

Negotiation-based decision making: as introduced in Chapter 1 ...

- Identification & resolution of inconsistencies
 - conflicting stakeholder viewpoints, non-functional regs, ...
 - to reach agreement
- Identification, assessment & resolution of system risks
 - critical objectives not met, e.g. safety hazards, security threats, development risks, ...
 - to get new reqs for more robust system-to-be
- Comparison of alternative options, selection of preferred ones
 - different ways of: meeting same objective, assigning responsibilities, resolving conflicts & risks
- Requirements prioritization
 - to resolve conflicts, address cost/schedule constraints, support incremental development

www.wileyeurope .com/college/van lamsweerde Chap.3: Requirements Evaluation

© 2009 John Wiley and Sons

Requirements evaluation: outline

- Inconsistency management
 - Types of inconsistency
 - Handling inconsistencies
 - Managing conflicts: a systematic process
- Risk analysis
 - Types of risk
 - Risk management
 - Risk documentation
 - DDP: quantitative risk management for RE
- Evaluating alternative options for decision making
- Requirements prioritization

Inconsistency management

- Inconsistency = violation of consistency rule among items
- Inconsistencies are highly frequent in RE
 - inter-viewpoints: each stakeholder has its own focus & concerns (e.g. domain experts vs. marketing dept)
 - intra-viewpoint: conflicting quality regs (e.g. security vs. usability)
- Inconsistencies must be detected and resolved ...
 - not too soon: to allow further elicitation within viewpoint
 - not too late: to allow software development (anything may be developed from inconsistent specs)

www.wileyeurope .com/college/van lamsweerde Chap.3: Requirements Evaluation

Types of inconsistency in RE

- Terminology clash: same concept named differently in different statements
 - e.g. library management: "borrower" vs. "patron"
- Designation clash: same name for different concepts in different statements
 - e.g. "user" for "library user" vs. "library software user"
- Structure clash: same concept structured differently in different statements
 - e.g. "latest return date" as time point (e.g. Fri 5pm) vs. time interval (e.g. Friday)

w.wileyeurope .com/college/van lamsweerde Chap.3: Requirements Evaluation

Types of inconsistency in RE (2)

- Strong conflict: statements not satisfiable together
 - i.e. logically inconsistent: 5, not 5
 - e.g. "participant constraints may not be disclosed to anyone else" VS. "the meeting initiator should know participant constraints"
- Weak conflict (divergence): statements not satisfiable together under some boundary condition
 - i.e. strongly conflicting if B holds: potential conflict
 - MUCH more frequent in RE
 - e.g. (staff's viewpoint)

"patrons shall return borrowed copies within X weeks"

vs. (patron's viewpoint)

"patrons shall keep borrowed copies as long as needed"

B: "a patron needing a borrowed copy more than X weeks"

www.wileyeurope .com/college/van lamsweerde Chap.3: Requirements Evaluation © 2009 John Wiley and Sons

Handling inconsistencies

- Handling clashes in terminology, designation, structure: through agreed glossary of terms to stick to
 - For some terms, if needed: accepted synonym(s)
 - To be built during elicitation phase
- Weak, strong conflicts: more difficult, deeper causes...
 - Often rooted in underlying personal objectives of stakeholders => to be handled at root level and propagated to requirements level
 - Inherent to some non-functional concerns (performance vs. safety, confidentiality vs. awareness, ...) => exploration of preferred tradeoffs
 - Example: spiral, negotiation-based reconciliation of win conditions [Boehm et al, 1995]

wileyeurope .com/college/van lamsweerde Chap.3: Requirements Evaluation

© 2009 John Wiley and Sons

Managing conflicts: a systematic process Detect conflicts Identify Generate resolutions, among them, overlapping conflict document these select preferred statements resolutions Overlap = reference to common terms or phenomena - precondition for conflicting statements - e.g. gathering meeting constraints, determining schedules ◆ Conflict detection ... (see Chapters 16, 18) - informally - using heuristics on conflicting reg categories "Check information req & confidentiality req on related objects" "Check regs on decreasing & increasing related quantities" - using conflict patterns - formally (theorem proving techniques)

© A. van Lamsweerde 5

www.wileyeurope .com/college/van lamsweerde Chap.3: Requirements Evaluation

Conflict resolution tactics

- Avoid boundary condition
 - e.g. "Keep copies of highly needed books unborrowable"
- Restore conflicting statements
 - e.g. "Copy returned within X weeks and then borrowed again"
- Weaken conflicting statements
 - e.g. "Copy returned within X weeks unless explicit permission"
- Drop lower-priority statements
- Specialize conflict source or target
 - e.g. "Book loan status known by staff users only"

Transform conflicting statements or involved objects, or introduce new requirements

www.wileyeurope .com/college/van lamsweerde

Chap.3: Requirements Evaluation

© 2009 John Wiley and Sons

Managing conflicts: a systematic process (3) **Evaluate** Identify Detect conflicts Generate resolutions, overlapping among them, conflict select preferred statements document these resolutions • Evaluation criteria for preferred resolution: - contribution to critical non-functional requirements - contribution to resolution of other conflicts & risks • See ... - Sect. 3.3 in this chapter ("Evaluating alternative options") - Chapters 16, 18 www.wileyeurope .com/college/van lamsweerde Chap.3: Requirements Evaluation © 2009 John Wiley and Sons

Requirements evaluation: outline

- Inconsistency management
 - Types of inconsistency
 - Handling inconsistencies
 - Managing conflicts: a systematic process

- Risk analysis
 - Types of risk
 - Risk management
 - Risk documentation
 - DDP: quantitative risk management for RE
- Evaluating alternative options for decision making
- Requirements prioritization

What is a risk?

- Uncertain factor whose occurrence may result in loss of satisfaction of a corresponding objective
 - e.g. a passenger forcing doors opening while train moving a meeting participant not checking email regularly
- A risk has...
 - a likelihood of occurrence,
 - one or more undesirable consequences
 - e.g. passengers falling out of train moving with doors open
- Each risk consequence has ...
 - a likelihood of occurrence if the risk occurs (not to be confused with risk likelihood)
 - a severity: degree of loss of satisfaction of objective

www.wileyeurope .com/college/van lamsweerde Chap.3: Requirements Evaluation

Risk identification: risk checklists

- Instantiation of risk categories to project specifics
 - associated with corresponding req categories (cf. Chap. 1)
- Product-related risks: reg unsatisfaction in functional or quality req categories
 - info inaccuracy, unavailability, unusability, poor response time, poor peak throughput, ...
 - e.g. ? inaccurate estimates of train speed, positions?
- Process-related risks: top 10 risks [Boehm, 1989]
 - reg volatility, personnel shortfalls, dependencies on external sources, unrealistic schedules/budgets, ...
 - poor risk management
 - e.g. ? unexperienced developer team for train system?

wileyeurope .com/college/van lamsweerde Chap.3: Requirements Evaluation

Risk identification: component inspection

- For product-related risks
- Review each component of the system-to-be: human, device, software component ...
 - can it fail?
 - how?
 - why?
 - what are possible consequences?
 - e.g. on-board train controller, station computer, tracking system, communication infrastructure, ...
- Finer-grained components => more accurate analysis
 - e.g. acceleration controller, doors controller, track sensors, ...

Risk identification: risk trees

- Tree organization for causal linking of failures, causes, consequences
 - similar to fault trees in safety, threat trees in security
- Failure node = independent failure event or condition
 - decomposable into finer-grained nodes
- AND/OR links: causal links through logical nodes ...
 - AND-node: child nodes must all occur for parent node to occur as consequence
 - OR-node: only one child node needs to occur

ww.wileyeurope .com/college/van lamsweerde Chap.3: Requirements Evaluation

Risk tree: example Door opens while train moving decomposable node **AND** leaf node OR Train is moving Passenger forces Door actuator Software controller fails Speedometer doors to open OR Wrong Wrong Wrong Wrong requirement specification assumption implementation © 2009 John Wiley and Sons

Requirements Engineering: From System Goals to UML Models to Software Specifications

Building risk trees: heuristic identification of failure nodes

- Checklists, component failure
- Guidewords = keyword-based patterns of failure
 - NO: "something is missing"
 - MORE: "there are more things than expected"
 - LESS: "there are fewer things than expected"
 - BEFORE: "something occurs earlier than expected"
 - AFTER: "something occurs later than expected"
- But ... problems frequently due to *combinations* of basic failure events/conditions ...

Analyzing failure combinations: cut set of a risk tree

- ◆ Cut set of risk tree RT: set of minimal AND-combinations of RT's leaf nodes sufficient for causing RT's root node
 - Cut-set tree of RT: set of its leaf nodes = RT's cut set
- Derivation of cut-set tree CST of RT:
 - CST's top node := RT's top logical node
 - If current CST node is OR-node: expand it with RT's corresponding alternative child nodes If current CST node is AND-node: expand it in single aggregation of RT's conjoined child nodes
 - Termination when CST's child nodes are all aggregations of leaf nodes from RT

www.wileyeurope .com/college/van lamsweerde Chap.3: Requirements Evaluation

Risk identification: using elicitation techniques

- Scenarios to point out failures from WHAT IF questions
 - interactions not occurring
 - interactions occurring too late
 - unexpected interactions (e.g. under wrong conditions), ...
- Knowledge reuse: typical risks from similar systems
- Group sessions focussed on identification of project-specific risks

© 2009 John Wiley and Sons

Exploring countermeasures

- Using elicitation techniques
 - interviews, group sessions
- Reusing known countermeasures
 - e.g. generic countermeasures to top 10 risks [Boehm, 1989]
 - simulation × poor performance
 - prototyping, task analysis \gg poor usability
 - use of cost models × unrealistic budgets/schedules
- Using risk reduction tactics

Risk reduction tactics

- Reduce risk likelihood: new regs to ensure significant decrease e.g. "Prompts for driver reaction regularly generated by software"
- ◆ Avoid risk: new regs to ensure risk may never occur e.g. "Doors may be opened by software-controlled actuators only"
- Reduce consequence likelihood: new regs to ensure significant decrease of consequence likelihood
 - e.g. "Alarm generated in case of door opening while train moving"
- ◆ Avoid risk consequence: new regs to ensure consequence may never occur
 - e.g. "No collision in case of inaccurate speed/position estimates"
- ◆ Mitigate risk consequence: new regs to reduce severity of consequence(s)
 - e.g. "Waiting passengers informed of train delays"

www.wileyeurope .com/college/van lamsweerde Chap.3: Requirements Evaluation © 2009 John Wiley and Sons

Axel van Lamsweerde

Requirements Engineering: From System Goals to UML Models to Software Specifications

Selecting preferred countermeasures

- Evaluation criteria for preferred countermeasure:
 - contribution to critical non-functional requirements
 - contribution to resolution of other risks
 - cost-effectiveness
- Cost-effectiveness is measured by risk-reduction leverage:

$$RRL(r, cm) = (Exp(r) - Exp(r/cm)) / Cost(cm)$$

Exp(r): exposure of risk r

Exp(r/cm): new exposure of r if countermeasure cm is selected

- -> Select countermeasures with highest RRLs
 - refinable through cumulative countermeasures & RRLs

vw.wileyeurope .com/college/van lamsweerde Chap.3: Requirements Evaluation

Risks should be documented

- To record/explain why these countermeasure regs, to support system evolution
- For each identified risk:
 - conditions/events for occurrence
 - estimated likelihood
 - possible causes & consequences
 - estimated likelihood & severity of each consequence
 - identified countermeasures + risk-reduction leverages
 - selected countermeasures
 - ≅ annotated risk tree
- ◆ More on risk management & documentation in Chaps. 9, 16, 18

www.wileyeurope .com/college/van lamsweerde Chap.3: Requirements Evaluation

Requirements evaluation: outline

- Inconsistency management
 - Types of inconsistency
 - Handling inconsistencies
 - Managing conflicts: a systematic process
- Risk analysis
 - Types of risk
 - Risk management
 - Risk documentation

- DDP: quantitative risk management for RE
- Evaluating alternative options for decision making
- Requirements prioritization

www.wileyeurope .com/college/van lamsweerde

Chap.3: Requirements Evaluation

© 2009 John Wiley and Sons

Step 1: Elaborate the *Impact* matrix

- Build a risk-consequence table with domain experts for ...
 - prioritizing risks by critical impact on all objectives
 - highlighting the most risk-driving objectives
- For each objective *obj*, risk r:

 Impact(r, obj) = estimated loss of satisfaction of *obj* by r0 (no loss) --> 1 (total loss)
- Last line, for each risk r:

 Criticality (r) = Likelihood $(r) \times \sum_{obj} (\operatorname{Impact}(r, obj) \times \operatorname{Weight}(obj))$
- Last column, for each objective *obj*: Loss(*obj*) = Weight(*obj*) $\times \sum_{r} (\text{Impact}(r, obj) \times \text{Likelihood}(r))$

www.wileyeurope .com/college/van lamsweerde Chap.3: Requirements Evaluation © 2009 John Wiley and Sons

Impact matrix: example for library system Risks Stolen copies Lost copies Long loan by staff Late returns Loss **Objectives** (likelihood: 0.7) (likelihood: 0.3) (likelihood: 0.1) (likelihood: 0.5) obj. 0.30 0.60 Regular availability of 0.60 0.20 0.22 book copies (weight: 0.4) Comprehensive library 0 0.20 0 0.20 0.02 coverage (weight: 0.3) Staff load reduced 0.30 0.50 0.40 0.10 0.04 (weight: 0.1) Operational costs 0.05 0.10 0.30 0.30 0.10 decreased (weight: 0.2) Risk criticality 0.12 0.04 0.06 0.12 www.wileyeurope .com/college/van lamsweerde Chap.3: Requirements Evaluation © 2009 John Wiley and Sons

Step 2: Elaborate the Effectiveness matrix

- Build a risk-countermeasure table with domain experts for ...
 - estimating risk reduction by alternative countermeasures
 - highlighting most globally effective countermeasures
- For each countermeasure cm, weighted risk r:
 Reduction(cm, r) = estimated reduction of r if cm applied
 0 (no reduction) --> 1 (risk elimination)
- ♦ Last line, for each risk r:

 combinedReduction $(r) = 1 \Pi_{cm}(1 \text{Reduction}(cm, r))$
- ♦ Last column, for each countermeasure cm: overallEffect(cm) = \sum_r (Reduction(cm, r) × Criticality(r))

www.wileyeurope .com/college/van lamsweerde Chap.3: Requirements Evaluation © 2009 John Wiley and Sons

Step 3: Determine optimal balance risk reduction vs. countermeasure cost

- Cost of each countermeasure cm to be estimated with domain experts
- ◆ DDP can then visualize ...
 - risk balance charts: residual impact of each risk on all objectives if cm is selected
 - optimal combinations of countermeasures for risk balance under cost constraints
 - · simulated annealing search for near-optimal solutions
 - · optimality criterion can be set by user
 - e.g. "maximize satisfaction of objectives under this cost threshold" "minimize cost above this satisfaction threshold"

wileyeurope .com/college/van lamsweerde Chap.3: Requirements Evaluation

Requirements evaluation: outline

- Inconsistency management
 - Types of inconsistency
 - Handling inconsistencies
 - Managing conflicts: a systematic process
- Risk analysis
 - Types of risk
 - Risk management
 - Risk documentation
 - DDP: quantitative risk management for RE

- Evaluating alternative options for decision making
- Requirements prioritization

www.wileyeurope .com/college/van lamsweerde Chap.3: Requirements Evaluation

Evaluating alternative options for decision making

- The RE process raises multiple alternative options of different types
 - alternative ways of satisfying a system objective
 - alternative assignments of responsibilities among system components
 - alternative resolutions of a conflict
 - alternative countermeasures to reduce a risk
- Preferred alternatives must be negotiated, selected ...
 - agree on evaluation criteria (e.g. contribution to NFRs)
 - compare options according to criteria
 - select best option
- Qualitative or quantitative reasoning techniques for this

wileyeurope .com/college/van lamsweerde Chap.3: Requirements Evaluation

Qualitative reasoning for evaluating options

- Goal: determine qualitative contribution of each option to important non-functional requirements (NFRs): very positively (++), positively (+), negatively (-), very negatively (--)
- Example: meeting scheduling

		Non-functional requirements			
1	Options	Fast response	Reliable response	Minimal inconvenience	
	Get constraints by email	-	+	-	
	Get constraints from e-agenda	+ +		++	

- Qualitative labels "+", "-" on higher-level NFRs are obtained by bottom-up propagation from *lower*-level regs in goal-subgoal refinement/conflict graph ([Chung et al 2000], see chap. 16)
- ◆ Given "+", "-" contributions of each option to lowest-level regs, option with best contribution to critical high-level NFRs is taken

www.wileyeurope .com/college/van lamsweerde Chap.3: Requirements Evaluation

Quantitative reasoning for evaluating options

- Build a weighted matrix for ...
 - estimating score of each option on each evaluation criterion (weighted by relative importance)
 - selecting option with highest overall score on all criteria
- For each option opt, criterion crit: Score (opt, crit) = estimated score percentage of opt on crit 0 --> 1, y/100 means "crit satisfied in y% of cases"
- ♦ Last line, for each option opt: totalScore(opt) = \sum_{crit} (Score(opt, crit) × Weight(crit))

0	Evaluation criteria (NFRs)	Significance weighting	Option scores		
			Get constraints by email	Get constraints from e-agenda	
	Fast response	0.30	0.50	0.90	
	Reliable response	0.60	0.90	0.30	
	Minimal inconvenience	0.10	0.50	1.00	
	TOTAL	1.00	0.74	0.55	

Requirements evaluation: outline

- Inconsistency management
 - Types of inconsistency
 - Handling inconsistencies
 - Managing conflicts: a systematic process
- ◆ Risk analysis
 - Types of risk
 - Risk management
 - Risk documentation
 - DDP: quantitative risk management for RE

- Evaluating alternative options for decision making
- Requirements prioritization

www.wileyeurope .com/college/van lamsweerde Chap.3: Requirements Evaluation © 2009 John Wiley and Sons

Requirements prioritization

- Elicited & evaluated regs must be assigned priorities ...
 - conflict resolution
 - resource limitations (budget, personnel, schedules)
 - incremental development
 - replanning due to unexpected problems
- Some principles for effective req prioritization ...
 - (1) by ordered levels of equal priority, in small number
 - (2) qualitative & relative levels ("higher than", ...)
 - (3) comparable regs: same granularity, same abstraction level
 - (4) regs not mutually dependent (one can be kept, another dropped)
 - (5) agreed by key players
- ◆ Too early ranking at elicitation time might be subjective
 - > risk of inadequate, inconsistent results

wwileyeurope .com/college/van lamsweerde Chap.3: Requirements Evaluation

Value-cost prioritization

- Systematic technique, meets principles (1) (3)
- Three steps:
 - 1. Estimate relative contribution of each req to project's value
 - 2. Estimate relative contribution of each req to project's cost
 - 3. Plot contributions on value-cost diagram: shows what reg fits what priority level according to value-cost tradeoff

Estimating relative contributions of requirements to project value & cost

- AHP technique from Decision Theory ("Analytic Hierarchy Process", [Saati, 1980])
- Determines in what proportion each req $R_1, ..., R_N$ contributes to criterion Crit
- ◆ Applied twice: Crit = value, Crit = cost
- ◆ Two steps:
 - 1. Build comparison matrix: estimates how R_i 's contribution to *Crit* compares to R_i 's
 - 2. Determine how *Crit* distributes among all R_i

AHP, Step 1: Compare requirements pairwise

- Scale for comparing R's contribution to Crit to R's:
 - 1: contributes equally
 - 7 : contributes very strongly more

 - 3: contributes slightly more 9: contributes extremely more
 - 5 : contributes strongly more
- In comparison matrix, $R_{ji} = 1 / R_{ij}$ $(1 \le i, j \le N)$

Crit: value	Produce optimal date	Handle preferred locations	Parameterize conflict resolution strategy	Multi-lingual communication	Meeting assistant
Produce optimal date	1	3	5	9	7
Handle preferred locations	1/3	1	3	7	7
Parameterize conflict resolution strategy	1/5	1/3	1	5	3
Multi-lingual communication	1/9	1/7	1/5	1	1/3
Meeting assistant	1/7	1/7	1/3	3	1
www.wileyeurope .com/college	/van lamsweerde	Chap.3: Requirement	Valuation ©	2009 John Wiley and Sor	ns 50

Requirements evaluation: summary

- Inconsistencies are frequent during reg acquisition
 - For clashes in terminology, designation, structure: a glossary of terms is best
 - For weak, strong conflicts: variety of techniques & heuristics to support cycles "identify overlaps, detect conflicts, generate resolutions, select preferred'
- Product-/process-related risks must be carefully analyzed
 - Loss of satisfaction of system/development objectives
 - Variety of techniques for risk identification, incl. risk trees & their cut set
 - Likelihood of risks & consequences + severity need be assessed, qualitatively or quantitatively, with domain experts
 - Heuristics for exploring countermeasures, selecting costeffective ones
 - DDP: an integrated quantitative approach for RE risk management

ww.wileyeurope .com/college/van lamsweerde Chap.3: Requirements Evaluation

Requirements evaluation: summary (2)

- Alternative options need be evaluated for selecting preferred, agreed ones
 - Different types, incl. resolutions of conflicts & risks
 - Qualitative or quantitative reasoning for this (weighted matrices)
- Requirements must be prioritized
 - Due to resource limitations, incremental development
 - Constraints for effective prioritization
 - AHP-based value-cost prioritization: a systematic technique

Model-driven evaluation provides structure & comparability for what needs to be evaluated (see Part 2 of the book)

www.wileyeurope .com/college/van lamsweerde Chap.3: Requirements Evaluation