Benefits of Integrated System Design for complex FPGAs

Thomas Brückner
Mentor Graphics
Agenda

- FPGA/ASIC Trends
- Platform Based Design
- Optimizing Platform Performance
- Rapid Platform Prototyping
- Platform Design Verification
- Platform Example
- Summary
Trends - FPGA Design Starts

Number of Design Starts

120,000
110,000
100,000
90,000
80,000
70,000
60,000
50,000
40,000
30,000
20,000
10,000
0

102,000 107,100 94,248 84,823 80,582 74,941 68,946 62,741 56,467

* Gartner Dataquest 2004 Trends – Brian Lewis
Embedded Microprocessor Use

- Rapid Growth for Embedded Processors in FPGA’s
 - 2003: 17%
 - 2007: 37% (projected)

- Utilization of embedded processors and other embedded ASIC-macrocells in FPGAs enables:
 - High level of integration at the chip and PCB level
 - Reduced number of Components on PCB
 - Integrated System Design of the SOPCB

- But with all of this power comes complexity
 - More later…
Platform Based Design

- Traditional Platform Based Design
 - ASIC based
 - Use existing IP blocks
 - CPUs, high speed I/O’s,
 - Pre-verified cores from core vendors
 - Keys to Platform Design Success
 - Design environment/solution that provides the following:
 - Predictable / Flexible Flow
 - Design Data Management
 - IP Reuse
 - Design Data Visualization
 - Version Control
 - Powerful Design Analysis
 - Accurate Design Documentation
Design Environment for Platform Development

- HDL Import / Create
- Simulation
- Synthesis
- Flexible Design Entry
- Design Analysis
- Design Visualization
- IP / Reuse
- Documentation
- Version Control
- Flexible Flow Control
Platform Based FPGA Characteristics

- Typical Characteristics
 - Embedded Processors
 - Hard / Soft – DSP, uController, uProcessor, etc
 - Complex Architecture Specific IP
 - High Quality – Tested and Qualified
 - Vendor Provided
 - 3rd Party Provided (Mentor Inventra, etc)
 - Large Flexible Memory Blocks
 - High Speed I/Os
 - Gigabit speeds
 - Multiple signaling standard available per I/O pin
 - Multi-Million Gate Fabrics for User Logic
Why Platform FPGAs?

Discrete Component Implementation
- Low Cost PCB
- Low Cost Components

Platform FPGA:
- High Cost HDI PCB
- High Cost Components
Why?

- ASIC & System Integration + Flexibility!

Classic system designers may implement a very complex FPGA system in hours to days.
…With Power Comes Complexity

- **Challenges of Design with Platform Based FPGAs**
 - Merging of Multi-Disciplines of Individuals and Teams
 - System Level Design
 - Logic Design
 - PCB I/O Design
 - PCB Design
 - Optimizing the Platform Design
 - Performance
 - PCB Design

- **A design solution is required to**
 - Maximize productivity across the disciplines
 - Optimize the platform design
 - Provide a highly organized and repeatable process
 - Enable team based design
 - Supports leading edge FPGA platform solutions
The Solution …

- Harnessing the Power of Platform FPGAs with HDL Designer Series
Integrated System Design
Quickly Understand Designs

- Logical information extracted automatically
 - HDL code parsed rapidly
 - Syntax errors highlighted
 - “Virtual” design units are created automatically
 - Shown in Design Units view
 - Logical content analyzed down to leaf level
 - Hierarchy shown selectively in separate pane
 - Easy design navigation
Fast Custom Peripherals

Design Verification

Create Ext Signals

Create Functionality

Propagate Ext Signals Up through hierarchy quickly
Altera Nios Integration

- Supports Nios 3.1 CPU
- QuartusII 4.0 integration
 - Easy SOPC Builder plugin
- Simulation View
 (ModelSim) HDS Design Browser
- Alternative Synthesis View for LeonardoSpectrum & Precision
Platform Studio Integration

- Supports MicroBlaze 2.00.a/2.10.a & PowerPC ppc405 2.00.c via Xilinx EDK 6.1i/6.2i Platform Studio
- Xilinx 6.1i/6.2i (ISE Foundation)
 - Integrated P&R
- HDS Browser Simulation view for ModelSim
- Side Data Synthesis view for:
 LeonardoSpectrum, Precision
 Xilinx XST
 Synplify
FPGA/PCB Integration

Logical IO Definition

Add Some Physical IO Definitions (clocks, etc..)

Complete Physical IO Definitions (Inside the chip perspective only)

I/O Design done ASAP in HDS & BoardLink Pro

First Time FPGA on PCB context is defined

PCB Schematic Integration

PCB Place and Route

PCB Symbol & Package Creation

PCB Physical Analysis

Synthesis

FPGA Physical Analysis

FPGA Place and Route
FPGA/PCB Integration

- FPGA / PCB Integration Management
 - Board Station, Expedition, PADS
 - Intelligent targeting of Vendor, Device & Package
 - Drag & drop Pin & I/O Standard assignment
 - Creates and fractures Symbols
 - Creates & updates Schematic connectivity
 - Creates & maintains constraint files
- Precision, LeonardoSpectrum, Synplify, Synopsys
Designing Platform FPGAs

- Optimizing Platform Performance
- Rapid Platform Prototyping
- Platform Design Verification
- Platform Example
Rapid Platform Prototyping

- Development Boards and PCB Design
- Verification

ModelSim
Development Boards and PCB Design

- Effective use of development boards and development of the PCB in parallel can greatly increase productivity
 - Concurrent logic development
 - Concurrent SW development
 - Instantly download and test SW and/or logic in the development board
- But, poses challenges…
 - Managing the pin-out changes from the design as targeted to the development board and the PCB
 - Changing I/O changes the P&R therefore performance of the platform!
HDS + BoardLink Pro+ Precision Physical

- **HDS** - Manages the platform design and integrates with:
 - **BoardLink Pro™** to easily move between the development board and PCB design
 - Swap pins to enabled better routability and signal integrity
 - Automatically synchronize HDL design and PCB design (symbols, pin outs, etc)
 - **Physical™** to adjust to the changes in physical placement of the I/Os to maintain platform performance
HDS can manage the verification of the platform design to the:

- Development board for fast real time testing with software
- Simulator environment for stand alone IP development
Platform Example

- Let’s look at a typical example design
 - High Speed Data Processing Solution

![Diagram of Platform Example]

- External High Speed Processors
- High Speed FPGA Diff Signaling
- PPC for microcontrol of datapath
- Rocket I/O FPGA to FPGA Signaling

External High Speed Processors

High Speed FPGA Diff Signaling

PPC for microcontrol of datapath

Rocket I/O FPGA to FPGA Signaling
Integrated System Design

Applying Integrated System Design techniques to this design example merges:

- System Design
- High Speed PCB I/O Design
- High Speed PCB Physical Design
- Embedded processors (Nios, Microblaze, PPC405, ARM)
- High Data Rate Memory FPGA Interface
- High Data Rate External Processor Interface
- High Data Rate FPGA to FPGA Interface
- FPGA DSP development
- User logic development
- SW Development
Summary

- Platform FPGA Designs are Growing Quickly
- Effectively Utilizing Platform FPGA Across Disciplines for Optimal Performance On Chip and On Board Requires a Integrated System Design Methodologies/Solutions
- Harness the Power of Platform FPGAs with HDL Designer Series