
Distance Learning Tools for the Field of Electronics Design and Test

Raimund Ubar
Department of Computer Engineering

Tallinn Technical University
Raja 15, 12618 Tallinn

Estonia
raiub@pld.ttu.ee

Abstract – A conception of a training system for teaching
design and test of electronic circuits is presented. A set of
tools was designed for exercising design, test and diagnostics
related problems in gate-level digital circuits and register
transfer (RT) level digital systems. Such topics as
investigation of tradeoffs between speed and hardware cost in
a digital design, gate- and RT-level simulation, fault
simulation, test pattern and test program generation, built-in
self-test (BIST) and other similar problems are covered by
the described distance learning environment. Part of the tools
are implemented in a form of Java applets and can be freely
accessed via Internet. A set of circuits as diagnostic objectives
for the applets are predesigned and can be selected by the
student. Another part of the system consists of diagnostic
tools which can be used for solving test related tasks for
circuits or systems designed by students themselves, using any
standard CAD tools. The access to the tools via internet
makes it easy for students even from foreign universities to
use the distance-learning environment any time and in any
place. The Java applets have built-in multilingual support to
ensure easy integration into teaching courses of universities
over the world.

I. INTRODUCTION

Distance-Learning is currently a hot research and
development area. Benefits of internet-based education are
clear: asynchronous learning, classroom and platform
independence. An application installed and supported in
one place can be used in other places all over the world.
Most of internet-based courses made available in recent
years are not more than a network of static hypertext
pages. The challenge is to develop web-based educational
applications, which can offer some amount of interactivity
and adaptivity.

Rapid advances in the areas of deep-submicron electron
technology and design automation tools are enabling
engineers to design larger and more complex circuits and
to integrate them into one single IC. System on a Chip
(SoC) design methodology is seen as a major new
technology and the future direction for semiconductor
industry. On the other hand, the cost of test and
verification because of the increasing complexity of
systems has become a significant part of the total cost of
electronic products. This is the reason why design for
dependability, verification and test are becoming more and
more important in all the life periods of a system - in
development, production and exploitation - and therefore,
these issues should be considered also in teaching
tomorrows electronics engineers. This is why the curricula
in system and electronics engineering should incorporate a
greater emphasis on design for testability (DFT) and on the
concepts of test. Teaching in this domain should be

facilitated by using integrated CAD tools that support
verification, design for testability, test generation, built-in
self-test, fault diagnosis and fault tolerance.

In the following a set of tools for supporting distance
learning in the fields of design and test of electronics
systems will be presented. The functionality of the tools,
and the scenarios of using the tools in the laboratory
research will be described.

The paper has the following structure. In Section 2, the
roles of the tools for two different levels of learning
(learning of basic problems, and research-oriented
learning) will be specified. Section 3 describes the
conception of learning based on “living pictures” which
are implemented as Java applets. In Section 5 the applets
for learning test in gate-level circuits, and in Section 6 the
applets for learning test in register transfer level circuits
are described. Section 6 presents the tool set for research
oriented training in digital test. Finally, in Section 7 some
conclusions are drawn.

II. TWO LEVELS OF LEARNING DESIGN AND TEST

In the paper a conception is presented for training

students to be educated for electronics and SoC design to
improve their understanding and skills in test related
topics. The training consists of two parts: interactive
learning of basic problems by using web-based interactive
learning modules, and laboratory research based learning
of advanced problems by using low-cost diagnostic tools.

The first part of the training is based on using so-called
living pictures [1]. The method presented deals with the
goal to put interactive training modules to the Internet that
can be used in a lecture as well as for individual self-
studies [2]. They can be accessed independent of time and
place. On one hand, teachers can show more complex
examples during the lecture and immediately demonstrate
the influence of changing parameters by using computer
simulated “living pictures” in their lessons. On the other
hand, students can use the same simulations on their home
computer, if the “living pictures” are available on the
Internet.

Two types of applets have been developed: applets for
investigating and learning test problems in simple gate
level circuits, and applets for practicing design and test
problems in more complex digital systems, consisting of
control and data paths.

The second part of training has a target to give students
already equipped with basic knowledge the possibility to
go more deeper into the essence of design and test
problems, to get aquainted with different tools, methods
and models, and to get hands-on experience in solving

some practical problems. This part of training is based on
using a special set of tools for test generation and fault
simulation to be used in the complex circuits designed by
students themselves.

The second part can be carried out partly in laboratory,
partly by using Internet.

III. LEARNING BY JAVA APPLETS

The teaching software developed for learning electronics

testing supports the action based training via internet. The
software offers a set of tools to inspect the objective to be
learned and access to multiple learning modules. It
provides easy action and reaction (click and watch) by
using "living pictures", the possibility of distance learning,
and learning by doing.

The core of that concept are Java-applets (interactive
modules) running on any browser connected to the
internet.

By using interaction possibilities the students can
generate examples that are interesting enough to encourage
own experiments. They can produce input stimuli (either
manually or using built-in generators) and watch the
reactions. In reaction of the inputs, simulation or
diagnostic components can be started, executing a selected
method that has to be taught, and presenting the results
using visualization components. There are also explanation
components, describing unknown methods step by step on

the actual chosen or generated example.
The software is written in Java 2, and it can be run over

network, using standard browsers like Netscape and
Internet Explorer with Java 1.2 runtime plug-in, or with
Java 2 appletviewer.

IV. APPLET FOR LEARNING DIAGNOSTICS OF

ELECTRONICS CIRCUITS

The software developed for excercising gate-level
circuits can be used for teaching the basics of Digital Test
and Testable Design as illustrative tool explaining the
problems of fault modeling, fault simulation, test
generation and fault diagnosis [3].

The work window of this program (Fig.1) consists of
three parts - vector insertion panel, circuit view panel for
presenting design schematics, and data view panel for
presenting test vectors, fault tables and waveforms. Vector
insertion panel is used for stimulating the circuit by test
patterns. In the circuit view panel signals can be inserted
directly on the lines when test generation procedures are
learned The boxes at lines on schematics are clickable for
inserting proper signals for activating faults and
propagating error signals through the circuit. In the data
view panel the results of different procedures are reported:
the test patterns after they have been generated, and the
fault tables after the faults are simulated for the given test
patterns.

Fig.1. Java Applet for learning electronics test

The following test related topics are supported by the
“living picture”:
• fault simulation,
• test generation,
• testability analysis, and
• built-in self-test.
The key problems can be taught and learned using the

software on different examples.
In the test generation mode the students can choose a

target fault in the schematic, create step by step proper
activated paths in the ciruit to activate the fault on the site,
and to propagate the error signals caused by the fault
towards output by clicking the needed values into boxes on
the lines. From these values finally, an input vector will be
deduced. The colours on lines help the students to

understand the current status of the task: activated faults
and activated paths are marked by red and green lines, the
inconsistencies of the signal values are highlighted by blue
colour. As the result of the procedure, a test pattern will be
generated. The detected faults are displayed also on the
data panel in form of a row of the fault table.

In the fault simulation mode, a fault table is generated
and shown on the data panel for all the test vectors created
by the given moment. By selecting a test vector on the data
panel, all the detected faults will be highlighted by colours
on the schematic panel. The fault table generated by fault
simulation is used in diagnostic working modes.

Different gate-level diagnosis and fault localization
strategies can be investigated: combinational and
sequential ones.

For learning the combinational diagnostic strategy, a
single vector or a subset of vectors is selected and applied
to the erroneous circuit (imitating a test experiment). The
applet shows the results of testing, and displays the subset
of suspected faults. To improve the diagnostic resolution,
additional test vector(s) can be generated by the applet and
used in the repeated test experiment.

Sequential diagnosis is based on the guided probing
strategy. A test pattern is applied and the expected
behavior of the circuit is displayed. The principle of
guided-probe testing is to backtrace an error from the
output where it has been observed to its source (faulty
gate). By clicking on the connection boxes, the actual
values of signals of the faulty circuit can be measured. A
faulty gate is located if it has been found that the signal on
the output of the gate is faulty, while only expected signals
are observed at its inputs.

The main didactive point in learning the diagnostic
strategies is to try to localize the fault by as few test
vectors (in the combinational approach) or by as few
measurements (in the case of sequential approach) as
possible. In this task a competition between students can

be carried out, which makes the “play” with the applet
even more exciting.

V. FROM SIMPLE CIRCUITS TO COMPLEX
SYSTEMS BY JAVA APPLETS

Entering the SoC era with its new concepts means

teaching on higher levels of abstraction like core level,
register transfer level (RTL), instruction set architecture or
behavioral levels. Another Java applet has been developed
for learning high-level design and test problems in control
intensive digital systems [4]. Such topics as investigation
of tradeoffs between working speed and hardware cost in
digital design, RT-level simulation, fault simulation, test
generation, built-in self-test (BIST) and other related
problems are covered by the training system.

While designing a system (implementing a given
algorithm or a function like multiplication, division etc.) a
student can select needed microoperations for each unit of
data path from the whole set of possible predesigned
microoperations. Different architectures can be chosen for
implementation of a given function. The control path is a
microprogrammed controller which implements a finite
state machine (FSM). The microprogram is developed by
the student to realize a given algorithm based on the
available (selected in prior) resources of the data path. The
user fills in the microprogram table represented as a
subpanel of the applet. Each microoperation has a gate-
level implementation, and the number of gates determines
the cost of the microoperation. By selecting a set of
microoperations for the whole data path the student will
get also the cost of the data path in the number of gates.
Students can compare different solutions and find the
tradeoffs. For every chosen architecture, the system
calculates the cost of hardware. The speed (the number of
clock cycles the microprogram needs) can be measured by
simulation.

Fig. 2. Java applet for learning register transfer level test

Simulation of microprograms is carried out at the higher
register transfer level by using Java subroutines
(corresponding to functional units) which are activated by
the control signals in the order given in the microprogram
table.

For investigating test related problems of digital systems
two-level simulation is used. For the fault simulation,
stuck-at fault model is used. Fault insertion is carried out
on the gate level whereas fault propagation is processed on
the register transfer level.

Different strategies for testing can be exercised:
• self-testing by the implemented user microprograms

(called “functional testing”),
• generating special test microprograms for selected

blocks,
• different Built-in Self-Test (BIST) architectures like

(BILBO, circular self test path, “store and
generate” a.o.) [6] for selected cores or blocks.

In the case of self-testing by user microprograms, the
quality of test (fault coverage) will be the objective of
research. By fault simulation the fault coverage for a
selected block of the system will be calculated. The quality
of test can be improved by selecting proper data for the
given microprogram. The students can work creatively by
choosing these data.

In Fig.2, the fault simulation results for two target blocks
FC1 and FC2 are depicted, which show how the test
coverage is increasing when processing the microprogram
with different data.

Self-testing by user microprograms, however, will have
its limits when high fault coverage for functional blocks is
needed. The reason of the low fault coverage is that the
user microprograms are not developed for testing purposes,
and the fault coverage can be controlled only by selecting
the data.

To improve the test quality, special test microprograms
can be developed by the designer. The target of the
particular test microprogram will be selected: a block or

several blocks in the data path. The microprogram will be
developed on the higher register transfer level whereas the
test data for testing the target block(s) are generated at the
gate-level.

In Fig.2, a gate-level implementation of a target block is
shown. The fault simulation results for a target block will
be also shown (like for F1 and F2) in a particular column
of the report table.

Self-testing by dedicated test microprograms, however,
may have also its limits in reaching high fault coverages
for functional blocks. The reason lays usually in the low
testability of the system. To improve the quality of test the
logic BIST approach can be used [6].

In the applet different approaches of BIST can be
investigated. The corresponding BIST architecture can be
selected and emulated by the applet, and the quality of the
chosen test approach for the particular circuit can be
measured in terms of fault coverage.

New emerging technique called “functional BIST” [7]
can be also investigated by combining different
configurations of blocks with the goal to estimate their
suitability for functional BIST.

Special BIST subpanel with BIST results subpanel can
be opened for the BIST operation mode. By scan-path
technology the inputs and the outputs of the combinational
blocks F1, F2, F3 or F4 in the data path can be made
directly accessible (Fig.3). Pseudorandom test pattern
generator (TPG), signature analyzer (SA), and TPG/SA
(combined TPG and SA) can be configured and emulated
by the applet.

The mentioned BIST architectures can be implemented
in two ways: by choosing different settings for each
combinational circuit to be tested, or by choosing the same
setting for all the circuits. The aim of a student’s work is to
find best settings. For setting the polynomial, the initial
state of the TPG, and the number of clocks to be used for
test generation, there is a special subpanel.

The described applet gives the students a possibility to
investigate, compare and “play” with most important
testing conceptions used in today’s complex digital
systems like SoC.

VI. COMPREHENSIVE TOOL SET FOR

LABORATORY TRAINING IN DIGITAL TEST

In the described applets, a restricted set of designs

prepared earlier are used by students for diagnostic
experiments. In the following, a laboratory environment
will be presented where students can exercise their own
designes created by any standard CAD tools.

Traditional VLSI test generation and fault simulation
software on workstations is both costly and unable to
handle large numbers of students simultaneously in
educational courses. During the recent years, many
different low-cost tools running on PCs have been

Fig. 3. Scan - path design and BIST

F1

F2

F3

F4
TPG

SA
TPG/SA

 L - BIST

C - BIST

developed to fill this gap. They include usually the major
basic tools needed for IC design: schematic capture, layout
editors, simulators, place and route tools etc. Low-cost
systems for solving a large class of tasks from the
dependability area - test synthesis and analysis, fault
diagnosis, testability analysis, built-in self-test, especially
for teaching purposes, are missing. For this reasons, at TU
Tallinn a diagnostic software Turbo-Tester (TT) was
developed [8]. The main functions of TT are depicted in
Fig.4.

After learning the basics of theory by “playing” with
above described applets, a laboratory work follows with
more complex and realistic designs, where any available
design software (schematic editor as minimum), and TT
diagnostic software can be used in combination. For this
combined work dedicated interfaces have been built.
Access to TT is possible via internet.

The TT software consists of a set of tools for solving
different test related tasks by different methods and
algorithms:
• test pattern generation by deterministic, random and

genetic algorithms,
• test program optimization (test compaction),
• fault simulation and fault grading for combinational

and sequential circuits,
• multi-valued simulation for detecting hazards and

analyzing dynamic behaviour of circuits,
• testability analysis, and design for testability,
• fault and design error diagnosis.
The representation of the circuit can be given at gate-

and macro levels which gives a possibility to investigate
the complexity issues of different test algorithms.

TT can be installed under MS Windows/NT and Solaris
operating systems. TT can read the schematic entries of
various contemporary VLSI CAD tools, e.g. Cadence,
Synopsys, Mentor Graphics, Viewlogic, Compass,
OrCAD, etc. which makes TT independent of the existing
design environment.. Similarly to the Java-based living
pictures, TT tools are accessible over Internet [9].

A lot of different options available in TT give the
students opportunity to compare different models and
methods used in the testing practice.

The students develop circuits as diagnostic objectives,
investigate by TT the testability of circuits, redesign them
if neccessary for improving the controllability and
observability of test points, insert self-test BIST structures,
analyse the efficiency and trade-offs of different BIST

solutions, and learn to make proper engineering decisions
in the field of testable design.

An example of a research scenario students can exercise
by using TT tools is as follows. By means of any CAD
tools (TT has EDIF interface which is a link to most
commercial CAD tools), a design can be created for further
diagnostic experiments. To investigate how different
models of the design can influence to the efficiency of test
tools (e.g. to the speed or quality of test generation or fault
simulation), two representation levels can be chosen: gate-
level and macro-level networks. The latter one means that
the whole circuit is partitioned into a set of subcircuits,
where each subcircuit is represented by a compressed
model which allows to reduce the complexity of the whole
model of the system compared to the initial one.

The Fig.4 depicts some possible experimental work
flows targeted to testing and fault diagnosis. Test patterns
can be generated by different algorithms with the goal of
comparing the efficiency of algorithms. Test optimization
is an option to improve the available tests, to reduce the
test length and to reach faster test experiments. On the
other hand, shorter test sequences will provide less
diagnostic resolution. This conflict between the length of
the test and its diagnostic resolution present another
attractive research issue to look for tradeoffs between these
two objectives.

Several interesting laboratory research scenarios have
been developed based on using the environment of TT:
• Test generation in digital circuits. Comparison of

different methods, analysis of the influence of
complexity of circuits to the performance of tools.

• Fault simulation in digital circuits. Analysis of the
influence of complexity of circuits to the performance
of tools.

• Design for testability. Evaluation of the testability of a
given circuit, and redesign of the circuit for improving
its testing quality.

• Fault and design error diagnosis. Improving the
diagnostic resolution of the given test sequence by
generating additional test patterns.

• Built-in Self-Test. Comparison of different methods
and finding tradeoff between the speed and quality of
testing. The following architectures like BILBO,
Circular-Self-Test-Path, and Store-and-Generate can
be emulated.

• Functional Self-Test. Evaluation of the quality.

The listed scenarios have been introduced into the
curricula at Tallinn Technical University in Estonia, and at
the University Jönköping in Sweden. The laboratory
research scenarios have been successfully used also in the
summer school for master students at TU Darmstadt in
Germany.

VII. CONCLUSIONS

An original set of tools supported by learning scenarios
in teaching electronics design and test was developed at
Tallinn Technical University.

The tools and methodology support the distance-
learning conception of education. By the use of web-based
media we achieve: presentation of teaching material
independent of place and time, individual learning
according to the students‘ own needs, new forms of
communication between teachers and students, availability
of up-to-date learning materials.

The environment and conception presented allow to
improve the skills of students to be educated for digital
hardware and SoC design connected with test related
topics. The system fully reflects the “easy action and
reaction” conception which was taken as the major target
for creation of the environment.

The tasks chosen for training represent simultaneously
real research problems. This provides students with
dynamic environment to experiment with and to find
interesting solutions for stated problems. The main target
of the described system is to foster in students critical
thinking, problem solving skills and creativity in a real
research environment and atmosphere.

VIII. ACKNOWLEDGEMENTS

This work has been supported by EU V Framework
projects REASON and eVIKINGS II, by the Thuringien
Ministry of Science, Research and Art (Germany), and by
the Estonian Science Foundation, grant No 4300.

The author thanks the colleagues and students of TU
Tallinn involved in the development, especially Jaan Raik,
Artur Jutman, Elmet Orasson and Sergei Devadze. Special
thanks of the author belong to prof. H.-D.Wuttke from TU

Ilmenau (Gemany) for numerous discussions during the
development of the conception and tools.

IX. REFERENCES

1. H.-D. Wuttke, K. Henke, R. Peukert, “Internet Based
Education - An Experimental Environment for
Various Educational Purposes,” Proc. of the IASTED
Int. Conf. on Computers and Advanced Technology in
Education, May 6-8, Philadelphia, PA USA, 1999.

2. R.Ubar, H.-D.Wuttke, “The DILDIS-Project – Using
Applets for More Demonstrative Lectures in Digital
Systems Design and Test,” Proc. of the 31st
ASEE/IEEE Frontiers in Education Conference,
FIE’2001, Reno, NV, USA, Oct. 10-13, 2001, pp..
SIE-2-7.

3. R.Ubar, A.Jutman, E.Orasson, J.Raik, T.Evartson, H.-
D.Wuttke, “Internet-Based Software for Teaching Test
of Digital Circuits,” In the book "Microelectronics
Education", Marcombo Boixareu Ed., 2002, pp.317-
320.

4. S.Devadze, A.Jutman, A.Sudnitson, R.Ubar, H.-
D.Wuttke, “Teaching Digital RT-Level Self-Test
Using a Java Applet,” 20th IEEE Conference
NORCHIP’2002, Copenhagen, Denmark, November
11-12, 2002, pp. 322-328.

5. R.Ubar, “Multi-Valued Simulation of Digital Circuits
with Structurally Synthesized Binary Decision
Diagrams,” OPA (Overseas Publishers Assotiation)
N.V. Gordon and Breach Publishers, Multiple Valued
Logic, Vol.4, 1998, pp. 141-157.

6. M. Abramovici et. al., “Digital Systems Testing &
Testable Designs,” Computer Science Press, 1995,
653 p.

7. S.Cataldo, S.Chiusano, P.Prinetto, H.-J.Wunderlich,
“Optimal Hardware Pattern Generation for Functional
BIST,” Int. Conf. Of Design Automation and Test in
Europe – DATE, Paris, March 27-30, 2000, pp.292-
297.

8. G.Jervan, A.Markus, P.Paomets, J.Raik, R.Ubar,
“Turbo Tester: A CAD System for Teaching Digital
Test,” In “Microelectronics Education”. Kluwer
Academic Publishers, 1998, pp.287-290.

Test
Generation

Design Test
Patterns

On - line
BIST

Test
Optimization

Fault
Simulation

Test
Organization

Fault
Table

Fault
Diagnosis

Test
Results

Test

Test
Experiment

Located
Faults

Fig.4 . Turbo-Tester tool environment

9. http://www.pld.ttu.ee/tt/

