
E-Learning Tools for Teaching Self-Test of
Digital Electronics

A. Jutman1, E. Gramatova2, T. Pikula2, R. Ubar1

1Tallinn University of Technology, Raja 15, 12618 Tallinn, Estonia
2Institute of Informatics, Bratislava, Slovakia

Tel: +372 6202253, Fax: +372 6202253, Email: artur@pld.ttu.ee.

Abstract

Our paper describes a successful experi-

ence in combining separate educational
tools developed at different universities into
a single educational workflow aimed at tea-
ching selected topics from the area of Self-
Test of digital electronics.

1. Introduction

Today, testing is the major factor that as-

sures the quality level of modern electronics.
The expenses of testing commonly absorb
up to 70% of all money allocated for the dev-
elopment and production of a new product.
The rapid growth of integration levels of
modern electronics makes the problem of
testing more and more complex. The most
noticeable trend in testing during the last
several years is the move from traditional
external test application paradigm towards
embedded self-test solutions. Various Built-
In Self-Test (BIST) techniques and related
optimization problems became the most im-
portant research topics in the field of testing.

A basic BIST framework usually incorpo-
rates three main components: an embedded
test pattern generator (TPG), response
analyzer (RA) and the test access mecha-
nism [1]. All the components are subjects to
optimization driven as by the hardware cost
(silicon area) as well as by the test set

characteristics such as the fault coverage or
test application time. The TPG is usually the
part the main attention is focused on. The
most common sources of test patterns in
BIST are the pseudo-random pattern
generator (PRPG) and a memory module as
the source of deterministic pre-generated
patterns. In general, the former one is much
cheaper and easier to implement while the
latter one provides much shorter test
application time. The quality of the PRPG,
which is usually represented by a Linear
Feedback Shift Register (LFSR), can be
improved a lot if the LFSR configuration was
carefully selected and optimized [1].

The goal of this paper is to show how
several educational tools developed recently
in two universities: Tallinn University of Te-
chnology (TUT) and Institute of Informatics
of Slovak Academy of Sciences (IISAS) can
be connected together in order to form an e-
learning environment for teaching important
basic topics from the area of BIST. In the
paper we describe these tools and the
related laboratory work scenario.

The TUT tool set is called the Turbo
Tester [2,7]. It is used in the first part of the
scenario (see Figure 1) where the LFSR
configuration is optimized in several ways
based on the model of the target device
under test (DUT). The students become
acquainted to the process and learn how to
estimate the quality of obtained solution.

The second phase of the work is the
actual synthesis of the BIST hardware and

mailto:artur@pld.ttu.ee

15th EAEEIE conference, Sofia, 2004 2

the test access mechanism, which is done
by using the web-based Java applet [4,5,8]
developed by IISAS. In fact, the applet can
illustrate different BIST solutions, one of
which will be used for the final implementati-
on in the target device. The applet is design-
ed accordingly to the “living pictures” con-
cept [6] to ensure easy interaction with the
system and the game-like style of learning.

Finally, the students should compare the
hardware complexity (cost) of the initial
device without BIST and the self-testable
device to see the price, which must be paid
for the quality product. A third party
(commercial) logic synthesis tool can be
used to synthesize the VHDL code of both
variants of the DUT and to calculate the
silicon area. In our particular implementation
of the scenario we used the LeonardoSpe-
ctrum (Fig.2) software from Mentor Graphics
[9]. Figure 2 demonstrates the statistics
about the synthesized design in form of
silicon area, maximum delay of combination-
al logic, number of inputs/outputs in the
module under development.

Main goals of our scenario include:
a) teaching students to systematically

combine different unconnected tools into a

single instrument targeted at solving an
engineering or a research problem;

b) teaching selected topics from BIST.
In the following we describe the tools we

combined in our workflow. Basic facts about
Turbo Tester are given in the next section.
Section 3 is devoted to the Java applet and
Section 4 is the section for conclusions.

Proposed workflow has been success-
fully realized in the form of laboratory work
for students during the spring semester
2004 in Jönköping University, Sweden.

2. The Turbo Tester tool set

There is a number of scientific papers

describing research carried out using Turbo
Tester that have been published in
international conferences as well as revie-
wed journals [2]. This became possible due
to a homogeneous environment of TT (Fig.
3) where different methods and algorithms
for various test problems are implemented
and can be investigated as separately of
each other as working together in different
combinations. The latter provides a variety
of different optimization approaches for a
particular problem, which is a useful feature
for research-like practical exercises.

Figure 1. The workflow of the educational scenario

BIST
Emulator

(TT)

Circuit
Model
(VHDL)

Circuit
Model

Test
Set

Genetic
Optimizer

(TT)

The BIST
Applet DfT

Structure
(VHDL)

Synthesis
Tools

Estimated
Growth of

Complexity

LFSR
Config.

Fault
Table

To be compared:
• genetically optimized vs.

manually obtained LFSR
configuration

• original vs. “BISTed”
device complexity

15th EAEEIE conference, Sofia, 2004 3

2.1. Model synthesis

The component library of Turbo Tester

consists of Binary Decision Diagram (BDD)
representations for the library components
of the circuits to be processed. The library is
open and can be updated for new compo-
nents. The model generator creates a BDD-
representation of the design from the netlist
of the design, produced by e.g. schematic
editor. The special kind of BBDs is used in
Turbo Tester. They are called Structurally
Synthesized BDDs (SSBDD) and provide a
uniform approach to solving a wide scale of
testing tasks, based on a uniform model and
a restricted set of standard procedures. For
some tasks, such representation gives faster
runtimes at the same accuracy [3]. A
hierarchical DD model, which combines RT-
level DDs and binary DDs is also possible.
This allows migration of methods developed
for logical level also to higher (behavioral
and register-transfer) levels, where tools for
hierarchical test generation and simulation
have already been implemented.

2.2. Test generation

For automatic test pattern generation

(ATPG), there are random, deterministic and
genetic test pattern generators (TPG) imple-
mented. Mixed TPG strategies based on
different methods can also be investigated.
Tests can be generated for both, combinati-
onal and sequential circuits. Stuck-at faults
and physical defects can be considered. The
best test generation efficiency for complex
systems can be achieved by using the
hierarchical DD representation.

2.3. Test pattern analysis

There are different fault analysis

methods implemented in the system (e.g.
single-fault simulation or parallel fault simu-
lation). Thus, competing approaches can be
investigated and compared for circuits of
different complexities and structures. As the
result of using these tools, fault tables are
calculated and test quality is evaluated for
given test sequences. In a defect-oriented

Figure 2. LeonardoSpectrum [9] synthesis tool from Mentor Graphics

15th EAEEIE conference, Sofia, 2004 4

simulation mode the fault simulator uses a
special defect (bridging fault) library.

2.4. Test set optimization

The tool minimizes the number of test

patterns in the test set by means of static
compaction. The technique implements
effective representation of fault matrices by
weighted bipartite graphs. The approach
contains a preprocessing step for determin-
ing the set of essential vectors. Subsequent-
ly, implications and a greedy search algori-
thm are applied. This method offers signific-
antly fast performance in terms of run times.

2.5. Testability analysis

The real cost of a digital product is

expressed as: Cost(Design + Test) <
Cost(Design) + Cost(Test). It follows from
the fact, that the total product cost can be
minimized by regarding the design and test
of a product as one integral activity rather
than the two disjoint unrelated activities. The
latter approach is called design for testability
(DFT). Among the most promising DFT
methods are those aimed at enhancing the
testability through adding redundant hardwa-
re elements or test-points (additional outputs

for observing; inputs for controlling; addition-
al flip-flops in scan-path etc.) to the circuit.
The testability analysis tools of the system
can be used for finding out where to alter the
design to improve the testability. This is
done via enumerating untestable or statis-
tically hard-to-test faults, and estimating the
controllability, observability and testability
characteristics for the nodes of the design.

2.6. Built-in self-test

Different BIST architectures can be

simulated and the self-test quality of these
architectures can be evaluated. There is a
tool, which utilizes a genetic search algori-
thm for automatically finding good BIST
architectures. It is also possible to study the
general "store-and-generate" approach,
where the whole test sequence will be
generated on the basis of a given set of test
vectors (i.e. the stored part of the test). All
these vectors serve as initial input test
patterns for on-line test generation (i.e. the
generated part of the test). A Hybrid BIST
technique represents an opposite approach,
which also partially utilizes deterministic
patterns but in the very end of the sequence.
This makes it possible to achieve higher
fault coverage by shorter test sequence.

Figure 3. Overview of main Turbo Tester tools

Design Error
Diagnosis

Test
Generators

BIST
Emulator

Design Test
Set

Levels:
Gate
Macro
RTL

Fault
Table

Test Set
Optimizer

Methods:
BILBO
CSTP
Hybrid

Faulty
Area

Circuits:
Combinational
Sequential

Logic
Simulator

Formats:
EDIF
AGM

Defect
Library

Hazard
Analysis

Data

Specifi-
cation

Algorithms:
Deterministic
Random
Genetic

Multivalued
Simulator

Fault models:
Stuck-at faults
Physical defects

Fault
Simulator

15th EAEEIE conference, Sofia, 2004 5

3. The Web-based BIST tools

The conception of the Web-based tools

is based on multiple learning modules –
easily accessible on the Internet and running
on mostly used standard browsers. Such
Web technologies as Java applets, Java
scripts, and Flash are the means for the de-
velopment and implementation of these
tools. The training modules simulate the
learning subject in a well illustrative graphic-
al form (in the manner of living pictures) that
is self-explanatory, take advantage of
learning by doing and involve interaction
possibilities (easy action and reaction – click
and watch). All the trained methods are
explained in the visual and interactive man-
ner in two languages – English and Slovak.
Also a set of examples in the database and
interactive help are always at disposal.

3.1. A BIST code generator module

This module generates the VHDL

description of the BIST components based
on their configuration. The components are
to be attached to the circuit under test
(CUT). The input to the BIST generator is
only the VHDL entity of CUT. The user will
be able to write or copy his own entity into
this tool (Figure 4) or use any of the exam-
ples from the prepared database. Further,
the user can determine the usage of primary
input ports by excluding ports for which BIST
TPG should not be used and by specifying
clock and reset signals for the BIST control.

Then the user has to select one of the
implemented pseudo-random or determinist-
ic TPG techniques based on LFSR type I,
LFSR type II, multiple polynomial LFSR,
LFSR with reseeding, multiple polynomial
LFSR with reseeding, CA or CA with bit-flip-

Figure 4. The Web-based BIST tool

15th EAEEIE conference, Sofia, 2004 6

ping [1,4]. LFSR based TPGs will be gener-
ated upon characteristic polynomials and re-
seeding values. CA based TPGs will be ge-
nerated upon a deterministic test set using 3
state logic (0, 1 and don’t care value).

The output signature compaction is
performed by TCR or MISR (selection of the
characteristic polynomial is the responsibility
of the user). The user can also define a test
length, except for CA or CA with bit flipping.
In this case, the number of test patterns is
defined automatically. Fault-free signature
value has to be defined by the user for both
compaction techniques. The VHDL descrip-
tion of all BIST components and the VHDL
description of CUT with BIST on the top
level are the output of this module. The
generated VHDL descriptions can be
simulated in commercial VHDL simulators
and/or synthesized into the logic.

3.2. A BIST learning module

It is a demonstrational module. It will

explain the basic BIST structure (Test
Pattern Generator - TPG, multiplexer, cont-
roller and compactor). The detailed explana-
tion of TPGs and compaction techniques will
be the purpose of this module. The method
explanation will be done by an interactive
animation of the selected and by the user
determined TPG (LFSR type I, LFSR type II,
multiple polynomial LFSR, LFSR with
reseeding, multiple polynomial LFSR with
reseeding, CA or CA with bit-flipping) or
compactor (MISR, TCR). This module is
under development yet.

4. Conclusions

Our paper describes a successful experi-

ence in combining separate educational
tools developed recently in two different
universities: Tallinn University of Technology
and Institute of Informatics of Slovak
Academy of Sciences.

Based on these tools, we developed an
educational workflow aimed at teaching

selected topics from the area of self-test of
digital electronics.

The resulting environment provides good
possibilities for laboratory training and
experimental research for students.

5. Acknowledgments

This work was supported in part by the

EU Framework V projects REASON and
eVikings, and by the Estonian Science
Foundation Grants No. 5649 and No. 5910.

References

[1] M.L. Bushnell, V.D. Agrawal, Essentials of
Electronic Testing for Digital Memory and Mixed-
Signal Circuits, Kluwer Academic Publishers,
Dordrecht: 2000, p. 690.

[2] M.Aarna, E.Ivask, A.Jutman, E.Orasson, J.Raik,
R.Ubar, V.Vislogubov, H.-D.Wuttke, “Turbo Tester -
Diagnostic Package for Research and Training”, in
Scientific-Technical Journal “Radioelectronics &
Informatics”. KNURE. Vol. 3(24), 2003, pp.69-73.

[3] A. Jutman, J. Raik, R. Ubar, "SSBDDs:
Advantageous Model and Efficient Algorithms for
Digital Circuit Modeling, Simulation & Test," in Proc.
of 5th International Workshop on Boolean Problems,
Freiberg, Germany, Sept. 19-20, 2002, pp. 157-166.

[4] T. Pikula, E. Gramatová, “BIST Architecture
Application for Digital Circuits as a Java Applet”, In
Proc. of the IEEE Workshop on Design and
Diagnostics of Electronic Circuits and Systems,
Poznan, , 2003, pp. 305-306.

[5] T. Pikula, E. Gramatová, M. Fischerová:
“Automatic Design of Cellular Automata for
Generating Deterministic Test Patterns,” in Digest the
8th IEEE European Test Workshop, Maastricht, The
Netherlands, 25-28 May 2003, pp. 69-70.

[6] H.-D. Wuttke, K. Henke, “Teaching Digital Design
with Tool-Oriented Learning Modules “Living
Pictures”, in Proc. of 32nd ASEE/IEEE Frontiers in
Education Conference, Boston, USA, Nov. 6 - 9,
2002, Session S4G, pp. 25-30.

[7] Turbo Tester home page URL:
http://www.pld.ttu.ee

[8] Web-based BIST tool home page URL:
http://ups.savba.sk/diag/download/BIST/BIST_UI.html

[9] Home page of LeonardoSpectrum synthesis tool:
http://www.mentor.com/leonardospectrum/

http://www.pld.ttu.ee
http://ups.savba.sk/diag/download/
http://www.mentor.com/leonardospectrum/

