Java Technology Based Training System for Teaching Digital Design and Test

S. Devadze, A. Jutman, A. Sudnitson, R. Ubar

Tallinn Technical University,
Raja 15, 12618 Tallinn, Estonia

d990888@ttu.ee | artur@pld.ttu.ee | alsu@cc.ttu.ee | raiub@pld.ttu.ee

ABSTRACT: A conception of training system for teaching
design and test of digital devices is presented. The system is
designed mainly to illustrate RT-level (Register Transfer
Level) problems in control intensive digital systems
including: investigation of tradeoffs between system’s speed
and HW cost, RT-level simulation, fault simulation, test
generation, built-in self-test (BIST) and others. The system is
implemented in a form of Java applet and can be freely
accessed over Internet. The latter makes it easy for students
even from foreign universities to use this system any time and
in any place. The Java applet has built-in multilingual
support to ensure easy integration into teaching courses of
universities over the world.

1 Introduction

Rapid advances of electronic technologies and design
automation enabled engineers to design larger, more
complex, integrated circuits. At the same time the
problems of test and design for testability become more
important, as costs of verification and testing are getting
the major component of design and manufacturing. Today,
design and test are no longer separate issues. The
companies frequently hire test experts to advise their desi-
gners on test problems, and they even pay a higher salary
to the test experts than to their VLSI designers. This refle-
cts today’s university education: everyone learns about
design, but only truly dedicated students learn test [1-3].
Entering the SoC (System-on-Chip) era with its new
concepts means teaching more material on high-level
system design together with the same amount of essential
basics, that must not be forgotten. In its turn, this means
that more information volumes must be fitted into the
same time frame. At the same time, teaching the basics of
digital design and test means teaching a lot of complex
connections. At first, those connected topics usually exp-
lained one by one. Then their dynamic interactions come.
After the lecture this dynamic part is lost and the
students only have a static part of the whole scenario in
their notes. After the lecture they can only consult these
notes trying to solve some problems by using a newly
learned method as good as they remember. Other

H.-D.Wuttke

Ilmenau Technical University
llmenau, Germany
Dieter. Wuttke@theoinf.tu-ilmenau.de

accompanying materials students use in most cases are
books, scripts etc. which is definitely insufficient to
restore the dynamic part of the lecture.

In the following a conception and tools are presented to
increase the teaching quality in the field of electronics
design and test. To illustrate both design and test
problems together, we use the same system that supports
the possibility of distance learning as well as a web-based
computer-aided teaching. The system consists of several
interactive modules focused on easy action and reaction,
learning by doing, game-like use to encourage students for
critical thinking, problem solving, and creativity.

2 System Overview

The core of the teaching concept presented here is a Java-
applet of a special type, which we call “Living Pictures”
[4]. Those applets simulate tricky, quite complicated
situations of the learning subject in a graphical form on
the computer screen. The graphic is self-explanatory and
provides interaction possibilities. By using these
possibilities the students can generate examples that are
interesting enough to encourage their own experiments but
not too complicated for learning.

The following figure shows the four phases of the

Replicate

Application 2

-

Interactive
Modules

Examine

Application 1

Application 4

Practice

Fig. 1 The four phases of learning process

mailto:d990888@ttu.ee
mailto:artur@pld.ttu.ee
mailto:alsu@cc.ttu.ee
mailto:raiub@pld.ttu.ee
mailto:Dieter.Wuttke@theoinf.tu-ilmenau.de

” Design: default Exzmples Import Export Language Options
Design Cost [0
Control
Last Clock cycles: a Data k1
- MIOX gsignals
Clock eycle: il ouT
T 6 0
¥r
R1|3 FilFnabled Control
A0 151 3 R? |12 R block
. 5 B3 |1 12
B0 18 Rafo |H Path
Ci0. 15 a R0 (3
. Ré |0
D0 15 0 N 2312151617
T ojo|o|1
Simulate Step 5 ry
: . . Status
Continue Simulation Dat
;) e p| DMUX [signals
Stap Simulation IH Il Data path
", Simulation / Test
Aadilinel | adar| Mext| F1on| Fagn)] Faant| Fagnzl e [F1 [F2| Fal Fe | Facou] Facout] out [input] 1] e4] o4
1 2 REGZ A HooH H | H
Imeettine | 2 3 REG3 B KoK H K
3 4 REG3 REG1 |REG2 SHROD ADDER REG3I REGH K ¥ |0 X
T | 3 3 REG3 REG2 SHRO SHLO REG3 REG2 X X 1 X
3 ErMD REG1 K O® |H X
4 3 REGZ SHLO REG2 oW W H]
clezrai| | .

Microprogram ,{ Simulation Results f

Fig. 2 Training system

learning process supported by the education system:
listening, replication, examination and practice phase. The
system supports the action based training since for each
phase there exists a special application service adapted to
the learning process which allows different views and
actions using the same interactive module.

In our teaching system [5] we succeeded to combine
and illustrate many different problems related to both RT-
level control intensive digital design and test. This gives a
unique possibility to teach all of them in a consecutive
iterative approach. The range of problems includes:
= Design of a data path and control path
= Investigation of tradeoffs between speed & HW cost
= RT level simulation
= Fault simulation
= Test generation
= Design for testability and BIST

The system (Fig. 2) consists of following parts:
= Schematic View panel provides the schematic repre-

sentation of the design and the graphical simulation
data. The structure of the data path is reflected there
= Microprogram table is used to define the control path
of the system. During the simulation this panel shows
which part of the microprogram is currently executed.
= Simulation and Test tab-panels. The simulation can
be carried out in two different modes:

— In the step-by-step mode or each row of the
microprogram is executed separately and results
are constantly updated in schematic view panel.
This mode is useful for illustration of the design
work and for debugging.

— In the test mode one is testing the design
repeatedly with some set of input data.

= Simulation Results tab-panel is the place where the
results of simulation or test are stored.

» Fault simulation module provides fault simulation for
the data path and its units.

= BIST module provides the basis to experiment with
embedded self-test facilities.

The applet has a flexible design. The RT-level system
model, shown in Fig 2 is not mandatory. Should any other
model be used, it must be only specified in a form of text-
files. Then it can be loaded just as simple as the original
one. The Microprogram table and the Simulation Results
table will be automatically reconfigured as well.

Applet has a built-in extendable collection of examples
implementing different algorithms. They help users to
understand principles the system operation. For
connecting the system to other applications as well as for
providing users with a possibility to save the results of
their work for further use applet has a data import/export
capability. It also has a built-in multilingual support.

3 Teaching RT-Level Design

The following modules allow to introduce basics of RT-
level design to students.

Data Path. Each functional unit F1..F4, MUX, and
DMUX has a list of micro-operations unary or binary. It is
supported by an RT-level and gate-level models of these
microoperations. The two models are needed for high-
level simulation and gate-level logic and fault simulation
respectively. All the microoperations are labeled by a
control signal which activates the microoperation. The
description of the data path functionality in format “unit
control signal: microoperation” is presented in Fig. 3.
There is an overlay between functions of F4 and of F1, F2
and F3 to allow a parallelization of the given algorithm

i =1,...,n — Register number;
j=0,1,2,4 — Bus number where By
is Data OUT bus, B4 is the Bus to
F1 etc.

DMUX i =0,3,4 — Bus number where Bg
is Data IN bus, B3 is the Bus from
F3 etc.

j=1,...,n — Register number

F1 (F3) unary microoperations like:
various shiftings, inverting,

counting (+1, -1) etc.

F2 7 various binary microoperations

(with 2 operands)

F4 fai various unary and binary

microoperations (with 2 operands)

a list of Boolean conditions

Fig. 3 Description of data path functionality

Students can select needed microoperations for each
unit of data path from the whole set of pre-designed
microoperations when implementing a given algorithm or
a function (like multiplication, division etc.). Each micro-
operation has a gate-level implementation, and the number
of gates determines the cost of the microoperation. The
student can select thus a particular implementation of his
algorithm (like / or M-automata, sequential or parallel
IM-automata) meeting either the cost or timing require-
ment. For every chosen architecture, the system calculates
the cost of HW. The speed (the number of clock cycles
the microprogram needs) can be measured by simulation.

Control Path. The control path is a microprogrammed
controller [6], which implements Mealy FSM (Final State
Machine). The controller consists of a microprogram table
and an interpreter. The microprogram is developed by the
user to realize a given algorithm based on the selected in
prior resources of the data path. The user fills in the
microprogram table as described below.

The first two columns of the microprogram table (Fig.
2) represent the address of current microinstruction and
the address of the next microinstruction correspondingly.

In case if its operation depends on the set of conditions C,
the current microinstruction can be split into several rows.
Only the proper row will be selected then according to the
conditions. Columns 3 to 6 correspond to MUX and
indicate which register (REG1...REGn) contents will be
multiplexed into which functional unit (F1, F2, F4).
Registers where the input data from Data IN (column
“Input”) will be written are specified in column “IN”. The
input data are the operands of the implemented algorithm
(this will be further discussed in the next subsection).

Columns F1 to F4 stand for a certain microoperation
selected in a corresponding functional unit (F1 to F4) in a
certain clock cycle. The DMUX section is specified in
next two columns. It shows to which register the data from
functional units F3 and F4 will be written. Column “OUT”
indicates the register, which content will be redirected to
Data OUT. The last columns (C1, C2, ...) stand for
conditions. They are specified by 0, 1, X (don’t care).

In Fig. 2 an example of algorithm of multiplication of
two operands A and B is presented. The result of multi-
plication is stored in REG1 and fed to the data output.

Simulation Module. Simulation is carried out at the
higher level by using Java subroutines (corresponding to
functional units) which are activated by the control signals
in the order given in the microprogram table according to
condition values. The overall algorithm is the following:

Current State = 1
While Current State # END
{
Read Status Signals
If (Current State = ADDR) and (Status Signals — C)
Select the Row from microprogram table
Else
Error: ”Simulation Error”
Assign function to each enabled Functional Unit
R[N = Data IN
RFa(om) =F3(F2(FI (RF1(m)), RFz(m)))
Rrgiouy = F4Rryinty» Rraginz)
Data OUT = ROUT
Current State = NEXT

Simulation can be carried out also at the gate level by
using Structural BDDs. The process is also controlled by
the data in microprogram table. The simulation data is
stored in a subpanel Simulation Results. This data reflects
the states of all the registers, outputs of all the functional
blocks, data input and output of the device, current states
at each clock cycle and condition signals. The simulation
data can be used later by the student as a debugging info.

4 Teaching RT-Level Test

The following modules are intended to illustrate the
principles of RT-level test.

For investigation of test problems (like test generation,
fault simulation, etc.) we use the same microprogram
repeatedly for several input data.

Test Generation. For test generation no special
automatic means are provided. Either manually generated
functional patterns or randomly chosen patterns (test data)
can be used. A microoperation of one of the units F1, ..,
F4 can be chosen as a target for testing. It is assumed that
the same microprogram will be repeated for a set of
operands for the chosen microoperation. Then each
repetition of the microprogram will be regarded as a test
with a corresponding number. The operands must be
written into the Test Data Table (Table 1). The efficiency
(quality) of these tests is estimated by fault simulation.

Table 1 The test data

No DA=1 DA=2 DA=3 DA=4
1 Data_11 Data_21 Data_31 Data_41
n Data_1n Data_2n Data_3n Data_4n

Fault Simulation. Fault simulation is carried out at the
gate level by using Structural BDD model. Faults for the
given block are inserted into BDDs. The simulation
process is controlled by the data in microprogram table.
The target of the fault simulation (a unit, and a
microoperation in the unit) are selected by a student and
then highlighted. The fault simulation data is reported by
the applet in the Fault Coverage Table.

BIST Module. Usually functional test patterns do not
provide a good fault coverage. Therefore scan-path with
random test pattern generator is introduced. Special BIST
subpanel with BIST results subpanel can be opened for
this operation mode. By Scan-Path technology the inputs
and the outputs of the combinational blocks in data path
are directly accessible by scan-path registers TPG
(random test pattern generator), SA (signature analyzer),
and TPG/SA (combined TPG and SA) [7]. See Fig. 4.

Two modes are possible: BILBO (Built-In Logic Block
Observer) or CSTP (Circular Self-Test Path) mode based
on using TPG and SA, or a combined TPG/SA scan-path
register correspondingly.

Both modes can be implemented in two ways: different
settings for each combinational circuit to be tested, or the
same setting for all circuits. The aim of the student’s work
is to find best settings. Again, the targets for testing are

CSTP BILBO

A A

TPG/SA

TPG . A

|—|SA F2 F4

Fig. 4 Scan-path design

microoperations in blocks F1, ... F4. Random test patterns
generated by the TPG are saved, then fault simulated, and
finally the fault coverage is displayed.

5 Conclusions

The conception presented allows to improve the skills
of students in the area of digital hardware and SOC design
connected with testing. The free-access basis and self-con-
tained nature makes it easy for students even from foreign
universities to use this system independently of time and
place, and learn individually according to their own needs.
This concept brings new forms of communication between
teachers and students and up-to-date course material. The
system’s built-in multilingual support ensures easy integr-
ation into teaching courses of universities over the world.

The applet fully reflects the “easy action and reaction”
conception which was taken as the major target for its cre-
ation. Each field, each functional unit, and other modules
are click-able. Their functions can be changed or further
adjusted. The reaction on each action is instantly reflected
by highlighting and changed colors of selected modules.

On the other hand the tasks chosen for training represent
simultaneously real research problems. This provides
students with dynamic environment to experiment with
and to find interesting solutions for stated problems.

At the moment the applet is still in its beta version
stage. However the most of the functionality is already
implemented. The fault simulation and BIST are the only
missed interactive modules planned for future work.

Acknowledgements: This work is partially supported by
the Thuringian Ministry of Science, Research and Art
(Germany), by EU V Framework project REASON, and
by the Estonian Science Foundation (grants No 3658,
4876 and 4300).

References:

[1] M.L. Bushnell. Increasing Test Coverage in a VLSI Design
Course. International Test Conference, Atlantic City, NJ,
USA, 1999, p. 1133.

[2] J. Harrington. VLSI Design 101 — the Test Module.
International Test Conference, Atlantic City, NJ, USA,
1999, p. 1134.

[3] V.D. Agrawal. Increasing Test Coverage in a VLSI Design
Course. International Test Conference, Atlantic City, NJ,
USA, 1999, p. 1131.

[4] H.-D. Wuttke, K. Henke, R. Peukert. Internet Based
Education - An Experimental Environment for Educational
Purposes. Proc. of IASTED, May 6-8, Philadelphia, PA
USA, pp. 50-54, 1999.

[5] Teaching system URL:
http://www.pld.ttu.ee/dildis/automata/applets/9/

[6] Armstrong J. R., Gray F. G. Structured logic design with
VHDL. Prentice-Hall, Englewood Cliffs, 1993, 482 p.

[7] Abramovici M., Breuer M.A., and Friedman A.D. Digital
systems testing and testable design. /EEE Press, New York,
1999, 652 p.

http://www.pld.ttu.ee/dildis/automata/applets/9/

