
Moore Finite-State Machine Synthesis

Externally, the FSM is defined by its primary inputs, outputs and the clock signal. The

clock signal determines when the inputs are sampled and outputs get their new values. It

means that internally machine stores a state which is updated at each tick of the clock.

Figure 1: Example Finite-State Machine Algorithm

Example finite-state machine algorithm is presented in Figure 1. It will be implemented as

a Moore type machine. FSM has three inputs marked as X1, X2, X3 and eight outputs.

Output values are shown in hexadecimal format. Example Moore FSM has five states,

corresponding to the number of output vertices of the graph. Let’s name them State 0, State

1, State 2, State 3 and State 4. It is now possible to draw a state transition table (Table 1).

Table 1: Example FSM State Transition Table
Current State X1 X2 X3 Next State Output

State 0 1
0
0

-
0
1

-
-
-

State 1
State 2
State 3

X”55”

State 1 - - - State 0 X”3D”
State 2 - - - State 4 X”68”
State 3 - - - State 4 X”C4”
State 4 -

-
-
-

0
1

State 2
State 0 X”0F”

In order to model the states of the FSM in VHDL an enumerated type “State” is created.

Signals, which hold the values of the current state and the next state, are of this type. States

are encoded automatically during synthesis. Type and signals are declared as follows:

type State is (State_0, State_1, State_2, State_3, State_4);
signal current_state, next_state: State;

An FSM is characterized by two functions – the next state function and the output function.

The next state function depends on current state and inputs. The output function is defined

by the FSM type. For Moore machine it depends on the current state only. VHDL

description of these functions is presented in Listing 1 and Listing 2.

Next state and output functions form a combinational part of the FSM. Both functions are

described using a separate process statements. Sensitivity list of each process features all

signals, which serve as inputs to the combinational portion of the design represented by this

process. Just like in a real combinational circuit, whenever any of these signals changes a

value, the process responds by reevaluating the outputs. Thus, output values for every input

combination should be defined. Note, that outputs of the example FSM are represented by

an 8-bit vector.

Listing 1: Next State Function of Example Moore FSM
process (current_state, X1, X2, X3)
begin

case current_state is
when State_0 => if X1 = '1' then

 next_state <= State_1;
elsif X2 = '1' then

 next_state <= State_3;
else

 next_state <= State_2;
end if;

when State_1 => next_state <= State_0;
when State_2 => next_state <= State_4;
when State_3 => next_state <= State_4;
when State_4 => if X3 = '1' then

 next_state <= State_0;
else

 next_state <= State_2;
end if;

end case;

end process;

Listing 2: Output Function of Example Moore FSM

process (current_state)
begin

case current_state is
when State_0 => Outputs <= X"55"; – – same as “01010101”
 when State_1 => Outputs <= X"3D"; – – same as “00111101”
when State_2 => Outputs <= X"68"; – – same as “01101000”
when State_3 => Outputs <= X"C4"; – – same as “11000100”
when State_4 => Outputs <= X"0F"; – – same as “00001111”

end case;

end process;

VHDL description of the sequential logic that stores the state of the example FSM is

presented in Listing 3. Signal “current_state” infers a register during synthesis, as it is

assigned a value inside an edge sensitive if statement. The state change occurs on the

positive edge of the clock. The control signals (e.g. reset and enable) are omitted from the

description for the purpose of simplification, but generally should also be present (as

described in the previous lab).

Listing 3: Sequential Logic for Storing State of the Example FSM

process (clock)
begin

if clock'event and clock = '1' then
 current_state <= next_state;
end if;

end process;

The block diagram of the entire example Moore FSM is presented on Figure 2. It consists

of three main blocks: “Next State Function”, “Output Function” and “State Register”. Each

block is described with a corresponding process from Listing 1, Listing 2 and Listing 3

respectively. The “cloud” blocks represent combinational logic, the rectangle block –

sequential logic.

“Y”

“CLK”

Output
Function

Next State
Function

“X” State
Register

“current_state”

“next_state”

Example
Moore FSM

Figure 2: Block Diagram of Example Moore FSM

