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2. Combinational and Sequential Circuits Design

2.1. Combinational Logic

A combinational system (device) is a digital system in which
the value of the output at any instant depends only on the value
of the input at that same instant (and not on previous values).

High-Level Specification of Combinational Systems
The specification consists of the following three components:
The set of values for the input, called the input set;
The set of values for the output, called the output set;

The description of the input-output function:
• a table (discrete function)
• an arithmetic expression (elements of the input and output

sets are functions)
• a conditional expression (if the function can be partitioned

into subfanctions)
• a logical expression (Boolen formula, preposition)
• a composition of simpler functions
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Example
Informal specification: A radix-4 digit comparator module
compares two radix-4 digits and produces one output with
values G (grater), E(equal), and S(smaller).

The high-level specification is:
Inputs: x, y ∈ {0, 1, 2, 3}
Outputs: z ∈ {G, E, S}

 Function (a conditional expression):

The tabular description of this function is

y
x 0 1 2 3
0 E S S S
1 G E S S
2 G G E S
3 G G G E

       x
z

       y

G  if  x > y
z = E  if  x = y

S  if  x < y

G  if  x > y
z = E  if  x = y

S  if  x < y
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To obtain a binary description we have to code the input and
output values on bit vectors.

x z

y

The three-values output requires at least two binary variables.
We use three binary variables. In this case, there are possible
8*7*6=336 code systems. We choose one of them

At the logic level we must work with both logic expression and
gate networks to find the best implementation of a function,
keeping in mind the relationships:
• combinational logic expressions are the specification;
• logic gate networks are the implementation;
• area (number of gates), delay, and power are the cost

(restrictions).

z z2 z1 z0

G 1 0 0
E 0 1 0
S 0 0 1

For input, we take the most used binary code in which the radix-
4 digit is represented by the correspondingradix-2 bit-vector

( x = 2*x1+x0; y =2 *y1+y0 )

High-level specification

Coding
Binary

specification Decoding
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x
( y )

x1

( y1 )
x2

( y2 )
1 0 0
2 0 1
3 1 0
4 1 1

Now, we can obtain the switching functions described by the
following table (binary specification of combinational system):

y1 y0

x1 x0 00 01 10 11
00 010 001 001 001
01 100 010 001 001
10 100 100 010 001
11 100 100 100 010

z2 z1 z0
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Example ONE’S COUNT

A2
C1

A1

A0 C0

entity ONES_CNT is
port (A: in BIT_VECTOR(2 downto 0);

C: out BIT_VECTOR(1 downto 0));
end ONES_CNT;
--Truth table:
------------------------------------
-- A2   A1  A0          C1   C0
------------------------------------
-- 0     0     0              0     0
-- 0     0     1              0     1
-- 0     1     0              0     1
-- 0     1     1              1     0
-- 1     0     0              0     1
-- 1     0     1              1     0
-- 1     1     0              1     0
-- 1     1     1              1     1
-------------------------------------
end ONES_CNT;
architecture PURE_BEHAVIOR of ONES_CNT is
begin

process(A)
variable NUM: INTEGER range 0 to 3;

begin
NUM := 0;
for I in 0 to 2 loop

if A(I) = '1' then
NUM := NUM + 1;

end if;
end loop;
case NUM is

when 0 => C <= '00';
when 1 => C <= '01';
when 2 => C <= '10';
when 3 => C <= '11';

end case;
end process;

end PURE_BEHAVIOR;

ONES_CNT
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A1 A0
00 01 11 10

A2     0 0 0 1 0
1 0 1 1 1

C1 = A1 A0 ∨∨ A2 A0 ∨∨ A2A1

A1 A0
00 01 11 10

A2     0 0 1 0 1
1 1 0 1 0

C0 = A2A1A0 ∨∨ A2A1A0 ∨∨ A2A1A0 ∨∨ A2A1A0

C1 is the MAJORITY FUNCTION

C0 is ODD-PARITY FUNCTION
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--Macro-based architectural body:
architecture MACRO of ONES_CNT is
begin

C(1) <= MAJ3(A);
C(0) <= OPAR3(A);

end MACRO;

This architectural body implies the existence of MAJ and
OPAR gates at the hardware level. In terms of a VHDL description,
it requires that the functions MAJ3 and OPAR3 must have been
declared and defined previously.

architecture DATA_FLOW of ONES_CNT is
begin

C(1) <= (A(1) and A(0)) or (A(2) and A(0)) or (A(2)
    and A(1));

C(0) <= (A(2) and not A(1) and not A(0)) or
(not A(2) and not A(1) and A(0)) or
(A(2) and A(1) and A(0)) or
(not A(2) and A(1) and not A(0))

end DATA_FLOW;

Structural Design Hierarchy for the Ones Counter (ONES_CNT)

Structural
     Decomposition

Behavioral
Modeling

ONES_CNT

MAJ3 OPAR3

AND2 OR3 AND3 OR4
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Majority  Function Gate Structure

X(0) A1

X(1)

X(0) A2

X(2) Z

X(1) A3

X(2)

entity AND2 is
port (I1, I2:in BIT; O out BIT);

end AND2

architecture BEHAVIOR of AND2 is
begin

O <= I1 and I2;
end BEHAVIOR;

AND2

AND2

AND2

OR3
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entity OR3 is
port(I1, I2, I3: BIT; O: out BIT);

end OR3;

architecture BEHAVIOR of OR3 is
begin

O <= I1 or I2 or I3;
end BEHAVIOR;
use work.all;
entity MAJ3 is

port(X: in BIT_VECTOR(2 downto 0); Z: out BIT);
end MAJ3;

architecture AND_OR of MAJ3 is
component AND2C

port (I1, I2: in BIT; O: out BIT);
end component;
component OR3C

port (I1, I2, I3: in BIT; O: out BIT);
end component
for all: AND2C use entity AND2(BEHAVIOR);
for all: OR3C use entity OR3(BEHAVIOR);
signal A1, A2, A3: BIT;
begin

G1: AND2C
port map (X(0), X(1), A1);

G2: AND2C
port map (X(0), X(2), A2);

G3: AND2C
port map (X(1), X(2), A3;

G4: OR3C
port map (A1, A2, A3, Z);

end AND_OR;
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use work.all;
architecture STRUCTURAL of ONES_CNT is

component MAJ3C
port (X: in BIT_VECTOR(2 downto 0);

Z: out BIT);
end component;
component OPAR3C

port (X: in BIT_VECTOR(2 downto 0);
Z: out BIT);

end component;
for all: MAJ3C use entity MAJ3 (AND_OR);
for all: OPAR3C use entity OPAR3C (AND_OR);
begin

COMP1: MAJ3C
      port map (A, C(1));

COMP2: OPAR3C
      port map (A, C(0));

end STRUCTURAL;

Structural Architectural Body for the Ones Counter.

MODELING STYLES

VHDL Architectural Body

Behavioral Structural

Algorithmic Data Flow
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2.2. Sequential Logic

A sequential circuit is a circuit with memory. A Finite State
Machine (FSM) is a mathematical model of a system with
discrete inputs, discrete outputs and a finite number of internal
configurations or states. The state of a system completely
summarizes the information concerning the past inputs to the
system that is needed to determine its behavior on subsequent
inputs.
This high-level FSM model has only one input channel and only
one output channel. Variables in the specification of a design are
multiple-valued or symbolic. The symbolic variable takes on
symbolic values.

x y

Clk

A sequential circuit is said to be synchronous if the internal state
of the machine changes at specific instants of of time as
governed by a clock.

Circuits with an acyclic underlying topology are combinational.
Feedback (cyclic) is a necessary condition for a circuit to be
sequential.
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FSM as algebraic system is a quintuple A = 〈 S, I, O, δ, λ 〉,
where
S is a finite non-empty set of states,
I is a finite non-empty set of inputs and
O is a finite set of outputs.
δ: I × S → S is called transition (or next state function) and
λ is called the output function of A

λ: I × S → O for Mealy type FSM,
λ: S → O      for a Moore machine,.

Note that any Moore machine can be converted into a Mealy
machine with the same number of states and state transitions.

A general logic-level synchronous sequential circuit

Primary Primary

Inputs Outputs

Present Next
States States

Logic-level description consists of a combinational logic block
and state registers (latches or flip-flops) that hold the state
information.
The combinational block is an interconnection of gates that
implements the mapping between the primary input (PI) and
present-state (PS), and primary output (PO) and next-state (NS).
A state is a bit vector of length equal to the number of memory
elements (latches or flip-flops) in the sequential circuit. Each
state has a unique bit vector representing that state, and this bit
vector is known as the state code. The process of assigning a
code to each state is known as state assignment or state
encoding.

Combinational
Logic

Latches
(Flip-flops)
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Example represetatations of the device which ditects two or
more consecutive 1's or two consecutive 0' on its input X.

   X

   R   Z

 CLK

Block Diagram

R

        0 / 0                                                   1 / 0
0 / 0

0 / 1     1 / 1

State Diagram 1 / 0

CLK

  X

  Z
Timing Diaram

TWO_CON

S0

S1 S2
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state X
0 1

S0 S1 / 0 S2 / 0
S1 S1 / 1 S2 / 0
S2 S1 / 0 S2 / 0

State Table
code

state y1y0
S0 00
S1 01
S2 11

State Assignment
Xcode

y1 y0 0 1
00 0 1
01 0 1
11 0 1
10 - -

Truth Table (K-map)
Y1

Xcode
y1 y0 0 1

00 1 1
01 1 1
11 1 1
10 - -

Truth Table (K-map)
Y0

Xcode
y1 y0 0 1

00 0 0
01 1 0
11 0 1
10 - -

Truth Table (K-map) Z
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2.3. Multilevel Design of Sequential Logic Circuits.

Design a serial to parallel converter.

R
4

A Z

D DONE

CLK

A word description of an example device:
Reset signal R is synchronous. If R = 1 at the end of any clock period, the
device must enter the reset state.
Input A will be asserted for exactly one clock period prior to the arrival
of serial data on input D.
For the next four clock periods, data will arrive serially on line D.
The device must collect the 4 bits of serial data and output the 4 bits in
parallel at output Z, which is a 4-bit vector.
During the clock period when the parallel data is present at Z, signal
DONE will be asserted. The outputs Z and DONE must remain asserted
for one full clock period.
DONE alerts the destination device that data is present on Z.

CLK

R

A

D

DONE

Z [4]

STOP



16

Design process:

1. A word description for a device.

2. Moore or Mealy decision:

The State Transition Graph (STG) or state diagram of the Moore
machine has the output associated with the states, while in the Mealy
model, the outputs are associated with the edges.

• A Moore machine may require more states than the
corresponding Mealy machine.

• Moore device isolates the outputs from the inputs
• Mealy machine can respond one clock period one clock period

earlier than the Moore machine to input changes, but noise on
the input lines may be transferred to the outputs.

For the several to parallel converter (STOP), the output must
be present during the clock period following the last input. Since the last
input is no longer available, the outputs cannot depend on the inputs.
Also, since the outputs are specified to be constant during the entire clock
period, a Mealy machine cannot be used. Therefore we must design a
Moore machine.

3. Construction of a state table.
We follow the structured methodology.
Two techniques:

a) state diagrams
b) transition lists

3.1. Creating a state diagram (STG)
To construct a state diagram, start with a state that is easily

described in words. If there is a reset state, that is always a very good
place to start.

We recommend writing a complete word description of each
state as it is created.

The process is iterative in nature.
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State S0: The Reset State.

The device enters this state at the end of any clock period in which input
R=1 regardless of the values of any input. The device will stay in this
state until there is a logic 1 on line A.
When in state S0, DONE = 0which means that the data on line Z will be
ignored by the destination. This means that we are free to place anything
at all on output Z.

The next step is to decide what to do when device is in state S0 for
various conditions that may exist on the device inputs. If the device is in
state S0, it will stay in S0 if R=1 regardless of the values of any other
input. When R=0, the device also will stay in state S0 when A=0. The
complete condition for the device to state in state S0 is

R ∨ (¬R&¬A) = R ∨ ¬A

If R = 0 and A = 1 during some clock period, then the device must get
ready to receive data on line D during the next 4 clock periods. This
means that it must enter a new state at the end of clock period.

State S1.

The device enters this state from state S0 when R = 0 and A = 1.
When the device is in state S1 the first data value will be present on line
D and must be saved at the end of clock period for later output.
When in state S1, output DONE = 0 and Z is unspecified.

        ¬R & A

         R ∨ ¬A

S1
0-

S0
0-
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State S2.
State S1 transitions to state S2 when R = 0.
When in state S2, the second data value will be present on line D and
must be saved at the end of clock period.
In state S2, the output DONE = 0 and Z is unspecified.
Therefore, a new node is added to the state diagram under construction
for state S2. An arc from S1 to S2 with label ¬R indicates the desired
state transition.

     ¬R

      R

¬R & A

        R ∨ ¬A

S2
0-

S1
0-

S0
0-
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This figure shows the final state diagram (STG) for device STOP.

¬R
        ¬R

     ¬R R R         R        ¬R

       R

     ¬R&A R ∨ ¬A

   R ∨ ¬A

¬R&A

Final state diagram for serial to parallel converter

S2
0-

S1
0-

S0
0-

S5
1Z

S4
0-

S3
0-
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3.2. Transition List Approach

Present Transition Next Data Output
state Expression State Transfers

S0 R ∨ ¬A S0 None         DONE =0
S0 ¬R & A S1 Z unspec.

S1 ¬R S2 Store bit 1        DONE = 0
S1 R S0 Z unspec.

S2 ¬R S3 Store bit 2        DONE = 0,
S2 R S0 Z unspec.

S3 ¬R S4 Store bit 3        DONE = 0,
S3 R S0 Z unspec.

S4 ¬R S5 Store bit 4         DONE = 0
S4 R S0 Z unspec.

S5 ¬R & A S1 None        DONE = 1,
      Z = paral. data out

S5 R ∨ ¬A S0

Principle of Mutual Exclusion.

No two expressions on different arcs can be true simultaneously.

For example for node S0,
(¬R & A)&( R ∨ ¬A) = ¬RAR ∨ ¬RA¬A = 0
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entity STOP is
port (R, A, D, CLK: in BIT;

Z: out BIT_VECTOR (3 downto 0);
DONE: out BIT);

end STOP;

architecture FSM_RTL of STOP is
type STATE_TYPE is (S0, S1, S2, S3, S4, S5);
signal STATE: STATE_TYPE;
signal SHIFT_REG: BIT_VECTOR (3 downto 0);

begin
STATE: process (CLK)
begin

if CLK = ‘1’ then
case STATE is
when S0 =>

if R = ‘1’ or A = ‘0’ then
STATE <= S0;

elsif R = ‘0’ and A = ‘1’ then
STATE <= S1;

end if;
when S1 =>
SHIFT_REG <= D & SHIFT_REG(3 downto 1);

if R = ‘0’ then
STATE <= S2;

elsif R = ‘1’ then
STATE <= S0;

end if;
when S2 =>
SHIFT_REG <= D & SHIFT_REG (3 downto 1);

if R = ‘0’ then
STATE <= S3;

elsif R = ‘1’ then
STATE <= S0;

end if;
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when S3 =>
SHIFT_REG <= D & SHIFT_REG (3 downto1);

if R = ‘0’ then
STATE <= S4;

elsif R = ‘1’ then
STATE <=S0;

end if;
when S4 =>
SHIFT_REG <= D & SHIFT_REG (3 downto1);

if R = ‘0’ then
STATE <= S5;

elsif R = ‘1’ then
STATE <=S0;

end if;
when S5 =>

if R = ‘0’ and A =’1’ then
STATE <= S1;

elsif R = ‘1’ or A = ‘0’ then
STATE <= S0;

end if;
end case;

end if;
end process STATE;

OUTPUT: process (STATE)
begin

case STATE is
when S0 to S4 =>

DONE <= ‘0’;
when S5 =>

DONE <= ‘1’;
Z <= SHIFT_REG;

end case;
end process OUTPUT;

end FSM_RTL;
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I

  Z

      CLK

Block diagram for model of a state machine.

Control circuit synthesized from VHDL description (serial to parallel
converter)

TO FROM CONDITION
STATE STATE

S0 S0 R + ¬A
S0 S1 R
S0 S2 R
S0 S3 R
S0 S4 R
S0 S5 R + ¬A

S1 S0 ¬R A
S1 S5 ¬R A

S2 S1 ¬R

S3 S2 ¬R

S4 S3 ¬R

S5 S4 R

Data Unit

Control
Unit

Output
Unit
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Control section synthesis list for serial to parallel converter.

One-hot coding stile

   S0 S0

   S5 ¬R
A

   R
  ¬A

         R ¬R
   S1 A
   S2
   S3 S5
   S4

S2 S3 S4

S1

¬R ¬R     ¬R       ¬R

1

1

1

&

&

1
D    Q

    ¬Q

1

&

&

D    Q

    ¬Q

&
D    Q

    ¬Q

& D    Q

    ¬Q

D    Q

    ¬Q

D    Q

    ¬Q

& &

S5

S1
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Synthesis list for data unit for serial to parallel converter.

Data Transfer                                                    State     Condition

SHIFT_REG <= D & SHIFT_REG (3 downto 1) S1 1
SHIFT_REG <= D & SHIFT_REG (3 downto 1) S2 1
SHIFT_REG <= D & SHIFT_REG (3 downto 1) S3 1
SHIFT_REG <= D & SHIFT_REG (3 downto 1) S4 1

Data unit for serial to parallel converter.

SHIFT_REG(3)
SHIFT_REG(2)
SHIFT_REG(1)
SHIFT_REG(0)

D

S1
S2

S3
S4

SHIFT = S1+S2+S3+S4

The output unit

DONE = S5
Z = SHIFT_REG

  D3   D2   D1   D0

S1
SHIFT REGISTER
SH


