
 

 

 Counter 

 

Task: 

Implement a design that would count how many times a pushbutton has been pressed and 

display this value on LED-s in binary form. The length of displayed value is not strictly 

defined, it can be e.g. 5, 6, 7 or 8 bits. The counted value should increment by one each 

time the button is pressed (i.e. it should not increase more then once until the button is 

released and pressed again). Following is the list of steps for the counter design: 

 

� implement a counter that is enabled for one clock cycle each time a pushbutton is 

pressed. Note, that at this step the counter may increment more than once after a single 

button press due to bouncing effect; 

� add debouncer for the employed pushbutton. Then the counter should increment only 

once after a single button press since bouncing effect is eliminated. 

 

Simulate and implement each design step on FPGA development board. For clock input use 

100MHz crystal oscillator clock source on the Nexys-4 FPGA board (use pin E3 or 

uncomment two lines after “## Clock signal” in the Master XDC File). 

 

Edge Detection and Push Button Debounce Circuit 

The most straightforward way to detect a button press is to detect a transition when button 

input goes from LOW (unpressed) to HIGH (pressed). This can be done by sampling the 

button input and storing the last two values. Whenever these two values are different, it is 

possible to conclude that there has been a transition in the button input signal. An example 

in Listing 1 shows a rising edge detector that generates a single one clock period long pulse 

when the button signal changes from LOW to HIGH. A falling edge detector (that shows 

when the button is released) can be implemented in similar fashion by changing the 

button_pulse signal equation to detect button_buf1 = ’0’ and button_buf2 = ’1’ condition. 

 



Listing 1: Rising Edge Single Pulse Generation 

button_buf1 <= button_input_signal when rising_edge(clock_100MHz); 

button_buf2 <= button_buf1 when rising_edge(clock_100MHz); 

button_pulse <= button_buf1 and not button_buf2;   

 

Another issue may arise due to the bounce effect. The problem is that Push Button contains 

a metal spring and during press it actually makes contact several times before stabilizing. 

The high-speed logic circuits may react to the contact bounce as if the Push Button has 

been pressed several times, because some pulses may have a sufficient voltage and long 

enough duration. Thus, for the hardware implementation to work correctly, contact bounce 

must be filtered.   

 

A 4-bit shift register, which is shifted at approximately 100Hz can do the trick. With each 

shift it saves (samples) values from button's input. Only when all four bits of the shift 

register are HIGH, the debouncer’s output goes also HIGH. This will delay the LOW to 

HIGH change until the contact bounce stops. 

 

Nexys-4 FPGA board features a 100MHz crystal oscillator clock source. Thus, it is required 

to slow it down for the debouncer’s shift register. Normally, a clock manager device should 

be used to modify the clock signal. However, since the desired clock for this task is too 

slow, a possible solution may be to employ a simple delay counter instead. This counter 

should count the clock cycles of the system clock and signals when it reaches a predefined 

value that correspond to the required delay (at the same time the counter itself resets and 

starts counting from the beginning). 

 

Possible VHDL description of such delay counter that generates a single one clock period 

long pulse per hundred clock cycles is presented in Listing 2. If the frequency of the 

clock_100MHz clock signal is 100MHz, then clock_1MHz signal would go HIGH for one 

clock_100MHz clock cycle with 1MHz frequency. It is then possible to use clock_1MHz 

signal as shift enable for the debouncer’s shift register to perform button value sampling 

once per 1000 ns. Note, that in Listing 2 the counter is declared as an integer. This way 

there is no need to know how wide the counter should be (in bits), as it will be determined 



during synthesis automatically (as long as the counting range is specified as well). 

 

Listing 2: Delay Counter Example 

signal clock_1MHz: std_logic; 

signal counter: integer range 0 to 99; 

begin 

 

process (clock_100MHz) 

begin 

  if clock_100MHz'event and clock_100MHz = '1' then 

    if counter < 99 then 

      counter  <= counter + 1; 

      clock_1MHz <= ’0’; 

    else 

      counter <= 0; 

      clock_1MHz <= ’1’; 

    end if; 

  end if; 

end process; 

 


