
20.03.2007

Gert Jervan, TTÜ/ATI 1

Arvutitehnika instituut
ati.ttu.ee

IAF0030
Arvutitehnika erikursus I

Loeng 8
Formal Methods, Verification, Validation

Gert Jervan

Tallinna Tehnikaülikool
Arvutitehnika instituut

2

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Lecture Outline

Formal Methods

Verification

Validation

Case Studies

Some materials adapted from:
Ilkka Herttua
Bob Bentley

Maciej Ciesielski
Matthew Heath

3

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Verification vs. Validation

Verification:
"Are we building the system right"

The system should conform to its
specification

Validation:
"Are we building the right system"

The system should do what the user
really requires

Arvutitehnika instituut
ati.ttu.ee

Formal Methods

5

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Introduction

Formal methods – use of
mathematical techniques in the
specification, design and analysis of
hardware and software

Many of the problems associated with
the development of safety-critical
systems are related to deficiencies in
specification

6

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Specification

Typically written in natural language
Suspectible to misunderstanding

Impossible to avoid misinterpretations

Question about completeness and
consistency

Assessment of correctness,
completeness or consistency requires
good understanding of specification
and requirements

20.03.2007

Gert Jervan, TTÜ/ATI 2

7

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Semi-formal Requirements/Specification

Requirements should be unambiguous,
complete, consistent and correct.
Natural language has the interpretation
possibility. More accurate description
needed.
Using pure mathematic notation – not
always suitable for communication with
domain expert.
Formalised Methods are used to tackle the
requirement engineering. (Structured text,
formalised English).

8

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Specification

Many techniques

Formalized techniques:
CASE tools

Graphic/diagrammatic methods

9

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Formal Methods

Based on formal languages
Very precise rules

System (formal) specification
languages

Can only assist!

Main advantage: automated tests
• Requirements spec design

• Possibility to prove

10

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Method Selection Criteria
Good expressiveness
Core of the language will seldom or never be
modified after its initial development, it is
important that the notation fulfils this criterion.
Established/accepted to use with Safety Critical
Systems
Possibility of defining subset/coding rules to allow
efficient automatic processing by tools.
Support for modular specifications – basic support
is expected to be needed.
Temporal expressiveness
Tool availability

11

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Formal Specification Languages

These languages involve the explicit
specification of a state model -
system‘s desired behaviour with
abstract mathematical objects as
sets, relations and functions.

VDM (Vienna Development Method
ISO standardised).

Z-language

B-Method

12

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Z-language
Z-language bases on first order predicate
logic and set theory.

The specification expressed in Z-notation
is divided into smaller parts – schemas
These schemas describe the statical and
dynamical characteristics of the system:

static: possible states, invariants
dynamic: possible operations, pre/post states

Z is an excellent tool for modelling data,
state and operations

20.03.2007

Gert Jervan, TTÜ/ATI 3

13

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Simple example of Z notation

___BirthdayBook_______
known:PNAME
birthday: NAME ‌→ DATE

known = dom birthday

___AddBirthday________
∆BirthdayBook
name?:NAME
date?:DATE

name? /€ known
birthday’ =birthdayU{name? ‌→date?}

___FindBirthday____________
ΞBirthdayBook
name?:NAME
date!:DATE

name?€ known
date! = birthday(name?)

___Remind________________
Ξ BirthdayBook
today?:DATE
cards!:PNAME

cards!={n:known|birthday(n)=today?}

14

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

B-method

B is quite well-known. Although not
as established as Z, B figures in
some remarkable success stories of
industrial applications of formal
methods, e.g. by MATRA and B
Toolkit/UK.

B-method uses Abstract Machine
Notation (AMN) for specification and
implementation.

15

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

B-method

Like Z, B is based on set theory and
provides a rich set of operations.

B includes facilities for modular
specifications, although not as
powerful as those of Z.

The temporal expressiveness of B is
poor. Only relations between a state
and the next can be expressed.

16

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Modelling Requirements

Models needed for communicating
with domain experts (simulation)

Automatic verification (model
checker, theorem proving)

17

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Some Modeling Styles

∀∃Black Box

Glass Box

View point: versus

Functional Object-based

Decomposition: versus

Textual

Blabla
∀∃

GFHP

Graphical

Representation: versus

18

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Formal Methods
Formal methods have been used for safety
and security-critical purposes during last
decades for e.g:

Certifying the Darlington Nuclear Generating
Station plant shutdown system.
Designing the software to reduce train
separation in the Paris Metro.
Developing a collision avoidance system for
United States airspace.
Assuring safety in the development of
programmable logic controllers.
Developing a water level monitoring system.
Developing an air traffic control system.

20.03.2007

Gert Jervan, TTÜ/ATI 4

Arvutitehnika instituut
ati.ttu.ee

Verification

20

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Verification
Design verification = ensuring correctness of the design

against its implementation (at different levels)

against alternative design (at the same level)

behavior

structure

function

layout

HDL / RTL

Gate level

Logic level

Mask level

Design 1

≡ ?

≡ ?

≡ ?

model
≡ ?

≡ ?

RTL

Gate level

Mask level

Design 2

Logic level

≡ ?

≡ ?

21

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Verification Methods

Deductive verification

Model checking

Equivalence checking

Simulation - performed on the model

Emulation, prototyping – product +
environment

Testing - performed on the actual product
(manufacturing test)

Formal VerificationFormal Verification

22

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Formal Verification
Deductive reasoning (theorem proving)

uses axioms, rules to prove system correctness
no guarantee that it will terminate
difficult, time consuming: for critical applications only

Model checking
automatic technique to prove correctness of concurrent
systems: digital circuits, communication protocols, etc.

Equivalence checking
check if two circuits are equivalent
OK for combinational circuits, unsolved for sequential

23

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Why Formal Verification

Need for reliable hardware validation

Simulation, test cannot handle all possible
cases

Formal verification conducts exhaustive
exploration of all possible behaviors

compare to simulation, which explores some of
possible behaviors

if correct, all behaviors are verified

if incorrect, a counter-example (proof) is
presented

24

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Theorem Proving

Formal methods
Formally, mathematically describe the system
(hardware or software)

Formally, mathematically describe the
properties you want to verify/validate (i.e.
specifications)
• Using available tools, mathematically PROVE the

system will always exhibit the desired properties

Do not have to use the same language to
describe the system and the properties

calculus-based languages, logic based
languages, temporal languages, etc.

20.03.2007

Gert Jervan, TTÜ/ATI 5

25

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Model Checking
Algorithmic method of verifying correctness of
(finite state) concurrent systems against temporal
logic specifications

A practical approach to formal verification

Basic idea
System is described in a formal model

• derived from high level design (HDL, C), circuit structure,
etc.

The desired behavior is expressed as a set of properties
• expressed as temporal logic specification

The specification is checked against the model

26

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Model Checking

How does it work
System is modeled as a state transition
structure (Kripke structure)

Specification is expressed in
propositional temporal logic (CTL
formula)
• asserts how system behavior evolves over

time

Efficient search procedure checks the
transition system to see if it satisfies the
specification

27

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Model Checking
Characteristics

searches the entire solution space
always terminates with YES or NO
relatively easy, can be done by experienced designers
widely used in industry
can be automated

Challenges
state space explosion – use symbolic methods, BDDs

History
Clark, Emerson [1981] USA
Quielle, Sifakis [1980’s] France

28

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Model Checking - Tasks
Modeling

converts a design into a formalism: state
transition system

Specification
state the properties that the design must
satisfy
use logical formalism: temporal logic
• asserts how system behavior evolves over time

Verification
automated procedure (algorithm)

29

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Model Checking - Issues
Completeness

model checking is effective for a given property
impossible to guarantee that the specification
covers all properties the system should satisfy
writing the specification - responsibility of the
user

Negative results
incorrect model
incorrect specification (false negative)
failure to complete the check (too large)

30

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Verified software process

20.03.2007

Gert Jervan, TTÜ/ATI 6

Arvutitehnika instituut
ati.ttu.ee

Domain Expert(s)

Text

Validation

Consistency

Validation

Model
Informal

Verification

Consistency

Implement.

Validation

Verification
(Testing)

Consistency(another) Model

∀∃

Formal
Verification

32

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Functional Decomposition
Functional decomposition breaks down complex
systems into a hierarchical structure of simpler
parts.
Breaking a system into smaller parts enables
users to understand, describe, and design
complex systems.
Functional decomposition consists of the following
steps:

Define the system context.
• This will help define the system boundaries.

Describe the system in terms of high-level functions and
their interfaces.
Refine the high-level functions and partition them into
smaller, more specific functions.

33

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Functional Decomposition

Hierarchy Level 0
(„Context-Diagram“)

External Data
Sink

External Data
Source

Hierarchical Structured Activity Chart

Bottom-Up

Top-Down

Hierarchy Level 1

Hierarchy Level 2

Arvutitehnika instituut
ati.ttu.ee

Validation

35

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Functional Validation of SoC Designs

Logic Gates

Si
m

ul
at

io
n

Ve
ct

or
s

En
gi

ne
er

 Y
ea

rs

20

200

2000

1995

2001

2007

100M

10B

1000B

1M 10M 100M

Source: Synopsys

Source: G. Spirakis, keynote address at DATE 2004

71% of SOC re-spins are due to logic bugs
36

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Functional Validation of Microprcessors

Functional validation is a major bottleneck
Deeply pipelined complex microarchitectures

Logic bugs increase at 3-4
times/generation

Bugs increase (exponential) is linear with
design complexity growth.

Pre-silicon logic bugs per generation
(Source: Tom Schubert, Intel, DAC 2003)

7855

2240800

25000

Pentium Pentium Pro Pentium 4 Next ?

20.03.2007

Gert Jervan, TTÜ/ATI 7

37

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

The Validation Challenge
Microprocessor validation continues to be driven by the
economics of Moore’s Law

Each new process generation doubles the number of transistors
available to microprocessor architects and designers

Some of this increase is consumed by larger structures
(caches, TLB, etc.), which have no significant impact to
validation

The rest goes to increased complexity:
• Out-of-order, speculative execution machines

• Deeper pipelines

• New technologies (Hyper-Threading, 64-bit extensions,
virtualization, security, …

• Multi-core designs

Increased complexity => increased validation effort and risk

High volumes magnify the cost of a validation escapeHigh volumes magnify the cost of a validation escape
38

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Microprocessor Design Scope

Typical lead CPU design requires:
500+ person design team:
• logic and circuit design

• physical design

• validation and verification

• design automation

2-2½ years from start of RTL development to
A0 tapeout

9-12 months from A0 tapeout to production
qual (may take longer for workstation/server
products)

One design cycle = 2 process generations

39

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Pentium® 4 Processor
RTL coding started: 2H’96

First cluster models released: late ’96
First full-chip model released: Q1’97

RTL coding complete: Q2’98
“All bugs coded for the first time!”

RTL under full ECO control: Q2’99
RTL frozen: Q3’99
A-0 tapeout: December ’99
First packaged parts available: January 2000
First samples shipped to customers: Q1’00
Production ship qualification granted: October
2000

40

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

0

5 0 0 0 0 0

1 E + 0 6

2 E + 0 6

2 E + 0 6

3 E + 0 6

3 E + 0 6

4 E + 0 6

4 E + 0 6

19
96

-0
2

19
96

-0
4

19
96

-0
6

19
96

-0
8

19
96

-1
0

19
96

-1
2

19
97

-0
2

19
97

-0
4

19
97

-0
6

19
97

-0
8

19
97

-1
0

19
97

-1
2

19
98

-0
2

19
98

-0
4

19
98

-0
6

19
98

-0
8

19
98

-1
0

19
98

-1
2

19
99

-0
2

19
99

-0
4

19
99

-0
6

19
99

-0
8

19
99

-1
0

19
99

-1
2

20
00

-0
2

20
00

-0
4

20
00

-0
6

20
00

-0
8

20
00

-1
0

20
00

-1
2

20
01

-0
2

20
01

-0
4

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

Files Checked In
Total # Lines of RTL
Lines Changed

RTL – A Moving Target

3000 files, 1.3M lines total
(including comments, white space)

A0 tapeout

First Full-Chip
RTL Model

250K lines changed
in one week

RTL Coding Complete

Timing FocusedFunctionality Focused

© Bob Bentley

41

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

RTL validation environment
RTL model is MUCH slower than real silicon

A full-chip simulation with checkers runs at ~20 Hz on a
Pentium® 4 class machine

A computer farm containing ~6K CPUs running 24/7 to get tens
of billions of simulation cycles per week

The sum total of Pentium® 4 RTL simulation cycles run prior to
A0 tapeout < 1 minute on a single 2 GHz system

Pre-silicon validation has some advantages …
Fine-grained (cycle-by-cycle) checking

Complete visibility of internal state

APIs to allow event injection

… but no amount of dynamic validation is enough
A single dyadic extended-precision (80-bit) FP instruction has
O(10**50) possible combinations

Exhaustive testing is impossible, even on real silicon
42

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

How do you verify a design with...

42 million transistors

1 million lines of RTL code

600 – 1000 people working on it

A 3-year design time

Daily design changes

20.03.2007

Gert Jervan, TTÜ/ATI 8

43

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

How do you verify a design which
has bugs like this??

The FMUL instruction, when the rounding
mode is set to “round up”, incorrectly sets
the sticky bit when the source operands
are:

src1[67:0] = X*2i+15 + 1*2i
src2[67:0] = Y*2j+15 + 1*2j

where i+j = 54 and {X,Y} are integers

44

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

And the answer is...
Hire 70+ validation engineers
Buy several thousand compute servers
Write 12,000 validation tests
Run up to 1 billion simulation cycles per day for
200 days
Check 2,750,000 manually-defined properties
Find, diagnose, track, and resolve 7,855 bugs
Apply formal verification with 10,000 proofs to
the instruction decoder and FP units

This found that obscure FMUL bug!

45

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Pentium 4 Validation - Staffing

10 people in initial “nucleus” from
previous project

40 new hires in 1997

20 new hires in 1998

46

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

P4 Validation Environment
Hardware

IBM RS/6000 workstations (0.5-0.6Hz full processor
model)

Pentium III Linux systems (3-5Hz full processor model)

Computing pool of “several thousand” systems

Simulation statistics
About 1 million lines of code in SRTL model

5-6 billion clock cycles simulated / week

200 billion total clock cycles simulated overall

About 2 minutes of execution with a 1GHz clock!

47

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Cluster-Level Testing
Divide overall design into 6 “clusters” +
microcode

Develop “cluster testing environments” (CTEs)
to validate each cluster separately (e.g.
floating point, memory)
Then validate using full processor model

Advantages of the approach
Controllability - control behavior at
microarchitecture level
Early validation possible for each cluster
Decoupled validation possible for each cluster

48

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Other Validation Features

Extensive validation of power-
reduction logic

Code coverage and code inspections
a major part of methodology

Formal verification used for Floating
Point & Instruction Decode Logic

20.03.2007

Gert Jervan, TTÜ/ATI 9

49

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Power Reduction Validation
Power consumption was a big concern for Pentium 4

Need to stay within the cost-effective thermal envelope for
desktop systems at 1.5+ GHz

Extensive clock gating in every part of the design

Mounted a focused effort to validate that:
Committed features were implemented as per plan

Functional correctness was maintained in the face of clock
gating

Changes to the design did not impact power savings

~12 person years of effort, 5 heads at peak

Fully functional on A-step silicon, measured savings of
~20W achieved for typical workloads

50

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Formal Verification in P4 Validation

Based on model checking
Given a finite-state concurrent system
Express specifications as temporal logic
formulas
Use symbolic algorithms to check whether
model holds

Constructed database 10,000 “proofs”
Over 100 bugs found
20 were “high quality” bugs not likely to
be found by simulation
Example errors: FADD, FMUL

51

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Validation Results

5809 bugs identified by simulation
3411 bugs found by cluster-level testing

2398 found using full-chip model

1554 bugs found by code inspection

492 bugs found by formal verification

Largest sources of bugs: memory
cluster (25%)

52

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Pentium® 4 Bugs Breakdown

Micro-architectural complexity is a major contributor

Source: Bob Bentley, HLDVT 2002

53

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Methodology drivers
Regression

RTL is “live”, and changes frequently until the very last stages
of the project
Model checking automation at lower levels allows regression to
be automated and provides robustness in the face of ECOs

Debugging
Need to be able to demonstrate FV counter-examples to
designers and architects
Designers want a dynamic test that they can simulate
Waveform viewers, schematic browsers, etc. can help to bridge
the gap

Verification in the large
Proof design: how do we approach the problem in a systematic
fashion?
Proof engineering: how do we write maintainable and
modifiable proofs?

54

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Other Challenges
Dealing with constantly-changing specifications

Specification changes are a reality in design
Properties and proofs should be readily adapted
How to engineer agile and robust regressions?

Protocol Verification
This problem has always been hard
Getting harder (more MP) and more important (intra-die
protocols make it more expensive to fix bugs)

Verification of embedded software
S/W for large SoCs has impact beyond functional
correctness (power, performance, …)
Not all S/W verification techniques apply because H/W
abstraction is less feasible
One example is microcode verification

20.03.2007

Gert Jervan, TTÜ/ATI 10

55

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

Tools for Validation & Verification
Tools for Validation

Static analysers derive implicit information about a
model (or a program)

• Examples: KeY, VDMTools (IFAD), …
Simulators for executable specifications

• Examples: UML (Cassandra), MATLAB/Simulink, Statemate,
…

Tools for Verification
Model checkers for “brute force” enumeration of states

• Examples: Alloy, SATO, SMV/NuSMV, SPIN, Statemate,
UPPAAL, Validas, …

Theorem provers provide support for algebraic proofs of
model properties

• Examples: ACL2, Alloy, eCHECK (Prover Technologies), KIV,
PVS (SRI Inc.), TRIO-Matic, VSE II, …

Arvutitehnika instituut
ati.ttu.ee

Questions?

Gert Jervan

Tallinna Tehnikaülikool
Arvutitehnika instituut

