remaining part of DT

TDE
k(i) will be the estimation of

the DT length

Solution of the first

problem:

Technical University Tallinn, ESTONIA

Deterministic Test Cost Estimation

0

2000

4000

6000

8000

Memory usage: 5357 bits

1000 1500500

5500

542

M
e

m
o

ry
 (

b
it

s
)

Memory usage:

1353

480

1025

363

2136

0

0

Core name:

c499

c880

c1355

c1908

c5315

c6288

c432

 Deterministic

time:

33

8

25

11

12

0

0

Total Test Lenght (clocks)

Estimated Cost
Real Cost

Cost Estimates

for Individual Cores

Memory Constraint

Core costs

Real cost

Estimated cost

DT cost

Total

test

length

Total cost calculation of core costs:

Constraint

Solution

Technical University Tallinn, ESTONIA

Total Test Cost Estimation

COST P,k

COST T,k

COST

j

COST D,k

j min

COST
E*
T

j* k

Solution

E

E

DT cost

Pseudorandom test

(PT) length

Total cost

PT cost

Total cost

solution

Using total cost solution

we find the PT length:

Using PT length, we calculate

the test processes for all cores:

PT length solution

136

86

40

19

48

50

46

21

13

25

6

4

4

2

73

123

169

205

203

190

0 50 100 150 200

c499

c1355

c5315

c1908

c880

c6288

c432
Deterministic

Pseudorandom

Total Test

Technical University Tallinn, ESTONIA

Multi-Core Hybrid BIST Optimization

Iterative optimization process:

1 - First estimation

1* - Real cost calculation

2 - Correction of the estimation

2* - Real cost calculation

3 - Correction of the estimation

3* - Final real cost

G.Jervan, P.Eles, Z.Peng, R.Ubar, M.Jenihhin. Test Time Minimization for Hybrid BIST of

Core-Based Systems. Asian Test Symposium 2003, Xi’an, China, November 17-19, 2003,

Technical University Tallinn, ESTONIA

Optimized Multi-Core Hybrid BIST

Pseudorandom test is carried out in parallel,

deterministic test - sequentially

Technical University Tallinn, ESTONIA

Test-per-Scan Hybrid BIST

Embedded Tester

Test
Control ler

Tester
Memory

Scan Path

Scan Path

Scan Path

Scan Path

L
F

S
R

L
F

S
R

Scan Path

Scan Path

Scan Path

Scan Path

L
F

S
R

L
F

S
R

Scan Path

Scan Path

Scan Path

Scan Path

Scan Path

Scan Path

Scan Path

Scan Path

L
F

S
R

L
F

S
R

L
F

S
R

L
F

S
R

s838s1423

s3271 s298

SoC

TAM

Deterministic

tests can only

be carried out

for one core at a

time

Only one test

access bus at

the system level

is needed.

Every core’s BIST logic is capable to produce a set of independent pseudorandom test

The pseudorandom test sets for all the cores can be carried out simultaneously

Technical University Tallinn, ESTONIA

Bus-Based BIST Architecture

• Self-test control broadcasts patterns to each CUT over bus –

parallel pattern generation

• Awaits bus transactions showing CUT’s responses to the

patterns: serialized compaction

Source: VLSI Test: Bushnell-Agrawal

Technical University Tallinn, ESTONIA

Broadcasting Test Patterns in BIST

Concept of test pattern sharing via novel scan structure – to

reduce the test application time:

... ...

CUT 1 CUT 2

... ...

CUT 1 CUT 2

Traditional single scan design Broadcast test architecture

While one module is tested by its test patterns, the same test

patterns can be applied simultaneously to other modules in the

manner of pseudorandom testing

Technical University Tallinn, ESTONIA

Broadcasting Test Patterns in BIST

Examples of connection possibilities in Broadcasting BIST:

CUT 1 CUT 2 CUT 1 CUT 2

j-to-j connections Random connections

Technical University Tallinn, ESTONIA

Broadcasting Test Patterns in BIST

... ...

CUT 1 CUT n

Scan configurations in Broadcasting BIST:

...

MISR

Scan-In

Scan-Out

... ...

... ...

CUT 1 CUT n

MISR 1

Scan-In

Scan-Out

... ...

MISR n

Common MISR Individual and multiple MISRs

Technical University Tallinn, ESTONIA

Software BIST

To reduce the hardware
overhead cost in the BIST
applications the hardware LFSR
can be replaced by software

Software BIST is especially
attractive to test SoCs, because
of the availability of computing
resources directly in the system
(a typical SoC usually contains

at least one processor core)

SoC ROMCPU Core

LFSR1: 001010010101010011

N1: 275

LFSR2: 110101011010110101

N2: 900

...

load (LFSRj);

 for (i=0; i<Nj; i++)

 ...

end;

Core j Core j+1
Core j+...

Software based test generation:

The TPG software is the same for all cores and is stored as a single copy

All characteristics of the LFSR are specific to each core and stored in the ROM

They will be loaded upon request.

For each additional core, only the BIST characteristics for this core have to be stored

Technical University Tallinn, ESTONIA

Embedded Built-in Self-Diagnosis (BISD)

• Introduction to Fault Diagnosis
– Combinational diagnosis (effect-cause approach)

– Sequential (adaptive) diagnosis (cause-effect approach)

• General conception of embedded BISD

• Diagnostic resolution

– Intersection based on test subsequences

– Intersection based on using signature analyzers

• Fault model free diagnosis

• Fault evidence based diagnosis

Research in ATI© Raimund Ubar

147/24

Diagnosis
method

Fault table
Test

result

Devil’s
advocate
approach

Tested faults Passed

Tested faults Failed

Tested faults Failed

Why Fault Masking is Important Issue?

Single fault
assumption

Fault
candi-
dates

Diagnosis

Multiple
faults

allowed
? Fault candidates

Angel’s
advocate

Proved OK
Fault

candidates

Technical University Tallinn, ESTONIA

Fault Diagnosis

F1 F2 F3 F4 F5 F6 F7

T1 0 1 1 0 0 0 0

T2 1 0 0 1 0 0 0

T3 1 1 0 1 0 1 0

T4 0 1 0 0 1 0 0

T5 0 0 1 0 1 1 0

T6 0 0 1 0 0 1 1

Fault F5 located

Fault table

E1 E2 E3

0 0 1

0 1 0

0 1 0

1 0 1

1 0 1

0 0 0

Test experiment

Test generation

Fault simulation

Fault diagnosis

Fault

modeling

Testing

How many

rows

and

columns

should be

in the

Fault Table?

Technical University Tallinn, ESTONIA

Sequential Fault Diagnosis

Sequential fault diagnosis by Edge-Pin Testing (cause-effect)

T1 F1,F4,F5,F6,F7

P
T2

P
F1,F4

F2, F3 T3

P
F3

F

F

F2

F

F5,F6,F7 T3

P
F5,F7

F

F6

T4

P
F7

F

F5

F1,F2

F3,F4

F5,F6

F7

F1 F2 F3 F4 F5 F6 F7

T1 0 1 1 0 0 0 0

T2 1 0 0 1 0 0 0

T3 1 1 0 1 0 1 0

T4 0 1 0 0 1 0 0

T5 0 0 1 0 1 1 0

T6 0 0 1 0 0 1 1

Two faults F1,F4 remain indistinguishable

Not all test patterns used in the fault table

are needed

Different faults need for identifying test

sequences with different lengths

The shortest test contains two patterns,

the longest four patterns

Diagnostic tree

Technical University Tallinn, ESTONIA
4/20

BISD scheme:

Test Pattern Generator

(TPG)

Circuit Under Diagnosis

(CUD)

.

Output Response
Analyser (ORA)

.

BISD

Control Unit

Pattern Signature Faults
............

............

............

............

............

............

............

............

Test patterns

............

............

............

............

............

............

............

............

May 11-14, 2008 26th International Conference on Microelectronics, Niš, Serbia

Diagnostic Points (DPs) –

patterns that detect new faults

Further minimization of DPs –

as a tradeoff with diagnostic

resolution

Pseudorandom test

sequence:

Embedded BIST Based Fault Diagnosis

Technical University Tallinn, ESTONIA

Built-In Fault Diagnosis

 Test Pattern Generator

 (TPG)

Circuit Under Test

 (CUT)

.

Output Response

Analyser (ORA)

.

BIST

Control Unit

Test patterns

Number Signature Faults
............
............
............
............
............
............
............
............

Test patterns

Number Signature Faults
............
............
............
............
............
............
............
............

Faulty signature

1. test 2. test 3. test

3. test

Faulty

signature

Correct

signature

Diagnosis procedure:

Pseudorandom test sequence

Technical University Tallinn, ESTONIA

Introduction to Information Theory

Entropy HX of a discrete random variable X

is a measure of the amount of uncertainty

associated with the value of X

I = - p log2 p – (1-p) log2 (1-p)

p – probability of detecting a fault

HX = - p log2 p – (1-p) log2 (1-p)

where pi is the probability of occurrence of

the i-th possible value of the source symbol;

(the entropy is given in the units of "bits"

(per symbol) because it uses log of base 2)

Technical University Tallinn, ESTONIA

Built-In Fault Diagnosis

№ All faults New faults Coverage

1 5 5 16.67%

2 15 10 50.00%

3 16 1 53.33%

4 17 1 56.67%

5 20 3 66.67%

6 21 1 70.00%

7 25 4 83.33%

8 26 1 86.67%

9 29 3 96.67%

10 30 1 100.00%

Pseudorandom test fault

simulation (detected faults)

Binary search with

bisectioning of test patterns

5

1

7

8

6
9

1010

1

1
5

1

3

1

2

3

41

3 4

Average number of test sessions: 3,3

Average number of clocks: 8,67

I = - p log2 p – (1-p) log2 (1-p)

Measuring of information we

get from the test:

ERROR OK

p – probability of detecting a fault

Technical University Tallinn, ESTONIA

Built-In Fault Diagnosis

№ All faults New faults Coverage

1 5 5 16.67%

2 15 10 50.00%

3 16 1 53.33%

4 17 1 56.67%

5 20 3 66.67%

6 21 1 70.00%

7 25 4 83.33%

8 26 1 86.67%

9 29 3 96.67%

10 30 1 100.00%

Pseudorandom test fault

simulation (detected faults)

2

61

105 5

4

3

8

7 9

10

1

3 4

1

1

1
3

1

Binary search with

bisectioning of faults

Average number of test sessions: 3,06

Average number of clocks: 6,43

ERROR OK

Technical University Tallinn, ESTONIA

Built-In Fault Diagnosis

Test pattern generator

CUD

SA1 SA2 SA3

Fault

Diagnosis with multiple signatures

(based on reasoning of spacial information):

SA1

SA2

SA3

D1
D2

D3

D4

D5 D6

D7

Technical University Tallinn, ESTONIA

Built-In Fault Diagnosis

1 1 1

1 1 1

0 0 1

0 0 1

0 1 1

h

i

k

l

v

R1

R1’’’

R3

No Codeword Diagnosis

0 1 1j R2

R1’, R2’, R3’

R1’’, R2’’

v

P

F/111
k

F/011

i

j

F/011

F/111

l R3

R2

h R1

R1’’’

R1’’, R2’’

F/001

R1’, R2’, R3’

Diagnostic tree

P

P

F/001

Diagnosis with multiple signatures:

Technical University Tallinn, ESTONIA

Test pattern generator

CUD

SA1 SA2 SA3

Fault

Built-In Fault Diagnosis

BIST with multiple

signature analyzers

Faulty signature

Faulty

signature

Correct

signature

Intersection

using tests

Optimization in

time dimension

Optimization of the interface between

CUD and SA-s

SA1

SA2

SA3

D1
D2

D3

D4

D5 D6

D7

Intersection

using SA-s

Optimization in

space dimension

Technical University Tallinn, ESTONIA

Built-In Fault Diagnosis

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

120.0

130.0

140.0

150.0

160.0

170.0

180.0

190.0

200.0

210.0

220.0

230.0

240.0

1 2 3 4 5 6 7 8 9 10 ALL

Failed patterns

A
v

e
ra

g
e

 r
e

s
o

lu
ti

o
n

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

A
v

e
ra

g
e

 t
e

s
t

le
n

g
th

1 SA Resolution 5 SA Resolution 10 SA Resolution

1 SA Test length 5 SA Test length 10 SA Test length

Optimal

number of

failed

patterns

Gain in

speed of

diagnosis

Diagnosis with multiple

signatures:

Measured:

- average resolution

- average test length

Compared: 1SA, 5SA, 10SA

Gain in test length: 6 times

R.Ubar, S.Kostin, J.Raik. Embedded Fault

Diagnosis in Digital Systems with BIST.

J. of Microprocessors and Microsystems,

Volume 32, August 2008, pp. 279-287.

Technical University Tallinn, ESTONIA

Extended Fault Models

Defect

Extensions of the parallel critical path tracing for two large

general fault classes for modeling physical defects:

0

1

0

1

Conditional fault

Pattern fault

Constrained SAF

Single faulty signal

X-fault

Byzantine fault

Bridges

Stuck-opens

Multiple faulty signal

Resistive bridge fault

SAF

Multiple

fault

Fault-Model Free Fault Diagnosis

Combined cause-effect and

effect-cause diagnosis

Faulty system

Faulty
area

Faulty
area

Faulty
block

Failing
test

patternsTest

Fault
1) Cause-Effect
Fault Diagnosis
Suspected faulty area is
located based on the
fault table (dictionary)

2) Effect-Cause
Fault Diagnosis
Faulty block is located in the
suspected faulty area

3) Fault Reasoning
Failing test patterns are mapped
into the suspected defect or into a
set of suspected defects in the
faulty block

Effect

Cause

Effect

Cause

CREDES Summer School© Raimund Ubar

Practical Use of Boolean Differences

Shortx1

x2

x3

x4

x5

y))((53241 xxxxxyd 

54321 xxxxxy Correct function:

Faulty function:

A transistor fault causes a change in a logic

function not representable by SAF model

Defect variable: d =
0 – defect d is missing

1 – defect d is present

)()(* dydyy d 

Generic function with defect:

Mapping the physical defect onto the

logic level by solving the equation:
1

*






d

y
161

CREDES Summer School© Raimund Ubar

Fault Table: Mapping Defects to Faults
Input patterns tj

i Fault di Erroneous function f
di

pi

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 B/C not((B*C)*(A+D)) 0.010307065 1 1 1 1

2 B/D not((B*D)*(A+C)) 0.000858922 1 1 1 1

3 B/N9 B*(not(A)) 0.043375564 1 1 1 1 1 1 1

4 B/Q B*(not(C*D)) 0.007515568 1 1 1 1 1 1 1 1 1

5 B/VDD not(A+(C*D)) 0.001717844 1 1 1

6 B/VSS not(C*D) 0.035645265 1 1 1

7 A/C not((A*C)*(B+D)) 0.098990767 1 1 1 1

8 A/D not((A*D)*(B+C)) 0.013098561 1 1 1 1

9 A/N9 A*(not(B)) 0.038651492 1 1 1 1 1 1 1

10 A/Q A*(not(C*D)) 0.025982392 1 1 1 1 1 1 1 1 1

11 A/VDD not(B+(C*D)) 0.000214731 1 1 1

12 C/N9 not(A+B+D)+(C*(not((A*B)+D))) 0.020399399 1 1 1 1 1

13 C/Q C*(not(A*B)) 0.033927421 1 1 1 1 1 1 1 1 1

14 C/VSS not(A*B) 0.005153532 1 1 1

15 D/N9 not(A+B+C)+(D*(not((A*B)+C))) 0.007730298 1 1 1 1 1

16 D/Q D*(not(A*B)) 0.149452437 1 1 1 1 1 1 1 1 1

17 N9/Q not((A*B)+(B*C*D)+(A*C*D)) 0.143654713 1

18 N9/VDD not((C*D)+(A*B*D)+(A*B*C)) 0.253382006 1

19 Q/VDD SA1 at Q 0.014386944 1 1 1 1 1 1 1

20 Q/VSS SA0 at Q 0.095555078 1 1 1 1 1 1 1 1 1

&

&

1

A

B

C

D

Y

CREDES Summer School© Raimund Ubar

Generalization: Functional Fault Model

d = 1, if the defect is present

y
Component

F(x1,x2,…,xn)

Defect

Wd

Logical constraints

1
*







d

y
W d

Fault-free Faulty

d

n dFFddxxxFy ),,...,,(** 21

Constraints calculation:

Conditional Stuck-at-Fault model

Constrained SAF

Fault model:

(dy,Wd)

SAF

Constraint

SAF

All

constraints

for all

defects

(dy,{Wk
d})

Technical University Tallinn, ESTONIA

Diagnosis of Fault Model Free Defects

Real test

experiment
Simulation

Faulty machine

FM(f)

Circuit Under

Diagnosis

Test pattern t

Fault

f

Copyright: H.J.Wunderlich 2007

t

t

lt

Fault evidence:

for test pattern t

e(f,t) = (t , t, lt, t)

t = min (t, lt)

for full test T (sum)

e(f,T) = ( , , l, )

Erroneus outputsCorrect outputs

Technical University Tallinn, ESTONIA

Diagnosis of Fault Model Free Defects

Copyright: H.J.Wunderlich 2007

Real test

experiment
Simulation

Faulty machine

FM(f)

Circuit Under

Diagnosis

Test pattern t

Fault

ft

t

lt

Classic model
lt t t

Single SAF 0 0 0

Multiple SAF 0 >0 0

Single conditional SAF >0 0 0

Multiple cond. SAF >0 >0 0

Delay fault >0 0 >0

General case >0 >0 >0

Different classical fault cases

Technical University Tallinn, ESTONIA

Diagnosis of Fault Model Free Defects

Copyright: H.J.Wunderlich 2007

Real test

experiment
Simulation

Faulty machine

FM(f)

Circuit Under

Diagnosis

Test pattern t

Fault

f
t

Classic model
lt t t

Single SAF 0 0 0

Multiple SAF 0 >0 0

Single conditional SAF >0 0 0

Multiple cond. SAF >0 >0 0

Delay fault >0 0 >0

General case >0 >0 >0

Different classical fault cases

d

Defect

Technical University Tallinn, ESTONIA

Diagnosis of Fault Model Free Defects

Copyright: H.J.Wunderlich 2007

Real test

experiment
Simulation

Faulty machine

FM(f)

Circuit Under

Diagnosis

Test pattern t

Fault

f
t

t

Classic model
lt t t

Single SAF 0 0 0

Multiple SAF (defects) 0 >0 0

Single conditional SAF >0 0 0

Multiple cond. SAF >0 >0 0

Delay fault >0 0 >0

General case >0 >0 >0

Different classical fault cases

d2

Multiple

defects

d1

Technical University Tallinn, ESTONIA

Diagnosis of Fault Model Free Defects

Copyright: H.J.Wunderlich 2007

Real test

experiment
Simulation

Faulty machine

FM(f)

Circuit Under

Diagnosis

Test pattern t

Fault

ft

Classic model
lt t t

Single SAF 0 0 0

Multiple SAF 0 >0 0

Single conditional SAF >0 0 0

Multiple cond. SAF >0 >0 0

Delay fault >0 0 >0

General case >0 >0 >0

Different classical fault cases

d

Defect

lt
Condition

Condition

Defect

Technical University Tallinn, ESTONIA

Fault Diagnosis Without Fault Models

Defective

area

dy

Reverse

defect

mapping

x1

x2

x3

x4

x5

System level

Wd

Logic level

Error

detection

Defect

Error (defective area) diagnosis

&

&

&

1

&

&

&

R2M3

+M1

*M2

R
1

IN

Logic level

Transistor level

RT Level

Technical University Tallinn, ESTONIA

Diagnosis of Fault Model Free Defects

Copyright: H.J.Wunderlich 2007

Real test

experiment
Simulation

Faulty machine

FM(f)

Circuit Under

Diagnosis

Test pattern t

Fault

ft

t

lt

Ranking
(on the top the most

suspicious faults):

(1) By increasing T

(single SAF on top)

(2) If T are equal then

by decreasing T

(3) If T and T are

equal then by

increasing lT

t = min (t, lt)

SAF T T lT

f1 0 42 0

f2 30 42 15

f3 30 42 25

f4 30 42 30

f5 30 36 38

f6 38 23 22

f7 38 23 23

Example:

Technical University Tallinn, ESTONIA

Fault Tolerance: Error Detecting Codes

System

Checker Not eligible code

Examples:

Decimal digits:

Eligible: 0,1,2,..., 9

Not eligible: 10,11,..., 15

Parity check: 00 0 0 1

01 1 3 2

10 1 5 4

11 0 6 7

Parity bit

Eligible

Not
eligible

Technical University Tallinn, ESTONIA

Error Detecting/Correcting Codes

d

Hamming distance between codes:
Minimal number of bits

how two codes differ

from each other

Eligible

codes

Eligible

codes

Not eligible codes

Parity check: 00 0 0 1

01 1 3 2

10 1 5 4

11 0 6 7

Parity bit

Eligible

Not
eligible

101

100

111

001

110

011

000

d = 2

010

Technical University Tallinn, ESTONIA

Error Detecting/Correcting Codes

d=2
Eligible

codes

Eligible

codes

Not eligible codes

Error detecting codes: Error correcting codes:

Error

detection:

direction

unknown

Error correction is

possible: direction

is knownd=3

Eligible

codes

Detection

not possible

Correction

not possible

Technical University Tallinn, ESTONIA

Fault Tolerance: Error Correcting Codes

d = 2e + 1 - 2e - error detection

e - error correction

One error correction code: 2c  q + c + 1

Error free

q c

For addressing of the

erroneous bit

Check bits

Information bits

Technical University Tallinn, ESTONIA

Fault Tolerance: One Error Correcting Code

Location of erroneous bit:

Check bits

b2
i, i = 1,...,c

1234567

P1 = b1  b3  b5  b7 = 0

P2 = b2  b3  b6  b7 = 0

P3 = b4  b5  b6  b7 = 0

Analogy with fault diagnosis

by using fault table:

7 6 5 4 3 2 1 0

1 1 11

1 1 11

1 111

P1

P2

P3

Received code

Test

0

0

1

Diagnosis

1011101

1010101 Initial code

Check bits have to be independently assigned

7 6 5 4 3 2 1

Technical University Tallinn, ESTONIA

Fault Tolerant Communication System

Initial code

Check-bits

generator
Sender Receiver

Error

correction

code

Checker

Error

correction

(restoring)

Error

indication

Received

correct code

Technical University Tallinn, ESTONIA

Error Detection in Arithmetic Operations

Residue codes

N – information code

C = (N) mod m - check code

m – residue of the code

p = log2 m  – number of check bits

Example

Information bits: I2, I1, I0

m = 3, p = 2

Check bits: c1, c0

I2 I1 I0 I c c1 c0

0 0 0 0 0 0 0

0 0 1 1 1 0 1

0 1 0 2 2 1 0

0 1 1 3 0 0 0

1 0 0 4 1 0 1

1 0 1 5 2 1 0

1 1 0 6 0 0 0

1 1 1 7 1 0 1

Information bits

Check bits

Technical University Tallinn, ESTONIA

Error Detection in Arithmetic Operations

Addition:

Information bits Check bits

0 0 1 0 1 0 2.2

0 1 0 0 0 1 4.1

0 1 1 0 1 1 6.3

(6)mod3 = 0 (3)mod3 = 0

Multiplication:

Information bits Check bits

0 0 1 0 1 0 2.2

0 1 0 0 0 1 4.1

1 0 0 0 1 0 8.2

(8)mod3 = 2 (2)mod3 = 2

Information bits Check bits

0 0 1 0 1 0 2.2

0 1 0 0 0 1 4.1

0 1 0 0 1 1 4.3

(4)mod3 = 1 (3)mod3 = 0

Error!

Information bits Check bits

0 0 1 0 1 0 2.2

0 1 0 0 0 1 4.1

1 0 0 1 1 0 9.2

(9)mod3 = 0 (2)mod3 = 2

Error!

Technical University Tallinn, ESTONIA

Error Detection in Arithmetic Operations

A B

Adder

Residue

calculator

A + B

C(A) C(B)

Adder mod m

C(C(A) + C(B))

Comparator
C(A + B)

Error

indicator

Check

bit

generator

Technical University Tallinn, ESTONIA

Fault Tolerance: One Error Correcting Code

One error correction code: 2c  q + c + 1

Check bits

Calculation of check sums:

bc+q b2b1

1234567

cibk
Pk i

,...,1,0 


P1 = b1  b3  b5  b7 = 0

P2 = b2  b3  b6  b7 = 0

P3 = b4  b5  b6  b7 = 0

Parity bits for c = 3:

Technical University Tallinn, ESTONIA

Theory of LFSR

Characteristic Polynomials:







0

2

210)(
m

m

m

m

m xcxcxcxccxG

Multiplication of

polynomials

1

1

1
1

34

234

2

2

2









xxx

xxx
xx

x
xx

Technical University Tallinn, ESTONIA

Fault Tolerant Communication System

Initial code

Check-bits

generator
Sender

Error

correction

code

)(

)(
)(

)(

)(

xG

xR
xQ

xG

xP


R(x)

P(x)

Receiver

P’(x).R(X)

Checker

Error

correction

(restoring)

Error

indication

Received

correct code

P’(x)/G(X)

P’(x)

P(x)

R(x)

