
1. Introduction
VHDL-2008 (IEEE 1076-2008) is here! It is time to
start using the new language features to simplify your
RTL coding and facilitate the creation of advanced
verification environments.

VHDL-2008 is the largest change to VHDL since 1993.
An abbreviated list of changes includes:

•	 Enhanced Generics = better reuse
•	 Assertion language (PSL) = better verification
•	 Fixed and floating point packages = better math
•	 Composite types with elements that are unconstrained

arrays = better data structures
•	 Hierarchical reference = easier verification
•	 Simplified Sensitivity List = less errors and work
•	 Simplified conditionals (if, ...) = less work
•	 Simplified case statements = less work

This article overviews the changes and the value they bring
to your design process. Topics are categorized into three
major sections: testbench, RTL, and packages/operators.

2. Testbench
Through extended and new capability, VHDL-2008

enables the creation of advanced
verification

environments. The following subsections examine
these changes and the value they deliver.

2.1 Enhanced Generics
Enhanced generics are one of the most significant
changes to the language. Prior to 2008, generics could
only be specified on an entity and were only allowed to
be constants. VHDL-2008 allows specification of generics
on packages and subprograms, and allows types,
subprograms, and packages to be generics.

This means generics can be used to facilitate
parameterization and reuse of packages and subprograms.
This is particularly important for verification data structures,
such as a scoreboard. Scoreboards keep an internal store
of transmitted values to be compared with received values.
In the code below, the package interface has a generic type
for the expected (transmitted) value and actual (received)
value, as well as a generic function to compare these
values.

package ScoreBoardGenericPkg is
 generic (
 type ExpectedType ;
 type ActualType ;
 function check(A : ActualType; E: ExpectedType)
 return boolean ;
 . . .
) ;
 . . .
end ScoreBoardGenericPkg;

A generic package or subprogram must be instantiated
before it can be referenced or used. The following package
instance creates a scoreboard package for use with type
std_logic_vector and comparison operator “?=” (see
packages/operators).

VHDL-2008: Why It Matters
by Jim Lewis, SynthWorks VHDL Training

31

library ieee ;
use ieee.std_logic_1164.all ;
package ScoreBoardPkg_slv is new
work.ScoreBoardGenericPkg
 generic map (
 ExpectedType => std_logic_vector,
 ActualType => std_logic_vector,
 check => “?=”,
 . . .
) ;

2.2 Assertion Language (PSL)
An assertion language improves verification by providing
expressive syntax to detect design or interface conditions
that either must happen (coverage) or must not happen
(assertions). The conditions may be either static (things
happening during a single clock period) or dynamic
(sequences of events over multiple clock periods).
These conditions are checked either dynamically during
simulation or statically using formal verification techniques.
By specifying the conditions within the design, visibility into
the design’s internal state can be gained.

Rather than develop a VHDL specific assertion language,
VHDL integrates IEEE standard 1850, Property
Specification Language (PSL). Since PSL has standard
“flavors” for other HDL and verification languages, it
simplifies mixed language environments.

As a result, PSL declarations (sequences and properties) are
VHDL block declarations and may be put into packages, and
the declarative part of an entity, architecture, or block state-
ment. PSL directives (assert and cover) are VHDL statements
and are permitted in any concurrent statement part. PSL
design units (vunit, vprop, and vmode) are VHDL primary
units and may include a context clause prior to the vunit.

Currently QuestaSim supports PSL within comment fields
and not directly within VHDL code.

2.3 Hierarchical Reference
VHDL-2008 external names simplify verification by
providing both observation and control access to signals,
shared variables or declared constants in other portions of
the design. This allows a testbench to supply a value for a
missing feature, or read and check values in an embedded
memory.

Objects can either be accessed directly or with aliases,
such as the one shown below. Note that the object being
referenced (.tb_top.u_ioc.int1) must be elaborated before
the external name reference (alias) is elaborated.

alias int1 <<signal .tb_top.u_ioc.int1 : std_logic>>;

2.4 Force / Release
VHDL-2008 adds force and release. Force and release are
modifiers to an assignment that allow the value supplied to
override a value driven by other parts of a design. These
are intended to be temporary overriding values used by a
testbench while debugging a design or waiting for a fix to a
design, and not a permanent part of a design or testbench.

int1 <= force ‘1’ ;
…
int1 <= force ‘0’ ;
…
Int1 <= release ;

2.5 Composites with Unconstrained Arrays
To facilitate reusable and/or standard matrix (or
multidimensional) operations, VHDL-2008 extends
composites (arrays or records) to allow their elements to be
unconstrained arrays.

The following example shows a multidimensional array
structure (implemented as an array of an array type) being

32

defined as MatrixType within a package, and then used on
an entity interface and within the architecture.

package MatrixPkg is
 type MatrixType is array (natural range <>)
 of std_logic_vector ;
 …
end package MatrixPkg ;
use work.MatrixPkg.all ;
entity e is
port (
 A : out MatrixType (7 downto 0)(5 downto 0) ;
 . . .
) ;
Architecture a of e is
signal B : MatrixType (7 downto 0)(5 downto 0) ;
begin
. . .
B(5) <= “111000” ; -- Accessing a Row
A(7)(5) <= ‘1’ ; -- Accessing an Element
. . .

Records with unconstrained elements are useful for
creating reusable data structures. The Open Source VHDL
Verification Methodology (OSVVM) package, CoveragePkg,
uses this to create the base type for functional coverage
(point and cross) modeling.

2.6 Better Printing: Write, Read, …
To facilitate printing using TEXTIO, read and write
procedures have been added for all standard types. Except
for the package std.standard, overloading for read and write
is in the package that defines the type. This way it is not
necessary to include additional packages to be able to print.

Hexadecimal and octal printing procedures (hwrite, hread,
owrite, and oread) were added for types that are arrays of a
bit type (std_logic or bit).

To enable printing to both a file and the screen (OUTPUT),
the procedure tee was added.

To improve string handling, the procedures sread
and swrite were added. Sread reads non-space tokens.
It skips any leading white space. It stops reading when
either argument’length characters or white space is read.

Swrite allows strings to be written without the necessity
to use a type qualifier.

2.7 Better Printing: To_string functions
To facilitate printing using report statements or VHDL’s built-
in write statement, string conversions, named to_string,
were created for all types. In addition, for logic based array
types hexadecimal and octal string conversions were
created (to_hstring and to_ostring). Using to_string with
VHDL’s built in write provides a simpler call syntax, much
more similar to that provided by “C”.

write(OUTPUT, “%%ERROR data miscompare.” &
 LF & “ Actual = “ & to_hstring(Data) &
 LF & “ Expected = “ & to_hstring(ExpData) &
 LF & “ at time: “ & to_string(now)) ;

2.8 Stop
To enable a testbench to stop the simulation when it
finishes generating and checking stimulus a stop procedure
was added. Stop removes the necessity to keep track of
how long a simulation runs. Stop is in the VHDL-2008 env
package in the library std. The following example shows a
call to stop where the package was not referenced in a use
clause.

std.env.stop(0) ;

2.9 Context Unit
A context unit enables a design to reference a set of
packages with a single reference. When used by an entire
design team, a context unit can ensure that all designs use
the same set of project approved packages. An example of
a context unit is shown below.

Context ProjectCtx is
 use std.textio.all ;
 use std.env.all ;
 library ieee ;
 use ieee.std_logic_1164.all;

 use ieee.numeric_std.all ;
end ;

33

A design references a context unit as follows.

context work.ProjectCtx ;

2.10 Expressions in Port Maps
To simplify entity/component instances, port associations
now allow expressions in a port map. The expression
eliminates the need to create extra signal assignments.

U_E : E port map (A, Y and C, B) ;

From a language perspective, the expression is treated as
if there were a signal assignment and it incurs a simulation
cycle delay (same as would happen with an explicit signal
assignment).

3. RTL
VHDL-2008 enhancements simplify RTL coding.
Among these are changes to sensitivity lists, conditionals
(if statements), and case statements. The following
subsections examine the RTL changes and the value they
deliver. Note while these will work in your simulator, also
take care to try these in your synthesis tool(s) before using
them extensively.

3.1 Simplified Sensitivity List: Process (all)
One of the most common errors in combinational logic is
forgetting a signal in a process sensitivity list. “Process(all)”
eliminates this problem by implicitly including all signals
that are read in the process on the sensitivity list. For
subprograms called by the process, this includes signals
read by side-effect when the subprogram is declared in the
same design unit as the process. The following example
uses the keyword all instead of including A, B, C, and
MuxSel on the sensitivity list.

Mux3_proc : process(all)
begin
 case MuxSel is
 when “00” => 	 Y <= A ;
 when “01” => 	 Y <= B ;

 when “10” => 	 Y <= C ;
 when others => 	 Y <= ‘X’ ;
 end case ;
end process

3.2 Simplified Conditionals (If, While, …)
Prior to 2008, conditional expressions were required to
be boolean and were plagued by relational (comparison)
operations, as shown below:

-- Old, Prior to 2008 code:
if (Cs1=’1’ and nCs2=’0’ and Cs3=’1) then

Conditional expressions were simplified by also allowing the
entire expression to evaluate to a bit type such as std_logic
or bit. Hence the above code simplifies to:

-- New
if (Cs1 and nCs2 and Cs3) then

3.3 Matching Relational Operators
The new matching relational operators (“?=”, “?/=”, “?<”,
“?<=”, “?>”, and “?>=”) return bit values (bit or std_ulogic),
and as a result, are better suited for hardware design than
the older ordinary relational operators.

Using “?=”, decoding of mixed bit and array signals can be
simplified to the following. Note that in addition to returning
bit values, “?=” and “?/=” operators also understand ‘-’ as
don’t care.

Reg1Sel <= Cs1 and not nCs2 and Addr?= “1010--” ;

Matching relational operators further simplify conditional
expressions by facilitating array comparisons such as the
following.

if Cs1 and not nCs2 and Addr?= “1010--” then
 …

34

The matching ordering operators (“?<”, “?<=”, “?>”, and
“?>=”) are only defined for array types that also support
numeric operations. This avoids errors caused by implicit
dictionary style relationals (“<”, “<=”, “>”, and “>=”) that are
present with std_logic_vector when the package numeric_
std_unsigned is not used.

3.4 Simplified Case Statements
Prior to 2008, case statement rules made most expressions
within either the case select or choice expressions illegal.
VHDL-2008 removes many of these limitations and
simplifies the usage of case statements. The changes
are illustrated in the following example.

constant ONE1 : unsigned := “11” ;
constant CHOICE2 : unsigned := “00” & ONE1 ;
signal A, B : unsigned (3 downto 0) ;
. . .
process (A, B)
begin
 case A xor B is -- 2008
 when “0000” =>	 Y <= “00” ;
 when CHOICE2 =>	 Y <= “01” ; -- 2008
 when “0110” =>	 Y <= “10” ;
 when ONE1 & “00 =>	 Y <= “11” ; -- 2008
 when others =>	 Y <= “XX” ;
 end case ;
end process ;

The following is what has changed. Case select expressions
now only need to have a globally static type. The definition
of locally static no longer excludes operations on arrays
(such as std_logic_vector or unsigned). All the operators
from the standard packages (that are part of 1076) can be
part of locally static expressions.

3.5 Case With Don’t Care
Some use models of case statements benefit from
the usage of don’t care characters. VHDL-2008 adds
a matching case statement, “case?” that uses “?=” to
determine equality, and hence, understands ‘-’ as don’t
care. Using “case?”, basic arbitration logic can be created
as follows. Note that each case choice must still be non-
overlapping.

process (Request)
begin
 case? Request is
 when “1---” => 	 Grant <= “1000” ;
 when “01--” => 	 Grant <= “0100” ;
 when “001-” =>	 Grant <= “0010” ;
 when “0001” => 	 Grant <= “0001” ;
 when others => 	 Grant <= “0000” ;
 end case? ;
end process ;

Note that the ordinary case statement handles ‘-’ as an
ordinary character which is important for many applications.

3.6 Extended Conditional Assignment
Prior to 2008, evaluation of a condition within a process
required an if statement such as shown below.

if (FP = ‘1’) then
 NS1 <= FLASH ;
else
 NS1 <= IDLE ;
end if ;

VHDL-2008 simplifies the above code by allowing
conditional assignment, such as the one shown below, to be
used with either signals or variables. The result is shorter,
more readable code, such as statemachines.

NS1 <= FLASH when (FP = ‘1’) else IDLE ;

3.7 Extended Selected Assignment
Selected assignment provides a shorthand for a case
statement when only one data object is being targeted.
Prior to 2008, selected assignment could only be used for
signals in a concurrent code region. VHDL-2008 allows it to
be used within a process with either signals or variables (as
shown below).

35

Process(clk)
begin
 wait until Clk = ‘1’ ;
 with MuxSel select
 Mux :=
 A when “00”,
 B when “01”,
 C when “10”,
 D when “11”,
 ‘X’ when others ;

 Yreg <= nReset and Mux ;
end process ;

3.8 Enhanced Bit String Literals
Prior to 2008, hexadecimal bit string literals values were
always multiples of 4 bits, and hence, challenging to work
with.

VHDL-2008 simplifies working with hexadecimal bit string
literals values by adding an integer length value prior to the
base specifier. Bit string values can either be extended or
reduced by the length specified provided that the numeric
value does not change. By default, bit string literals are
unsigned. An additional prefix character of S for signed or U
for unsigned can also precede the base specifiers B, O, and
H. If a non-hexadecimal character, such as ‘-’ is included in
the string, it will be replicated four times in a hexadecimal.
A few examples are shown below. Also added is a decimal
base specifier (D).

-- Expanding a value
7X”F”	 = “0001111” -- unsigned fill with 0
7UX”F”	 = “0001111” -- same as above
7SX”F”	 = “1111111” -- signed replicate sign
-- Reducing a value
7UX”0F”	 = “0001111” -- ok. Same value
7SX”CF”	 = “1001111” -- ok. Same value
7UX”8F”	 = “0001111” -- error. Value changed
7SX”8F”	 = “001111” -- error. Value change.
-- repeating X and - characters:
X”-X”	 = “----XXXX”
-- Decimal values. Requires length. Always unsigned
8D”15”	 = “00001111”

3.9 Slices and Array Aggregates
VHDL-2008 allows array aggregates to include array slices.
Hence, the following is legal

signal A, B, Sum : unsigned(7 downto 0) ;
signal CarryOut : std_logic ;
…
(CarryOut, Sum) <= (‘0’ & A) + B ;

3.10 Generate: Else and Case
VHDL-2008 extends the “if generate” statement to support
“else” and “elsif” clauses and adds a “case” generate
statement.

These features will be supported in an upcoming version of
QuestaSim in 2013.

3.11 Block Comments
VHDL-2008 adds “C” like multiline comments that start with
“/*” and end with “*/”.

3.12 Read Out Ports
Prior to 2008, out ports of an entity could not be read. This
restriction was intended to prevent reading the output side
of a chip output. As a result, it provided a minimal benefit
at the top level of a design that also instantiates IO cells
(common in ASIC design flows, but not FPGA).

RTL designers have been working around this issue for
years by adding extra internal signals to specifically read
a value internally. As testbench designers add assertions,
however, often they are not permitted to modify the RTL
design. As a result, this rule was neither useful nor practical
to maintain.

3.13 IP Protection
Intellectual Property (IP) protection simplifies the process
of distributing protected source code. This mechanism
allows IP providers to provide source code that is hidden
from viewing, but is still able to be processed by EDA tools.
In addition while the code is being handled within the tools,
its intermediate form is restricted from being viewed by
users. This minimizes IP supplier concerns of the IP
being reverse engineered while being used in EDA tools.
The approach is based on and consistent with work
in the IEEE P1735 working group.

36

4. Package and Operator Updates
VHDL’s support for math types and operations is unmatched
by other languages. With VHDL-2008, VHDL becomes the
only RTL language supporting fixed and floating point types
and operations.

In addition there were new operators added, and tune ups
to the packages and how the packages are integrated
into the language. The following subsections explore the
updates as well as the value they deliver.

4.1 Fixed Point Packages
The new package, fixed_generic_pkg, defines fixed point
math types and operations. It defines the types ufixed
and sfixed. To support fractional parts, negative indices
are used. The index range downto is required. The whole
number is on the left and includes the zero index. The
fractional part is to the right of the zero index. A fixed point
number may contain only a fraction or a whole number.
The diagram below illustrates how values in a fixed point
number work.

Format of ufixed (3 downto -3)
Integral part	 = bits 3 downto 0
Fractional part 	 = bits -1 downto -3

constant A : ufixed (3 downto -3) := “0110100” ;
Integral part 	 = “0110”	 = 6
Fractional part 	 = “100” = 0.5
Value “0110100” = 6.5

A fixed point addition/subtraction operation has a full
precision result. Hence, when adding two numbers with a
4 bit integral part, the result will have a 5 bit integral part.
This is shown below.

signal A, B : ufixed (3 downto -3) ;
signal Y : ufixed (4 downto -3) ;
. . .
Y <= A + B ;

The fixed point package has generics to parameterize
the rounding style (round or truncate), overflow style
(saturate or wrap), and number of guard bits (for division).

The package instance, ieee.fixed_pkg, selects generics
round for rounding style, saturate for overflow style, and 3
guard bits. If you need something different, you will need to
create your own package instance.

4.2 Floating Point Packages
The new package, float_generic_pkg, defines floating point
math types and operations. It defines the type float as well
as subtypes for single, double, and extended precision
numbers. The index range downto is required. The sign bit
is the left most bit. The exponent contains the remaining
non-negative indices (including zero). The mantissa
(fractional part) is to the right of the zero index. The floating
point format can be visualized as follows:

Format of float (8 downto -23)
Sign Bit 	 = Bit 8
Exponent 	 = Bits 7 downto 0
 has a bias of 127 (2**E’length-1)
Fraction	 = Bits -1 to -23
 has an implied 1 in leftmost bit

Float(8 downto -23) value Number
0 10000000 00000000000000000000000 = 2.0
0 10000001 10100000000000000000000 = 6.5
0 01111100 00000000000000000000000 = 0.125

Floating point operations always produce a result that is the
size of its largest operands.

signal A, B, Y : float (8 downto -23) ;
. . .
Y <= A + B ; -- float numbers must be same size

The floating point package has generics to parameterize the
rounding styles (nearest, positive infinity, negative infinity,
zero), denormalized number handling (enabled or not), NAN
handling (enabled or not), and number of guard bits (for all
operations). The package instance, ieee.float_pkg, selects
generics round nearest, denormalize true, NAN handling
true, and 3 guard bits. If you need something different
(recommended for RTL), then you will need to create your
own package instance.

37

4.3 Package Integration
With VHDL-2008, the packages std_logic_1164, numeric_
std, numeric_bit, math_real, and math_complex are part
of IEEE 1076. Seems like a trivial change, however, it
allows the operators in these packages to be part of locally
static expressions. This allows std_logic_vector values
or constants to be used in an expression within a case
statement choice.

4.4 Package: Numeric_Std_Unsigned
The new package, ieee.numeric_std_unsigned, defines
numeric operations for std_ulogic_vector (std_logic_vector).
It provides std_ulogic_vector (std_logic_vector) with the
same operations that are available in numeric_std for type
unsigned.

4.5 Package: Env
The new package, std.env, defines the procedures stop,
finish, and the function resolution_limit. The procedure
stop stops a simulation and leaves it in a state that can
be continued. The procedure finish stops a simulation
and leaves it in a state that cannot be continued. The
function resolution_limit returns the value of the smallest
representable time (set by the simulator).

4.6 Types: Integer_vector, …
VHDL-2008 adds the types integer_vector, real_vector,
time_vector, and boolean_vector to the package std.
standard. These types are arrays of integer, real, time,
and boolean respectively.

Usage of a type like integer_vector on a subprogram
interface allows a variable number of integer values to be
passed to the subprogram. This is much like “C”s argc/argv
capability. This capability is used extensively in the OSVVM
packages for coverage modeling (CoveragePkg) and
randomization (RandomPkg).

4.7 Resolution Functions & Std_logic_vector
VHDL-2008 enhanced resolution functions so that a
resolution function for an element type can be applied to an
array of that type. Using this enhancement, std_logic_vector
is now a subtype of std_ulogic_vector as shown below.

subtype STD_LOGIC_VECTOR is
 (resolved) STD_ULOGIC_VECTOR;

With this change, std_logic_vector will automatically
convert to std_ulogic_vector (or vice versa). Hence,
while numeric_std_unsigned only created overloading for
std_ulogic_vector, it supports both std_ulogic_vector and
std_logic_vector.

In addition, all of the numeric packages now create both
unresolved and resolved numeric array type declarations.

4.8 Unary Reduction Operators
VHDL-2008 creates unary versions of AND, OR, NOR,
NAND, XOR, and XNOR for logic array types (bit_vector,
std_logic_vector, …). The operators are applied to each
element of the array argument (a reduction operation) and
produce an element result. Unary operators have the same
precedence as the miscellaneous operators (**, ABS, and
NOT).

In the following, Parity1 and Parity2 both produce the same
result. Parity1 uses the unary “XOR” operator.

-- with VHDL-2008
Parity1 <= xor Data and ParityEnable;

-- without
Parity2 <=
 (data(7) xor data(6) xor data(5) xor data(4) xor
 data(3) xor data(2) xor data(1) xor data(0))
 and ParityEnable ;

4.9 Array/Scalar Logic Operations
VHDL-2008 overloads logic operators to support mixing
an array argument (std_logic_vector, …) with a scalar
(std_ulogic, …) argument. With logic operations, the
scalar argument is applied with each element of the array
argument. The size of the result matches the size of the
array argument. In the following example, the assignments
to D1 and D2 are equivalent.

38

signal A, D1, D2 : std_logic_vector(7 downto 0) ;
signal Asel : std_ulogic ;
…
-- with VHDL-2008
D1 <= A and Asel ;

-- without
GenLoop : for I in D2’Range loop -- without
begin
 D2(I) <= A(I) and Asel ;
end generate;

These operators also simplify the creation of multiplexers
using AND-OR logic as shown below.

signal A, B, C, D, Y1 : std_logic_vector(7 downto 0) ;
signal ASel, BSel, CSel, DSel : std_ulogic ;
…
Y1 <=
 (A and ASel) or (B and BSel) or
 (C and CSel) or (D and DSel) ;

Without these operators, a common mistake is to write the
above code as follows. Although functionally correct when
the select signals (ASel, …) are mutually exclusive, it results
in an inefficient hardware implementation.

Y2 <=
 A when ASel = ‘1’ else B when BSel = ‘1’ else
 C when CSel = ‘1’ else D when DSel = ‘1’ else
 (others => ‘0’) ;

4.10 Array/Scalar Addition Operations
VHDL-2008 overloads addition operators to support mixing
an array argument (unsigned, …) with a scalar (std_ulogic,
…) argument. With addition and subtraction operations,
the scalar is interpreted as either a numeric 0 or 1. This
simplifies operations such as the Add with Carry shown
below.

signal Y : unsigned(8 downto 0) ;
signal A, B : unsigned(7 downto 0) ;
signal CarryIn : std_ulogic ;
…
Y <= (‘0’ & A) + B + CarryIn ;

Without this, CarryIn must be modeled as an unsigned
value and, in synthesis, may result in an implementation
with two adders rather than one.

4.11 Maximum / Minimum
VHDL-2008 predefines functions maximum and minimum
with arguments that are either scalars or arrays (whose
elements are either an enumerated type or integer).
Hence, the following is supported.

constant V : integer := minimum(10, V_GENERIC) ;

VHDL-2008 also predefines maximum and minimum for
arrays whose elements are scalars that return the element
type. This is illustrated below.

constant V : integer_vector := (10, 20, 30) ;
constant V_Min : integer := minimum(V) ;

4.12 IS_X, TO_X01, …
Prior to 2008, the strength reduction functions in std_
logic_1164 were different from the ones in numeric_std.

With VHDL-2008 the functions IS_X, TO_X01, TO_X01Z,
TO_UX01, and TO_01 are now defined for all standard
types based on std_ulogic.

4.13 Shift Operations
Shift operators were added in VHDL-1993 and are implicitly
defined for all arrays of bit and boolean. However, due to
the interesting definition of sra and sla, the shift operators
were never widely implemented in the std_logic family.

39

VHDL-2008 implements the ror, rol, srl, and sll for arrays
of std_logic (in their corresponding package). Sra and sla
are only defined when an array of std_logic has a numeric
interpretation. For unsigned operations, sra (sla) produces
the same result as srl (sll). For signed operations, an sra (or
sla with a negative shift) shifts right with the left most value
matching the current left most value (replicate the sign bit).
For signed operations, an sla (or sra with a negative shift)
produces a result that is consistent with sll.

4.14 Mod for Physical Types (Time)
VHDL-2008 implicitly defines mod for all physical types.
The following calculation uses mod with type time to
calculate the phase of a periodic waveform (testbench
application).

phase := NOW mod tperiod_wave ;

5. Summary
VHDL-2008 brings new and enhanced features that
increase reuse, capability, and productivity, and as a result,
simplify coding and facilitate the creation of advanced
verification environments.

At this point what is most exciting is that all of the features,
except generate, are implemented in QuestaSim release
10.2 and many of them are already available in release 10.1.

6. Revision Plans
VHDL-2008 is a good step forward. Work is currently
in progress for the next revision. The standard is being
revised by the IEEE VHDL Analysis and Standardization
Group’ (VASG). There is also a VHDL package open source
group currently forming.

Some of the work being considered includes.

•	 Direct Programming Interface
•	 Simplified Interfaces
•	 Functional Coverage
•	 Random Stimulus Generation
•	 Verification Data Structures (Scoreboards, …)

7. Participating in VHDL Standards
VHDL standards are open for all to participate. Make sure
your voice is heard. Come join us. See http://www.eda.org/
twiki/bin/view.cgi/P1076/WebHome or alternately start at
http://www.eda.org/ and follow the links. There is also an
open source VHDL package group that is currently forming.

8. Acknowledgements
VHDL-2008 was made possible by the hard work of the
VASG and Accellera VHDL teams. Thanks to everyone
who participated.

9. References
Peter Ashenden, Jim Lewis, VHDL-2008: Just the
New Stuff, Morgan Kaufmann/Elsevier Burlington,
MA ISBN 978-0123742490

10. About the Author
Jim Lewis, the founder of SynthWorks, has twenty-eight
years of design, teaching, and problem solving experience.
Mr. Lewis participated in the VHDL-2008 standards effort
and is the current IEEE VHDL Analysis and Standards
Group (VASG) chair.

Editor: Tom Fitzpatrick
Program Manager: Rebecca Granquist

Wilsonville Worldwide Headquarters
8005 SW Boeckman Rd.
Wilsonville, OR 97070-7777
Phone: 503-685-7000

To subscribe visit:
www.mentor.com/horizons

To view our blog visit:
VERIFICATIONHORIZONSBLOG.COM

