

Understanding
Boundary Scan

PCB Testing with IEEE 1149.1

Set of Laboratory Works

Glossary

AOI – Automatic Optical Inspection

AXI - Automatic X-Ray Inspection

BC – Boundary (Scan) Cell

BGA – Ball Grid Array

BIST - Built-In Self-Test

BS – Boundary Scan

BSDL – Boundary Scan Description Language

BST – Boundary Scan Testing

DFT – Design for Testability

DUT – Device under Test

ICT – In-Circuit Testing

IEEE - Institute of Electrical and Electronics Engineers

JTAG – Joint Test Action Group

PCB – Printed Circuit Board

PGA – Pin Grid Array

TAP – Test Access Port

TCK – Test Clock

TDI – Test Data In

TDO – Test Data Out

TMS – Test Mode Select

TRST – Test Reset

VHDL – VHSIC Hardware Description Language

VHSIC - Very-High-Speed Integrated Circuit

 2

Introduction and Motivation

The printed circuit board (PCB) testing constitutes an essential step of the
production cycle of microelectronic systems as it is an important instrument to
ensure the product quality level. The state of the art of PCB testing is a mixture of
Boundary Scan (BS), optical and x-ray inspection, functional and in-circuit testing.

Historically, most PCB testing was done using so-called bed-of-nails in-circuit test
(ICT) equipment, which provides the physical contact to any desired point of the
PCB surface. This method is very efficient when used with PCBs of a low
complexity. However, an average modern PCB, normally, contains several
inaccessible internal layers inside and complex components upon the surface.
Modern fine pitch high count packaging types, like e.g. various grid arrays (PGA or
BGA), can hold up to several hundreds of hidden pins. Since each such pin has to
be tested, then complete in-circuit as well as functional testing becomes too
expensive or even infeasible due to extremely reduced test access.

Test access by different
test methods

Boundary Scan

AOI and AXI

Functional Testing

Flying Probe

In-Circuit Testing

1980 1990 2000 2010

As the result, over the last decade, there was a considerable increase in the
number of test applications that require Boundary Scan as well as optical/x-ray
inspection (AOI/AXI) techniques. Although, no PCB testing method taken alone can
guarantee full test coverage, the BS seems to be the most universal and the only
realistic low-cost solution that supports structured approach and quantitative fault
coverage measure.

 3

Boundary scan allows complete controllability and observability of the boundary
pins of a BS-compatible device via software control. In the field of board assembly
testing, BS targets such faults as bad soldering, wrong component placement,
component misplacement, broken interconnects, defective component legs, shorts
between conductive lines, and others. At the component testing, BS facilitates
isolation and testing of chips either via a test bus or by built-in self-test (BIST)
hardware. Hence, boundary scan covers a large part of all structural faults in the
system under test and substantially reduces both test equipment and DFT costs.

The widespread adoption of BS reflects an industry-wide need to simplify and
structure complex tasks of testing PCBs and systems for manufacturing defects and
performing other design debug, configuration, and maintenance tasks. Nowadays,
BS is well supported by dedicated hardware instruments and software tools
enabling a simple and standard means of automatically creating and applying tests
at the device, board, and system levels.

The importance and widespread usage of the Boundary Scan standard by the
microelectronics industry at different design, debug, production, and maintenance
phases, makes it a necessary technique to be studied by future engineers.

 4

Boundary Scan Overview

The Boundary Scan standard (IEEE Std 1149.1 “Test Access Port and Boundary-
Scan Architecture”) [1] also known as JTAG was officially approved in 1990. It was
being developed by Joint Test Action Group (JTAG) since mid 1980s. Right from
the beginning, the adoption of Boundary Scan standard by the industry was not very
fast. However, it has much accelerated over time and facilitated appearance of
other branches and derivatives of 1149 family.

Device Architecture

The Boundary Scan architecture implies the
introduction of scan chains in such a way,
that each pin of each chip receives an
internal control point. Therefore, we do need
to include extra circuits on an ASIC in order
to test it. This is an example of increasing the
cost and complexity (as well as potentially
reducing the performance) of an ASIC to
reduce the following testing costs.

The general boundary scan architecture is
shown in figure on the right.

This configuration requires that the board
and each IC that is part of the boundary scan
include the following principal hardware
components:

 A test access port (TAP) with at least four pins;

 A group of registers: a one instruction register (IR) and number of data
registers (DRs);

 A TAP controller: a 16-state finite state machine.

The boundary scan architecture allows configuring the cells for at least following
testing modes:

 External testing: interconnects between the chips on a board;

 Internal testing: testing of the logic within the chip.

Test Access Port

TAP controller can have a various configuration if signals and different
implementations. But there should be the signals applied to the four mandatory pins

 5 5

and the optional TRST, which is used asynchronous test logic reset. The four
mandatory pins include two data pins: TDI and TDO, and two control pins: TMS and
TCK.

Here is more detailed description of TAP controller signals functions:

 TDI. This signal allows the introduction of test data. The TDI of the board is
connected to the TDO of the first chip in the scan chain. This signal is shifted
in the registers at the positive edge of the TCK and, when not in use, is kept
high.

 TDO. Test data output allows scanning out of the test data. The TDO of the
board is connected to the TDO of the last chip in the scan chain. Data are
shifted out at the negative edge of TCK.

 TCK. The test clock operates the testing function synchronously and
independent of the system clock. It controls the shifting data and instruction’s
codes among the TAP registers.

 TMS. The input stream of this pin is interpreted by the TAP controller as a
control signal and used to manage the various test operations.

 TRST. This signal is used to reset all testing logic asynchronously and
independent of TCK. Implementation of TRST is recommended by the
standard, but it’s an optional one.

Registers

There are three mandatory registers defined by the standard: the instruction
register, the bypass register, and the boundary scan register. The last one is
actually a sequence of the boundary scan cells (Section 0). A brief description of
these registers is given in further sections.

Boundary scan cell

Common boundary scan cell may be used inside input or output pins. During
normal operation mode the input signal is applied to the data-in pin and passes to
the internal logic through the right multiplexer. Thus the value of Test/Normal should
be 0, while the Shift-Load mode may be either 0 or 1.

When the same cell is used as an output pin, the data coming from the internal logic
of the chip pass, through the right multiplexer, to the output of the chip. An example
of a boundary scan cell implementation is shown in the figure below.

 6

For the test mode, the data are coming through TDI, thus the Shift/Load mode
should be 1. The data are latched for internal testing or to be shifted to the next
BSC when the clock is activated.

Bypass Register

The bypass register is set to logic 0 at the rising edge of TCK when the TAP
controller is in the Capture-DR state. Use of the bypass register allows the signal at
the TDI to pass directly to the TDO of the chip, thus bypassing all the other BSCs of
the chip.

Boundary scan register

The boundary scan register consists of all the BSC cells on the periphery of the
chip. Boundary scan register is part of the testing of the interconnects and of any
logic between the boundary scan ICs on the board.

Instruction register

The instruction register is a serial-in, parallel-out register. In this register the
appropriate instructions are shifted in serially and the individual instructions are
captured in parallel. Due to this, an instruction register has a shift section that can
be connected to TDI and TDO, and a hold section, holding the current instruction
value. IR must be at least two-bits long (to allow coding of the three mandatory
instructions - Bypass, Sample/Preload and Extest), but the maximum length of the
IR is not defined. Standard defines that in capture mode, the two least significant
bits must capture a 01 pattern. The values captured into higher-order bits are not
defined. One possible use of these higher order bits is to capture an informal
identification code if the 32-bit ID register is not implemented.

Device identification register

The device identification register is optional, but if included on the IC, it should
comply with the standard. It must be a 32-bit-long parallel-in and serial-out. It is
intended to contain the manufacturer’s number and the version number. This
information facilitates verifying that the correct IC is mounted in a correct position
and it is the correct version of the chip. Unlike the other registers, the information is
not passed to an input latch.

TAP Controller

The TAP controller has three main functions:

 Loading the instructions in the IR;

 Providing control signal to load and shift the test data into TDI and out of
TDO;

 Performing test actions, such as capture, shift, and update test data.

The state diagram of the TAP controller is shown in Error! Reference source not
found.. Some of the states correspond to actual operations on the data (DR) or the
instructions (IR), while others allow some flexibility in the flow of operations.

 7

TAP States

At power on, the controller is in the
Test-Logic-Reset state. It remains
as long as TMS is high and the
circuit is in normal operation mode.
As soon as TMS changes to logic 0,
the controller is in the Run-Test-Idle
state.

To start testing, the instruction
needs to be loaded into IR. For this,
TMS is held high and the TCK is
clocked twice for the controller to
reach the Select-IR-Scan state.
Now TDI and TDO are connected to
IR, and all IR registers on the board
are serially connected. Next, the
controller passes to the Capture-IR state with TMS = 0. Once the instruction is
loaded in the IRs, then, with TMS still low, the controller stays in the Shift-IR state
for as many clock cycles as needed by the test mode. In this state, the previously
captured data are shifted via TDI and via TDO. If shifting is not needed, TMS = 1
and the controller bypasses Shift-IR and enters Exit1-IR state. The latter state as
well as any of the other exit states is temporary. At the next positive edge of the
clock, there is transition to another state. If TMS = 0, the next state is Pause-IR, and
the control remains in this state until TMS = 1. The Pause-IR state is needed when
the shift is done in a chain of different lengths. From this state, the control goes to
Exit2-IR, then to Shift-IR if TMS = 0, or to Update-IR, if TMS = 1. The controller
enters this state once the shifting process has been completed.

The new data are latched into their parallel outputs of the selected data registers at
the falling edge of the TCK. Depending on the value of TMS, the next state is either
Run-Test-Idle or Select-DR-Scan. When the controller is in the DR branch of the
state diagram, it performs on the IR operations similar to those described above.

Instructions

There are ten instruction defined by the standard. Three of these are mandatory:
BYPASS, EXTEST, and SAMPLE/PRELOAD. Six are optional: INTEST, IDCODE,
USERCODE, RUNBIST, CLAMP, HIGHZ. Below is descriptions of three mandatory
instructions as well as three commonly used optional instructions.

BYPASS

This is a mandatory instruction, which is used to allow quick passage through this
device to another device connected in the scan chain. The bypass register is active
during BYPASS instruction is loaded into IR.

SAMPLE/PRELOAD

This instruction is a mandatory one and used to preload known values in the
boundary scan cells (boundary scan register is selected). Device is in functional
mode, not test mode, so it is possible to scan BSR without interrupting the normal
operation of the internal logic.

 8

IDCODE

Although this optional instruction does not involve testing of the board, it helps
identifying misplaced ICs. Often, it is difficult to distinguish between similar devices,
and discovering the reason for malfunction of the board may take unnecessarily a
long time. Identification register is selected in Test-Logic-Reset state, if available,
else Bypass register selected.

INTEST

Boundary scan register selected during INTEST is active. This optional instruction is
used to apply patterns to the device itself. Boundary scan cells have permission to
write to their outputs (device in test mode) The test data are applied one at a time at
the rate of TCK.

RUNBIST

Because of the growing importance of internal self-test structures, the behaviour of
RUNBIST is defined in the standard. The self-test routine must be self-initializing
(i.e., no external seed values are allowed), and the execution of RUNBIST
essentially targets a self-test result register between TDI and TDO. At the end of the
self-test cycle, the targeted data register holds the Pass/Fail result.

CLAMP

This optional instruction is used to control the output signal of a component to a
constant level by means of a BSC. This is useful to hold values on some pins of the
circuit, which are not involved in the test. These required signals are then loaded
with other test patterns every time they are needed. This instruction, although
useful, increases test application time.

HIGHZ

The HIGHZ instruction is optional and forces all outputs of a component to a high-
impedance (High-Z) state. High-Z drives these values to the three-state controls
causing them to go to their high-Z drive state but leaves bypass register as the
selected register.

 9

Exercise I

TAP controller study

1. Run the boundary scan applet. After that, it automatically enters the TAP
mode and the default board will be loaded too.

2. Make transitions through the state diagram of the TAP controller. The state
diagram is illustrated in the right upper corner of the applet window. As you
see, the starting point is the Test-Logic-Reset state. On the diagram find
following states: Pause-DR and Exit2-IR, and then using TMS and TCK
buttons try to go there. Continue practicing with other chosen target states.

3. Be sure to find the answer to the following question: what is the maximum
number of clock cycles needed in order to return to the Test-Logic-Reset
state from a random unknown state if you keep TMS signal constantly 1?

 10

Exercise II

The Instruction Register (IR) study

1. Find the IR branch on the TAP controller state diagram. Then make some
necessary transitions through the state diagram in order to reach the Shift-IR
state. Now, being in this state you have to load values that are defined in the
step 2.2 to the IR of each chip that is currently illustrated on PCB (Printed
Circuit Board) Panel. As you can see, the IR is a rectangle situated on each
chip (yellow color of a rectangle shows currently loaded data, red colored
rectangle means updated data).

2. If you have reached the Shift-IR state, load all 0’s combination to the IR of the
first chip using TMS and TCK signals (simply push TMS(0) and then click
TCK; the number of clicks corresponds to the number of 0’s you want to load
to the IR). Then insert all 1’s combination to the IR of the second chip (push
TDI(1) and then again click TCK as much number of times as the number of
1’s that you wish to be loaded to the IR) and so on.

3. In the similar way try to fill the IRs of all chips. Note that before filling you
must define sizes of all IRs. For this, just count the number of bits of all IRs.
Before the last bit insertion, push TMS(1) and then using TCK make transition
to the Update-IR state of the state diagram. After the transition, you can see
that every IR has the same data as you have loaded into them. Thus, you
have updated the contests of all IRs. Finally, you have to have all 0’s
combination in the IR of the first chip, all 1’s combination in the IR of the
second chip and so on

 11

Exercise III

The Data Register (DR) study

1. Choose Command mode under Mode menu. Afterwards, for the chip that has
ID code register choose IDCODE instruction with an input 1, for other chips
choose BYPASS and select any input combination you want.

2. When all selections are done, push the button Scan IR and then Scan DR.
After that diagnostic information should appear. Now you can see the data
that you have loaded to the DR and the data that has been read on its output.
As you have already noticed, the ID code represents itself a number in a
hexadecimal system (for example, 0000B143h). Now you must compare this
ID code with CHIP.IDCODE output value, which you must convert from a
binary format to a hexadecimal system.

3. Answer to the following question: what does it mean if the converted value is
the same as the chip’s ID code? And what if it differs?

 12

Exercise IV

Boundary Scan instructions study

1. Try to understand difference between EXTEST, INTEST, BYPASS, SAMPLE,
CLAMP and HIGHZ instructions. For this, review the theory and then on
practice try to supplement your knowledge.

2. Choose EXTEST and INTEST commands for all chips. Select the test
vectors. Note that you must take into account the control signals of all chips.
Simulate chosen vectors: push Scan IR and then Scan DR. What information
is observed on the outputs of all chips? Is there any difference between
EXTEST and INTEST instructions? If yes, name it? Which of these
instructions is optional, and which is mandatory? (not answered in an
Example)

3. Perform similar tests with other instructions. Try to analyze the diagnostic
information after their simulation. Find out what purposes these instructions
are used for. How do you think why some of them are mandatory and some
are optional instructions?

 13

Exercise V

The interconnect diagnosis

1. Choose Command mode under Mode menu. Then, choose Mode  Random
fault under Diagnostics menu. By this, you have inserted a random fault on
one of the wires.

2. In order to perform the interconnect diagnosis we must set up all the chips in
EXTEST mode. Now we need to select the proper test vectors taking into
account the control signals of all chips. Selection of the right values of the
control signals guarantees us that all outputs of the chips will not change to a
high-impedance state.

3. Let’s select the inputs for all chips. Let the first input pattern for all chips
consist of all 1’s. After the selection, push Scan IR and then Scan DR. Now
the simulation process has started and after a few moments the diagnostic
information should appear. But that is not all. Now select the second pattern
for all chips. Let it consist of all 0’s. After you have selected it, push Scan IR
and then Scan DR like it was done in case of the first simulation. After the
second simulation, repeat the second step with all 0’s patterns again. In the
end, we should get the proper diagnostic information for the 3 simulation
processes.

4. Analyze the diagnostic information for the last 2 simulations. Try to answer to
the following question: why the results of only the last 2 simulations should be
analyzed? Find the random error you have inserted and then click on the
proper connection wire (you should see the name of this wire). Afterwards,
choose Give the answer under Diagnostics menu, and select the name of the
wire with the same name. The applet tells you if your answer is correct or not.

 14

Explanations and Examples

Here TAP controller study

Accordingly to the required task, it
is necessary to go to the following
states on the diagram: Pause-DR
and Exit2-IR. For this, we use
TMS and TCK buttons. Suppose,
we have chosen Pause-DR for our
target state. At first, we must find
the states on the diagram through
which we could reach this state.
Thus, these states are: Run-
Test/Idle, Select-DR-Scan,
Capture-DR, Shift-DR, and Exit1-
DR. In order to be in Run-Test/Idle
state we need TMS(0) to be chosen and then we push TCK button. After the
transition the next state to reach is Select-DR-Scan. As you see on the diagram, we
need to choose TMS(1). After that, we push TCK button in order to make a
transition. Now we are in Select-DR-Scan state. Further try to make the rest of
necessary transitions to reach Pause-DR state and then return back to Test-Logic-
Reset state. Use the logic that is described above. See the figure below, which
illustrates our target state’s Pause-DR location on the diagram.

The Instruction Register (IR) study

Suppose, we are in Shift-IR state on the diagram. Now we need to load some
values that are defined in the step 2.2 to the IR of the each chip on the board. Thus,
we set to the next step.

So, let us define the number of bits for all IRs: for CHIP1 and CHIP2 the sizes are
equal to 8 bits and CHIP has a 3-bit IR. Thus, we need to load to the registers of
CHIP1 and CHIP2 eight 0’s, and to CHIP register the test pattern of three 1’s.
Moreover, we have to remember that the direction of data flow through the chips is

 15

from left to right. It means that the first IR to fill is a CHIP2 register, then CHIP IR,
and the last is CHIP1 register. Suppose, we have entered the test patterns for all
IRs. If you have done all the actions (the rules for a vector insertion are mentioned
in a task step) correctly, you must get the same figure as you can see below.

The Data Register (DR) study

As the default board has been loaded, we see that the ID code is defined only for
CHIP (the ID code is illustrated in the center of it).

Now we need to select the inputs for all chips. For this, see the figure below.

Afterwards, we push the button Scan IR and then Scan DR. After the simulation, we
have got the diagnostic information (see the figure below together with analyze
information). After its analysis, we have convinced that the converted value of CHIP
output is the same as the chip’s ID code (0000B143h).

 16

Boundary Scan instructions study

Suppose, we have reviewed the theory about following instructions: EXTEST,
INTEST, BYPASS, SAMPLE, CLAMP and HIGHZ.

Let’s choose HIGHZ and BYPASS instructions and study them. The theory says
that HIGHZ instruction is used, for instance, when an in-circuit test is required for
testing a non-BS compliant component; BYPASS instruction is also very useful,
because it permits bypassing of the current circuit and places the one-bit bypass
register between TDI and TDO of the chip when another circuit is being tested.
Now, let’s practice with these instructions. Suppose, we have done some necessary
selections that are illustrated in the figure below. On PCB Panel (the second figure
below), we can see that all CHIP wires are in a high-impedance state indeed (these
wires are white colored). Thus, we have studied HIGHZ and BYPASS instructions
on practice.

The interconnect diagnosis

Let us insert a random fault into the circuit.

Next we set up all the chips in EXTEST mode and select the proper test vectors.
The control signals of all chips must be 0 valued.

As it is written in the task, we should get the proper diagnostic information for the 3
simulation processes. Suppose, we have done this and got some results. For this,
see the figure below, which illustrates chosen inputs and the corresponding
diagnostic information.

 17

Let’s analyze the diagnostic information for the last 2 simulations. We must
compare the diagnostics information (namely the chips output values) of the second
simulation with the input values of the previous step. The same manipulation is also
applied for the third received diagnostics information, which we should compare
with the input values of the second simulation. Okey, we start with CHIP.EXTEST
output (2 bits that are framed by red rectangle). As you see, there is a 0 valued bit
before these 2 bits. It is a control bit, so we do not pay our attention on it. Now take
a look at the input pattern of the first simulation. It is clear that 2 bits in an input
pattern of the first simulation are the same that were read on CHIP.EXTEST output.
It means that there is no error occurred. Now we set to CHIP2.EXTEST output (8
bits that are framed by blue rectangle). Again, as it was done earlier, we do not pay
attention on first 2 control bits. Instead, we look at the corresponding input pattern of
the previous simulation. We have entered eight 1’s, but when comparing it with
CHIP2.EXTEST output, we realize that this chip’s output is not the same as an input
pattern. The difference is in the second bit: we have entered 1 value for this bit, but
on output 0 valued bit has occurred. Thus, we have discovered the randomly
inserted fault and it is stuck-at 0. Afterwards, by clicking on the corresponding wire,
we find the name for it, which is S2B. The applet has confirmed our proposition: the
fault has occurred on the connection wire S2B indeed. Now there is no need to
analyze the rest of the diagnostics information.

 18

	Understanding Boundary Scan
	Set of Laboratory Works
	Glossary
	Introduction and Motivation
	Boundary Scan Overview
	Exercise I
	Exercise II
	Exercise III
	Exercise IV
	Exercise V
	Explanations and Examples

