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Verification vs. Validation

Verification: 
"Are we building the system right"

The system should conform to its 
specification

Validation:
"Are we building the right system"

The system should do what the user 
really requires

Arvutitehnika instituut
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Formal Methods
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Introduction

Formal methods – use of 
mathematical techniques in the 
specification, design and analysis of 
hardware and software

Many of the problems associated with 
the development of safety-critical 
systems are related to deficiencies in 
specification
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Specification

Typically written in natural language
Suspectible to misunderstanding

Impossible to avoid misinterpretations

Question about completeness and 
consistency

Assessment of correctness, 
completeness or consistency requires 
good understanding of specification 
and requirements
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Semi-formal Requirements/Specification

Requirements should be unambiguous, 
complete, consistent and correct. 
Natural language has the interpretation 
possibility. More accurate description 
needed.
Using pure mathematic notation – not 
always suitable for communication with 
domain expert. 
Formalised Methods are used to tackle the 
requirement engineering. (Structured text, 
formalised English).
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Specification

Many techniques

Formalized techniques:
CASE tools

Graphic/diagrammatic methods
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Formal Methods

Based on formal languages
Very precise rules

System (formal) specification 
languages

Can only assist!

Main advantage: automated tests
• Requirements spec design

• Possibility to prove
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Method Selection Criteria
Good expressiveness
Core of the language will seldom or never be 
modified after its initial development, it is 
important that the notation fulfils this criterion.
Established/accepted to use with Safety Critical 
Systems
Possibility of defining subset/coding rules to allow 
efficient automatic processing by tools.
Support for modular specifications – basic support 
is expected to be needed.
Temporal expressiveness 
Tool availability 
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Formal Specification Languages

These languages involve the explicit 
specification of a state model -
system‘s desired behaviour with 
abstract mathematical objects as 
sets, relations and functions.

VDM (Vienna Development Method     
ISO standardised).

Z-language 

B-Method
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Z-language
Z-language bases on first order predicate 
logic and set theory.

The specification expressed in Z-notation 
is divided into smaller parts – schemas
These schemas describe the statical and 
dynamical characteristics of the system:

static: possible states, invariants
dynamic: possible operations, pre/post states

Z is an excellent tool for modelling data, 
state and operations
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Simple example of Z notation

___BirthdayBook_______
known:PNAME
birthday: NAME ‌→ DATE

_____________________
known = dom birthday

_____________________

___AddBirthday________
∆BirthdayBook
name?:NAME
date?:DATE
_____________________
name? /€ known
birthday’ =birthdayU{name? ‌→date?}
_____________________

___FindBirthday____________
ΞBirthdayBook
name?:NAME
date!:DATE
_________________________
name?€ known
date! = birthday(name?)
_________________________

___Remind________________
Ξ BirthdayBook
today?:DATE
cards!:PNAME
_________________________
cards!={n:known|birthday(n)=today?}
_________________________
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B-method

B is quite well-known. Although not 
as established as Z,  B figures in 
some remarkable success stories of 
industrial applications of formal 
methods, e.g. by MATRA  and B 
Toolkit/UK. 

B-method uses Abstract Machine 
Notation (AMN) for specification and 
implementation.
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B-method

Like Z, B is based on set theory and 
provides a rich set of operations.

B includes facilities for modular 
specifications, although not as 
powerful as those of Z.

The temporal expressiveness of B is 
poor. Only relations between a state 
and the next can be expressed.
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Modelling Requirements

Models needed for communicating 
with domain experts (simulation)

Automatic verification (model 
checker, theorem proving)
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Some Modeling Styles

∀∃Black Box

Glass Box

View point: versus

Functional Object-based

Decomposition: versus

Textual

Blabla
∀∃

GFHP

Graphical

Representation: versus
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Formal Methods 
Formal methods have been used for safety 
and security-critical purposes during last 
decades for e.g:

Certifying the Darlington Nuclear Generating 
Station plant shutdown system.
Designing the software to reduce train 
separation in the Paris Metro.
Developing a collision avoidance system for 
United States airspace.
Assuring safety in the development of 
programmable logic controllers.
Developing a water level monitoring system.
Developing an air traffic control system.
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Verification
Design verification = ensuring correctness of the design 

against its implementation (at different levels)

against alternative design (at the same level)

behavior

structure

function

layout

HDL / RTL

Gate level

Logic level

Mask level

Design 1

≡ ?

≡ ?

≡ ?

model
≡ ?

≡ ?

RTL

Gate level

Mask level

Design 2

Logic level

≡ ?

≡ ?
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Verification Methods

Deductive verification 

Model checking

Equivalence checking

Simulation - performed on the model

Emulation, prototyping – product + 
environment

Testing - performed on the actual product 
(manufacturing test)

Formal VerificationFormal Verification
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Formal Verification
Deductive reasoning (theorem proving)

uses axioms, rules to prove system correctness
no guarantee that it will terminate
difficult, time consuming: for critical applications only

Model checking
automatic technique to prove correctness of concurrent 
systems: digital circuits, communication protocols, etc.

Equivalence checking
check if two circuits are equivalent
OK for combinational circuits, unsolved for sequential
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Why Formal Verification

Need for reliable hardware validation

Simulation, test cannot handle all possible 
cases

Formal verification conducts exhaustive 
exploration of all possible behaviors

compare to simulation, which explores some of 
possible behaviors

if correct, all behaviors are verified

if incorrect, a counter-example (proof) is 
presented
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Theorem Proving

Formal methods
Formally, mathematically describe the system 
(hardware or software)

Formally, mathematically describe the 
properties you want to verify/validate (i.e. 
specifications)
• Using available tools, mathematically PROVE the 

system will always exhibit the desired properties

Do not have to use the same language to 
describe the system and the properties

calculus-based languages, logic based 
languages, temporal languages, etc.
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Model Checking
Algorithmic method of verifying correctness of 
(finite state) concurrent systems against temporal 
logic specifications

A practical approach to formal verification

Basic idea
System is described in a formal model

• derived from high level design (HDL, C), circuit structure, 
etc. 

The desired behavior is expressed as a set of properties
• expressed as temporal logic specification

The specification is checked against the model
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Model Checking

How does it work
System is modeled as a state transition 
structure (Kripke structure)

Specification is  expressed in 
propositional temporal logic (CTL 
formula)
• asserts how system behavior evolves over 

time

Efficient search procedure checks the 
transition system to see if it satisfies the 
specification
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Model Checking
Characteristics

searches the entire solution space
always terminates with YES or NO
relatively easy, can be done by experienced designers
widely used in industry
can be automated

Challenges
state space explosion – use symbolic methods, BDDs

History
Clark, Emerson [1981] USA
Quielle, Sifakis [1980’s] France
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Model Checking - Tasks
Modeling

converts a design into a formalism: state 
transition system

Specification
state the properties that the design must 
satisfy
use logical formalism: temporal logic
• asserts how system behavior evolves over time

Verification
automated procedure (algorithm)
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Model Checking - Issues
Completeness

model checking is effective for a given property
impossible to guarantee that the specification 
covers all properties the system should satisfy
writing the specification - responsibility of the 
user

Negative results
incorrect model
incorrect specification (false negative)
failure to complete the check (too large)
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Verified software process 
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Domain Expert(s)

Text

Validation

Consistency

Validation

Model
Informal

Verification

Consistency

Implement.

Validation

Verification
(Testing)

Consistency(another) Model

∀∃

Formal
Verification
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Functional Decomposition
Functional decomposition breaks down complex 
systems into a hierarchical structure of simpler 
parts.
Breaking a system into smaller parts enables 
users to understand, describe, and design 
complex systems.
Functional decomposition consists of the following 
steps:

Define the system context.
• This will help define the system boundaries.

Describe the system in terms of high-level functions and 
their interfaces.
Refine the high-level functions and partition them into 
smaller, more specific functions.
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Functional Decomposition

Hierarchy Level  0
(„Context-Diagram“)

External Data 
Sink

External Data 
Source

Hierarchical Structured Activity Chart

Bottom-Up

Top-Down

Hierarchy Level 1

Hierarchy Level  2

Arvutitehnika instituut
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Validation
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Functional Validation of SoC Designs

Logic Gates
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Source: Synopsys

Source: G. Spirakis, keynote address at DATE 2004

71% of SOC re-spins are due to logic bugs
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Functional Validation of Microprcessors

Functional validation is a major bottleneck
Deeply pipelined complex microarchitectures

Logic bugs increase at 3-4 
times/generation

Bugs increase (exponential) is linear with 
design complexity growth.

Pre-silicon logic bugs per generation
( Source: Tom Schubert, Intel, DAC 2003 )

7855

2240800

25000

Pentium Pentium Pro Pentium 4 Next ?
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The Validation Challenge
Microprocessor validation continues to be driven by the 
economics of Moore’s Law

Each new process generation doubles the number of transistors 
available to microprocessor architects and designers

Some of this increase is consumed by larger structures 
(caches, TLB, etc.), which have no significant impact to 
validation

The rest goes to increased complexity:
• Out-of-order, speculative execution machines

• Deeper pipelines

• New technologies (Hyper-Threading, 64-bit extensions, 
virtualization, security, …

• Multi-core designs

Increased complexity => increased validation effort and risk

High volumes magnify the cost of a validation escapeHigh volumes magnify the cost of a validation escape
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Microprocessor Design Scope

Typical lead CPU design requires:
500+ person design team:
• logic and circuit design

• physical design

• validation and verification

• design automation

2-2½ years from start of RTL development to 
A0 tapeout

9-12 months from A0 tapeout to production 
qual (may take longer for workstation/server 
products)

One design cycle = 2 process generations
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Pentium® 4 Processor
RTL coding started: 2H’96

First cluster models released: late ’96
First full-chip model released: Q1’97

RTL coding complete: Q2’98
“All bugs coded for the first time!”

RTL under full ECO control: Q2’99
RTL frozen: Q3’99
A-0 tapeout: December ’99
First packaged parts available: January 2000
First samples shipped to customers: Q1’00
Production ship qualification granted: October 
2000
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# Files Checked In
Total # Lines of RTL
# Lines Changed

RTL – A Moving Target

3000 files, 1.3M lines total 
(including comments, white space)

A0 tapeout

First Full-Chip
RTL Model

250K lines changed 
in one week

RTL Coding Complete

Timing FocusedFunctionality Focused

© Bob Bentley
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RTL validation environment
RTL model is MUCH slower than real silicon

A full-chip simulation with checkers runs at ~20 Hz on a 
Pentium® 4 class machine

A computer farm containing ~6K CPUs running 24/7 to get tens 
of billions of simulation cycles per week

The sum total of Pentium® 4 RTL simulation cycles run prior to 
A0 tapeout < 1 minute on a single 2 GHz system

Pre-silicon validation has some advantages …
Fine-grained (cycle-by-cycle) checking

Complete visibility of internal state

APIs to allow event injection

… but no amount of dynamic validation is enough
A single dyadic extended-precision (80-bit) FP instruction has 
O(10**50) possible combinations

Exhaustive testing is impossible, even on real silicon
42

IAF0030 – Arvutitehnika erikursus I – Loeng 8

© Gert Jervan

How do you verify a design with...

42 million transistors

1 million lines of RTL code

600 – 1000 people working on it

A 3-year design time

Daily design changes
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How do you verify a design which 
has bugs like this??

The FMUL instruction, when the rounding 
mode is set to “round up”, incorrectly sets 
the sticky bit when the source operands 
are:

src1[67:0] = X*2i+15 + 1*2i
src2[67:0] = Y*2j+15 + 1*2j

where i+j = 54 and {X,Y} are integers
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And the answer is...
Hire 70+ validation engineers
Buy several thousand compute servers
Write 12,000 validation tests
Run up to 1 billion simulation cycles per day for 
200 days
Check 2,750,000 manually-defined properties
Find, diagnose, track, and resolve 7,855 bugs
Apply formal verification with 10,000 proofs to 
the instruction decoder and FP units

This found that obscure FMUL bug!
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Pentium 4 Validation - Staffing

10 people in initial “nucleus” from 
previous project

40 new hires in 1997

20 new hires in 1998
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P4 Validation Environment
Hardware

IBM RS/6000 workstations (0.5-0.6Hz full processor 
model)

Pentium III Linux systems (3-5Hz full processor model)

Computing pool of “several thousand” systems

Simulation statistics
About 1 million lines of code in SRTL model

5-6 billion clock cycles simulated / week

200 billion total clock cycles simulated overall

About 2 minutes of execution with a 1GHz clock!
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Cluster-Level Testing
Divide overall design into 6 “clusters” + 
microcode

Develop “cluster testing environments” (CTEs) 
to validate each cluster separately (e.g. 
floating point, memory)
Then validate using full processor model

Advantages of the approach
Controllability - control behavior at 
microarchitecture level
Early validation possible for each cluster
Decoupled validation possible for each cluster
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Other Validation Features

Extensive validation of power-
reduction logic

Code coverage and code inspections 
a major part of methodology

Formal verification used for Floating 
Point & Instruction Decode Logic
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Power Reduction Validation
Power consumption was a big concern for Pentium 4

Need to stay within the cost-effective thermal envelope for 
desktop systems at 1.5+ GHz

Extensive clock gating in every part of the design

Mounted a focused effort to validate that:
Committed features were implemented as per plan

Functional correctness was maintained in the face of clock 
gating

Changes to the design did not impact power savings

~12 person years of effort, 5 heads at peak

Fully functional on A-step silicon, measured savings of 
~20W achieved for typical workloads
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Formal Verification in P4 Validation

Based on model checking
Given a finite-state concurrent system
Express specifications as temporal logic 
formulas
Use symbolic algorithms to check whether 
model holds

Constructed database 10,000 “proofs”
Over 100 bugs found
20 were “high quality” bugs not likely to 
be found by simulation
Example errors: FADD, FMUL
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Validation Results

5809 bugs identified by simulation
3411 bugs found by cluster-level testing

2398 found using full-chip model

1554 bugs found by code inspection

492 bugs found by formal verification

Largest sources of bugs: memory 
cluster (25%)
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Pentium® 4 Bugs Breakdown

Micro-architectural complexity is a major contributor

Source: Bob Bentley, HLDVT 2002
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Methodology drivers
Regression

RTL is “live”, and changes frequently until the very last stages 
of the project
Model checking automation at lower levels allows regression to 
be automated and provides robustness in the face of ECOs

Debugging
Need to be able to demonstrate FV counter-examples to 
designers and architects 
Designers want a dynamic test that they can simulate 
Waveform viewers, schematic browsers, etc. can help to bridge 
the gap

Verification in the large
Proof design: how do we approach the problem in a systematic 
fashion?
Proof engineering: how do we write maintainable and 
modifiable proofs?
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Other Challenges
Dealing with constantly-changing specifications

Specification changes are a reality in design
Properties and proofs should be readily adapted
How to engineer agile and robust regressions?

Protocol Verification
This problem has always been hard
Getting harder (more MP) and more important (intra-die 
protocols make it more expensive to fix bugs)

Verification of embedded software
S/W for large SoCs has impact beyond functional 
correctness (power, performance, …)
Not all S/W verification techniques apply because H/W 
abstraction is less feasible
One example is microcode verification
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Tools for Validation & Verification
Tools for Validation

Static analysers derive implicit information about a 
model (or a program)

• Examples: KeY, VDMTools (IFAD), …
Simulators for executable specifications

• Examples: UML (Cassandra), MATLAB/Simulink, Statemate, 
…

Tools for Verification
Model checkers for “brute force” enumeration of states

• Examples: Alloy, SATO, SMV/NuSMV, SPIN, Statemate, 
UPPAAL, Validas, …

Theorem provers provide support for algebraic proofs of 
model properties

• Examples: ACL2, Alloy, eCHECK (Prover Technologies), KIV, 
PVS (SRI Inc.), TRIO-Matic, VSE II, …
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