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Verification vs. Validation

111 [11
v Verification:
"Are we building the system right"

m The system should conform to its
specification

v Validation:
"Are we building the right system™

m The system should do what the user
really requires
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Lecture Outline
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Introduction

[T 111
v Formal methods — use of

mathematical techniques in the
specification, design and analysis of
hardware and software

v Many of the problems associated with
the development of safety-critical
systems are related to deficiencies in
specification
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| Specification

(11 11]

v Typically written in natural language
= Suspectible to misunderstanding
= Impossible to avoid misinterpretations
= Question about completeness and

consistency

v Assessment of correctness,
completeness or consistency requires
good understanding of specification
and requirements

4
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T Semi-formal Requirements/Specification

v Requirements should be unambiguous,
complete, consistent and correct.

v Natural language has the interpretation
possibility. More accurate description
needed.

v Using pure mathematic notation — not
always suitable for communication with
domain expert.

v Formalised Methods are used to tackle the
requirement engineering. (Structured text,
formalised English).
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Formal Methods

111 [11
v Based on formal languages

m Very precise rules

v System (formal) specification
languages
m Can only assist!

= Main advantage: automated tests
= Requirements - spec > design
= Possibility to prove
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Formal Specification Languages

(I
v These languages involve the explicit
specification of a state model -
system's desired behaviour with
abstract mathematical objects as
sets, relations and functions.
= VDM (Vienna Development Method
1SO standardised).

= Z-language
= B-Method
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Specification
1T 11T

v Many techniques

v Formalized techniques:
= CASE tools
= Graphic/diagrammatic methods
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Method Selection Criteria

1] [ -
v Good expressiveness

v Core of the language will seldom or never be
modified after its initial development, it is
important that the notation fulfils this criterion.

v Established/accepted to use with Safety Critical
Systems

v Possibility of defining subset/coding rules to allow
efficient automatic processing by tools.

v Support for modular specifications — basic support
is expected to be needed.

v Temporal expressiveness
v Tool availability

4
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Z-language

11 111}
v Z-language bases on first order predicate
logic and set theory.

v The specification expressed in Z-notation
is divided into smaller parts — schemas

v These schemas describe the statical and
dynamical characteristics of the system:
= static: possible states, invariants
= dynamic: possible operations, pre/post states

v Z is an excellent tool for modelling data,
state and operations

© Gert Jervan
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Simple example of Z notation

BirthdayBook
known:PNAME
birthday: NAME |- DATE

___ FindBirthday.
=BirthdayBook
name?:NAME
date!:DATE

known = dom birthday

name?€ known
date! = birthday(name?)

___AddBirthday.
ABirthdayBook
name?:NAME
date?:DATE

___ Remind

= BirthdayBook
today?:DATE
cards!:PNAME

name? /€ known
birthday’ =birthdayU{name?—date?} cards!={n:known|birthday(n)=today?}

4
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B-method

v Like Z, B is based on set theory and
provides a rich set of operations.

v B includes facilities for modular
specifications, although not as
powerful as those of Z.

v The temporal expressiveness of B is
poor. Only relations between a state
and the next can be expressed.

4
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Some Modeling Styles

111 1]
Decomposition: &b %
Functional Object-based
SE°
View point: @@% g Black Box (ﬁ)
Glass Box

55 &

Blabla (e)
. v3 |
Representation:
$ Ty o Jd

Textual Graphical =
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B-method

v B is quite well-known. Although not
as established as Z, B figures in
some remarkable success stories of
industrial applications of formal
methods, e.g. by MATRA and B
Toolkit/UK.

v B-method uses Abstract Machine
Notation (AMN) for specification and
implementation.
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Modelling Requirements

v Models needed for communicating
with domain experts (simulation)

v Automatic verification (model
checker, theorem proving)
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Formal Methods

v Formal methods have been used for safety
and security-critical purposes during last
decades for e.qg:

= Certifying the Darlington Nuclear Generating
Station plant shutdown system.

= Designing the software to reduce train
separation in the Paris Metro.

= Developing a collision avoidance system for
United States airspace.

= Assuring safety in the development of
programmable logic controllers.

= Developing a water level monitoring system.
= Developing an air traffic control system.

4
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s o Verification
11T

v Design verification = ensuring correctness of the design
= against its implementation (at different levels)
= against alternative design (at the same level)

e =9 ) )
Verification =" Design 1 Design 2

=t
behavior _ < <« | RTL
=7 < =7
structure > =7
-o(

layout
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Verification Methods Formal Verification
[ [mnil
v Deductive verification v Deductive reasoning (theorem proving)
7 Model Check'ng Earel Vieriesites = uses axioms, rules to prove system correctness

= no guarantee that it will terminate
v Equiva|ence Checking = difficult, time consuming: for critical applications only
v Model checking
= automatic technique to prove correctness of concurrent
v Emulation, prototyping _ product + systems: digital circuits, communication protocols, etc.
environment v Equivalence checking
= check if two circuits are equivalent
= OK for combinational circuits, unsolved for sequential

v Simulation - performed on the model

v Testing - performed on the actual product
(manufacturing test)

4 4
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Why Formal Verification Theorem Proving
1] {0 10
v Need for reliable hardware validation v Formal methods
v Simulation, test cannot handle all possible = Formally, mathematically describe the system
cases (hardware or software)

= Formally, mathematically describe the
properties you want to verify/validate (i.e.
specifications)

v Formal verification conducts exhaustive
exploration of all possible behaviors

= compare to simulation, which explores some of = Using available tools, mathematically PROVE the
possible behaviors system will always exhibit the desired properties
= if correct, all behaviors are verified v Do not have to use the same language to
= if incorrect, a counter-example (proof) is describe the system and the properties
presented m calculus-based languages, logic based
f f languages, temporal languages, etc.
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Model Checking

v Algorithmic method of verifying correctness of
(finite state) concurrent systems against temporal
logic specifications

= A practical approach to formal verification

v Basic idea
= System is described in a formal model

= derived from high level design (HDL, C), circuit structure,
etc.

= The desired behavior is expressed as a set of properties
= expressed as temporal logic specification
= The specification is checked against the model

4
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Model Checking

v Characteristics

searches the entire solution space

always terminates with YES or NO

relatively easy, can be done by experienced designers
widely used in industry

can be automated

v Challenges

= state space explosion — use symbolic methods, BDDs
v History

= Clark, Emerson [1981] USA

= Quielle, Sifakis [1980’s] France

4
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Model Checking - Issues

1] {0
v Completeness

= model checking is effective for a given property

= impossible to guarantee that the specification
covers all properties the system should satisfy

= writing the specification - responsibility of the
user

v Negative results
= incorrect model
m incorrect specification (false negative)
= failure to complete the check (too large)
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Model Checking

v How does it work

= System is modeled as a state transition
structure (Kripke structure)

= Specification is expressed in
propositional temporal logic (CTL
formula)
= asserts how system behavior evolves over
time
= Efficient search procedure checks the
transition system to see if it satisfies the
f specification

© Gert Jervan
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Model Checking - Tasks
v Modeling

= converts a design into a formalism: state
transition system

v Specification

= state the properties that the design must
satisfy

= use logical formalism: temporal logic
= asserts how system behavior evolves over time

v Verification
= automated procedure (algorithm)

© Gert Jervan

IAF0030 — Arvutitehnika erikursus | — Loeng 8

Verified software process

T pld
Profotypes|

g ]

I Specification
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e — s ) Functional Decomposition
D : 1] 1]
bomain Expert(s) v Functional decomposition breaks down complex
o P systems into a hierarchical structure of simpler
Validation - ¥
N parts.
e v Breaking a system into smaller parts enables
T i A . Validation users to understand, describe, and design
0 complex systems.
1 o AN . .y . .
- SN v Functional decomposition consists of the following
\nform steps:
\ 5, Verification - AN = Define the system context.
'\\ ’,' NN J _Ye,}fi‘cauon = This will help define the system boundaries.
T .\ Formay’ 7 . (Testing)x. = Describe the system in terms of high-level functions and
Consistency ‘\/ze\riﬁcaﬁ/oﬁ \ their interfaces.
AN Seaz? = Refine the high-level functions and partition them into
‘;Consistency smaller, more specific functions.
_
(another) Model Consistency f‘
© Gert Jervan 32
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L FEEDARITY O Y LYo

External Data

i <7 sink
J— Hierarchy Level 0 Py
External Data .~ .~ (. Context-Diagram*)
Source A

2 Top-Down

i .
Hierarchy Level 1 d j/

Validation

Hierarchy Level 2 @
Bottom-Up
# Hierarchical Structured Activity Chart
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Functional Validation of SoC Designs Functional Validation of Microprcessors
111 1] 111 ]
v Functional validation is a major bottleneck
» 2000 P 1000B g = Deeply pipelined complex microarchitectures
8 S
> 200 10B g Pre-silicon logic bugs per generation 25000
E]_) c (Source: Tom Schubert, Intel, DAC 2003 )
o S
S 20 100m < 7855
S = o 2240
= I
w2 Pentium Pentium Pro Pentium 4 Next ?
10M 100M
; v Logic bugs increase at 3-4
Logic Gates . : ,
9 Source: Synopsys times/generation
f 71% of SOC re-spins are due to logic bugs f " gggisg:]nggfﬁgﬁe)gﬁ);pg%%&al) is linear with
OEE Source: G. Spirakis, keynote address at DATE 2004 e e ) B
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The Validation Challenge Microprocessor Design Scope
111 1T 11T

v Microprocessor validation continues to be driven by the v Typical lead CPU design requires:
economics of Moore’s Law

= Each new process generation doubles the number of transistors

= 500+ person design team:

available to microprocessor architects and designers = logic and circuit design
= Some of this increase is consumed by larger structures - physical design
(caches, TLB, etc.), which have no significant impact to 8 | .
validation - validation and verification
= The rest goes to increased complexity: = design automation
- Out-of-order, speculative execution machines m 2-21% years from start of RTL development to
= Deeper pipelines
+ New technologies (Hyper-Threading, 64-bit extensions, AO tapeOUt
IR, SRR o = 9-12 months from AO tapeout to production
2 LUHEHER GRS qual (may take longer for workstation/server
= Increased complexity => increased validation effort and risk products)
f High volumes magnify the cost of a validation escape f One design cycle = 2 process generations
37 38
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Pentium® 4 Processor RTL — A Moving Target

1] - 1]
v RTL coding started: 2H'96

= First cluster models released: late '96

© Bob Bentley

= First full-chip model released: Q1’97

v RTL coding complete: Q2’98 [RTL Goting Complae # Files Checked In
= “All bugs coded for the first time!” * Total # Lines of RTL
RTL under full ECO control: Q2’99 —# Lines Changed

RTL frozen: Q3’99 o7
A-0 tapeout: December 99

First packaged parts available: January 2000
First samples shipped to customers: Q1’00
;&)%uction ship qualification granted: October

- ooy rooms | o
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3000 files, 1.3M lines total
(including comments, white space)

A0 tapeout

A N N N NN
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RTL validation environment How do you verify a design with...
1] 1] 1] ]
v RTL model is MUCH slower than real silicon v 42 million transistors
= A full-chip simulation with checkers runs at ~20 Hz on a
Pentium® 4 class machine v 1 million lines of RTL code
= A computer farm containing ~6K CPUs running 24/7 to get tens
of billions of simulation cycles per week v 600 _ 1000 people Working on |t
= The sum total of Pentium® 4 RTL simulation cycles run prior to
AO tapeout < 1 minute on a single 2 GHz system v A 3_year design time
v Pre-silicon validation has some advantages ... . i
= Fine-grained (cycle-by-cycle) checking v Dally deS|gn Changes

= Complete visibility of internal state
= APIs to allow event injection
v ... but no amount of dynamic validation is enough
= A single dyadic extended-precision (80-bit) FP instruction has
0O(10**50) possible combinations
f = Exhaustive testing is impossible, even on real silicon " f "
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How do you verify a design which
has bugs like this??
1] 1]

v The FMUL instruction, when the rounding
mode is set to “round up”, incorrectly sets
the sticky bit when the source operands
are:

srcl[67:0] = X*2i+15 + 1*2i
src2[67:0] = Y*2j+15 + 1*2j
where i+j = 54 and {X,Y} are integers

4

© Gert Jervan

43

IAF0030 — Arvutitehnika erikursus | — Loeng 8

Pentium 4 Validation - Staffing

111 [11
v 10 people in initial “nucleus” from

previous project
v 40 new hires in 1997
v 20 new hires in 1998

4

© Gert Jervan

5

IAF0030 — Arvutitehnika erikursus | — Loeng 8

Cluster-Level Testing

1] {0
v Divide overall design into 6 “clusters” +
microcode

m Develop “cluster testing environments” (CTES)
to validate each cluster separately (e.g.
floating point, memory)

= Then validate using full processor model
v Advantages of the approach

= Controllability - control behavior at
microarchitecture level

= Early validation possible for each cluster
= Decoupled validation possible for each cluster

4
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And the answer is...
(A

Hire 70+ validation engineers
Buy several thousand compute servers
Write 12,000 validation tests

Run up to 1 billion simulation cycles per day for
200 days

Check 2,750,000 manually-defined properties
Find, diagnose, track, and resolve 7,855 bugs

v Apply formal verification with 10,000 proofs to
the instruction decoder and FP units

= This found that obscure FMUL bug!

A N NN

AN

4
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P4 Validation Environment

1111
v Hardware

= IBM RS/6000 workstations (0.5-0.6Hz full processor
model)

= Pentium 111 Linux systems (3-5Hz full processor model)
= Computing pool of “several thousand” systems
v Simulation statistics
= About 1 million lines of code in SRTL model
= 5-6 billion clock cycles simulated / week
= 200 billion total clock cycles simulated overall

1

I About 2 minutes of execution with a 1GHz clock!

4
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Other Validation Features

1] 1]
v Extensive validation of power-

reduction logic

v Code coverage and code inspections
a major part of methodology

v Formal verification used for Floating
Point & Instruction Decode Logic

4
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Power Reduction Validation
117111

v Power consumption was a big concern for Pentium 4

= Need to stay within the cost-effective thermal envelope for
desktop systems at 1.5+ GHz

v Extensive clock gating in every part of the design
v Mounted a focused effort to validate that:
= Committed features were implemented as per plan
= Functional correctness was maintained in the face of clock
gating
= Changes to the design did not impact power savings
v ~12 person years of effort, 5 heads at peak

v Fully functional on A-step silicon, measured savings of
~20W achieved for typical workloads

4
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Validation Results
117 11

v 5809 bugs identified by simulation
m 3411 bugs found by cluster-level testing
m 2398 found using full-chip model

v 1554 bugs found by code inspection
v 492 bugs found by formal verification

v Largest sources of bugs: memory
cluster (25%0)

4
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Methodology drivers

v Regression

= RTL is “live”, and changes frequently until the very last stages
of the project

= Model checking automation at lower levels allows regression to
be automated and provides robustness in the face of ECOs

v Debugging
= Need to be able to demonstrate FV counter-examples to
designers and architects
= Designers want a dynamic test that they can simulate
= Waveform viewers, schematic browsers, etc. can help to bridge
the gap
v Verification in the large

= Proof design: how do we approach the problem in a systematic
fashion?

= Proof engineering: how do we write maintainable and
modifiable proofs?

4
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Formal Verification in P4 Validation
1111

v Based on model checking
= Given a finite-state concurrent system

m Express specifications as temporal logic
formulas

= Use symbolic algorithms to check whether
model holds

v Constructed database 10,000 “proofs”
v Over 100 bugs found

v 20 were “high quality” bugs not likely to
be found by simulation

v Example errors: FADD, FMUL

4
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Pentium® 4 Bugs Breakdown

Source: Bob Bentley, HLDVT 2002

Careless Codng, 13%

Miscarmmunicaticn, 1 1%

Drsign mishshen, 3%
Irccmect asesit ons, 4%

Lete definitior, 3%
j‘ Microarchiecnre, 2%
Random Inlfigization, 3%

Complexity, 4%
Documentation 4% Logic chenges &%
Sower devm insues, 6% Camor cames, B%
f Micro-architectural complexity is a major contributor
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Other Challenges

v Dealing with constantly-changing specifications
= Specification changes are a reality in design
= Properties and proofs should be readily adapted
= How to engineer agile and robust regressions?
v Protocol Verification
= This problem has always been hard

= Getting harder (more MP) and more important (intra-die
protocols make it more expensive to fix bugs)

v Verification of embedded software

= S/W for large SoCs has impact beyond functional
correctness (power, performance, ...)

= Not all S/W verification techniques apply because H/W
abstraction is less feasible

= One example is microcode verification

4
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 Tools for Validation & Verification =R — i 1

WS ERPEELTE (W DI

Ilv Tools for Validation
= Static analysers derive implicit information about a
model (or a program)
= Examples: KeY, VDMTools (IFAD), ...
= Simulators for executable specifications

Questions?
= Examples: UML (Cassandra), MATLAB/Simulink, Statemate,

v Tools for Verification

= Model checkers for “brute force” enumeration of states

= Examples: Alloy, SATO, SMV/NuSMV, SPIN, Statemate,
UPPAAL, Validas, ...

= Theorem provers provide support for algebraic proofs of
model properties

Tallinna Tehnikadlikool
- Examples: ACL2, Alloy, eCHECK (Prover Technologies), KIV, Arvutitehnika instituut
PVS (SRI Inc.), TRIO-Matic, VSE II, ...
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