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ABSTRACT 

 
Current paper presents an overview of recently proposed fast 
methods for static compaction of sequential circuit tests divided 
into independent test sequences. The methods include genetic 
algorithm based, greedy and deterministic approaches. We 
explain the algorithms and discuss the underlying complexity 
issues. The different methods were tested on a large number of 
publicly available benchmark test sets in order to assess their 
efficiency. In addition to the comparison of approaches, our 
experiments reveal some remarkable properties of realistic 
sequential circuit test sets.  
 
 

1. INTRODUCTION 
 
Majority of the earlier works in the field of static compaction 
consider the case, where there is a single test sequence that we 
are trying to minimize by removing some patterns from it. This 
requires iterative fault simulation during the compaction process 
in order to check that the fault coverage has not decreased. Thus 
the run times are very long.  
 Faster approach has been proposed in [1, 2 and 3]. The 
technique in [2] requires keeping track of the internal state of 
the circuit. In [1] the whole test set is divided into independent 
test sequences separated by global reset and fault simulation is 
performed only once, prior to compaction. In addition, in [1] a 
set of benchmarks [4] consisting of 103 fault matrices of 
ISCAS’89 circuits tested by three different ATPG tools [5, 6, 7] 
were made publicly available. In [3] a method was proposed 
that is in average two orders of magnitude faster than the one 
presented in [1]. It is based on detecting the set of essential 
patterns and subsequent application of a greedy algorithm. The 
average compaction of this method was better than of any 
previously published method belonging to this particular class. 
 In this paper we consider the above-mentioned case of 
static compaction, where the test set is divided into test 
sequences. We compare the approaches proposed in [1] and in 
[3] to a new method based on branch-and-bound search. We 
explain the algorithms and discuss the corresponding 
complexity issues. In addition, we consider some relevant 
properties of realistic fault matrixes. These properties include 
fault matrix sizes before and after applying implications and the 
ratio of essential patterns in the test sets.   

 
2. STATIC COMPACTION OF FAULT MATRICES 

 
A test set T consists of test sequences ti ∈ T, i = 1, ... , n. Each 
sequence ti contains in turn Li test vectors. We refer to Li as the 
test length of sequence ti. The set of faults fj, j = 1, ..., m 
detected by T is denoted by F. Total test length of test set T can 
be viewed as a sum 

 In the problem of static compaction of test sequences, our 
task is to find values for the Li such that the above sum would 
be minimal while the number of faults that the test set T detects 
would still be |F|. 
 Consider the test set example shown in Fig. 1 that consists 
of three test sequences s1, s2 and s3, respectively. Sequence s1 
consists of four test vectors covering fault f2 at the third vector 
and f1 at the fourth vector. Sequence s2 consists of three test 
vectors covering f1 at the first vector and f3 at the third vector. 
Finally, sequence s3 consists of four test vectors covering f2 at 
the first vector, f3 at the second vector and f4 at the fourth 
vector.  

Fig.1. Test set compaction example 
 

Initial test length of this test set is 11 vectors. It can be 
found that the optimal solution for the static compaction 
problem is selecting sequence s3 and the first vector from 
sequence s2. Hence, the length of the optimal compacted test set 
will be 5 vectors. 

The fault matrix representation for the test set in Fig. 1 is 
shown below. 

 

Table 1. Fault matrix for the test set of Fig. 1 

 
 f1 f2 f3 f4 
s1 4 3 0 0 
s2 1 0 3 0 
s3 0 1 2 4 
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 In this type of descriptions test set T consisting of n faults 
and m test sequences can be viewed as a matrix 

 
where tsi,fj is equal to k if sequence si covers fault fj at the k-th 
vector and zero if sequence si does not cover fault fj.  
 If we select k vectors from sequence si then all the faults {fj 
: k ≥ tsi,fj > 0} are said to be covered by these vectors. In our 
algorithm we remove the columns corresponding to the covered 
faults from matrix T. In addition, we must subtract k from all the 
non-zero elements tsi,fj of the row corresponding to the sequence 
si. Our task is to cover all the faults (i.e. columns of matrix T) 
by selecting the minimal number of vectors. As it was shown in 
[1], this task belongs to the class of NP-complete problems.  
 

3. COMPACTION ALGORITHMS 
 
3.1. Genetic algorithm for static compaction 
 
Genetic algorithms are derived from observations in nature, 
where generations of living beings are improved by 
evolutionary process. In this type of algorithms each solution 
(called individual) is first represented by encoding. A set of 
individuals is referred to as population. Some solutions are 
better than others. Fitness value is assigned to individuals 
according to a quality (fitness) function. Individuals with higher 
fitness are preferred to be chosen for reproduction. The 
individuals in a population can reproduce themselves by 
combining the genes of two selected parent individuals during 
crossover.  
 In [1] a straightforward encoding is adopted in order to 
represent the test sequence ordering: each individual is a string 
composed of n genes (n being the number of sequences), and 
directly corresponds to an ordering. As an example, let us 
consider the test set composed of three sequences introduced in 
Fig. 1. Possible individuals are sequence orderings (s1 s2 s3) and 
(s2 s3 s1). 
 Evaluation for every individual is done according to the 
number of vectors eliminated in respect to the original test set 
provided by the ATPG. Each individual is assigned a fitness 
value, which represents the position of the individual in the 
ranking based to their evaluation value. This reduces the risk for 
one individual with evaluation value much higher than others to 
prevail in every selection procedure. 
 In the method, uniform cross-over is adopted: one half of 
the genes (randomly chosen) of the child individual are taken 
from one parent, the others are taken from the other parent, in 
the same order they appear in them. 
 Exact parameters of the genetic algorithm for static 
compaction are presented in [1]. The main shortcoming of the 
above mentioned approach is that it always considers the entire 
search space, never taking advantage of any implications. For 
example, according to our experiments, essential patterns form a 
vast majority of the patterns in the final optimized test set. In 
the following subsection we consider these implications, which 
allow us to remarkably prune the search space.  
 

3.2. Greedy optimization method 
 
In the following two methods, three relationships are 
implemented to prune the search space for the compaction 
algorithm. 
 
3.2.1. Selecting essential vectors 
 
If fault fj is detected by the k-th vector of test sequence si and is 
not detected by any other sequence belonging to the test set  then 
k first vectors of sequence si are called essential. After selecting 
the essential vectors we remove them from the test sequences. 
In addition we remove the columns corresponding to faults 
covered by these vectors from matrix T. This simple pre-
processing step allows to significantly reduce the search space 
for the static compaction algorithm. 
 
3.2.2. Removing dominated faults 

 
Column fa is said to be dominated by column fb and will be 
removed from matrix T if  

 The motivation for removing dominated faults is the 
following. Let us assume that a fault fb dominates fault fa. The 
above relationship shows that no matter by which sequence 
selection we cover fault fb we will also cover fault fa. Since in 
order to achieve full matrix coverage we will have to cover fb in 
any case, column fa represents redundant information for the 
optimization problem. 
 
3.2.3. Removing dominating sequences 

 
A row corresponding to sequence sb is said to be a dominating 
sequence of sa and will be removed from matrix T if 

 A dominating sequence can be removed because the 
sequence dominated by it covers all the same faults in a shorter 
or equal vector range.   
 The method presented in [3] applies above described 
implications as far as possible. Whenever it encounters a 
selection between alternative solutions, it switches to a greedy 
algorithm. The greedy selection function implemented in [3] is 
described in the following. Let us denote by Minrange(fj) the 
minimal number of vectors that has to be selected from any test 
sequence in order to detect a fault fj. Let Maxrange be the 
maximum Minrange(fj) of all the faults. 
 The selection function selects Maxrange vectors from the 
corresponding test sequence. If there exist multiple maximal 
Minrange(fj) values then the algorithm prefers the sequences 
that detect more faults in Maxrange first vectors. 
 
3.3. Branch-and-bound search 
 
In this paper we present a branch-and-bound algorithm for static 
compaction of independent test sequences. Unlike the above-
described genetic algorithms and greedy optimization, branch-
and-bound is capable of finding the globally optimal solution 
for this type of compaction problem. In fact, as our experiments 
show, this algorithm is capable of finding globally optimal 
results for all the 103 benchmark test sets of [4] in a relatively 
short time.  
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 The algorithm uses depth-first approach for the decision 
tree traversal. While the breadth-first approach would limit the 
search space further it was not implemented due to its excessive 
memory requirements. (In the breadth-first search we would 
have to trace all the decisions in parallel, while in the depth-first 
approach only one decision is considered at a time). Differently 
from the greedy approach of [3], this algorithm does not stop 
after finding the first solution but it checks all the consistent 
solutions until the optimal is found.  
 The search problem for the branch-and-bound approach 
can be further simplified by discarding decision combinations 
equivalent to previously traversed ones, i.e. the ones which 
contain exactly the same set of decisions that were tried before 
but in a different order. Equivalent search state identification 
requires that the decisions are ordered (ranked) in the systematic 
search process. In current implementation the primary decision 
ordering criterion is the number of vectors to be selected, the 
secondary criterion is index of the test sequence. During 
decision making we never consider a decision whose rank is 
less than the one of the previously made decision in the decision 
tree. The general idea is not new and it has been successfully 
implemented in automatic test pattern generation. 
 If we do not consider equivalent search states the total 
number of decisions to be considered will be: 
n!(1/0! + 1/1! +1/2! + … + 1/(n-1)!), which 
approaches asymptotically  e • n! . 
 However, by identifying equivalent search states we have 
to consider 2n-1 decisions in the worst case. While this is still a 
problem of high complexity, it is considerably less so than the 
traditional full search considered above. 
 
4. EXPERIMENTAL RESULTS 
 
In current experiments we used the test set benchmarks, which 
contain fault matrixes for test sets generated for ISCAS’89 
benchmarks by three different ATPG tools: GATTO [5], HITEC 
[6] and SYMBAT [7]. The fault matrixes were obtained by fault 
simulating the test sets and are available at [4]. 
 Table 3 presents the compaction results for the GATTO 
test sets only. The reason for that is the fact that the SYMBAT 
and HITEC test sets appeared to be very easy to compact and all 
the three methods yielded fairly identical results. The table 
presents the number of faults, the size of initial test set, test set 
size contributed by essential patterns, test set size after applying 
search state pruning (described in subsection 3.2) and 
comparative results for the three methods for each benchmark 
circuit, respectively. The overall best results are marked by bold 
numbers in the table. The experiments for [1] and [3] were run 
on SUN SPARC 5 workstations and experiments for the 
branch-and-bound algorithm were run on a 366 MHz SUN 
UltraSPARC 60 workstation with 512 MB RAM under Solaris 
2.5.1 operating system. As it can be seen by comparing the run 
times of the greedy and branch-and-bound approaches, the 
performance difference between these two types of computers is 
roughly 5 times. 
 As Table 3 shows, the new technique allows the best 
compaction results being capable of finding globally optimal 
results for all the test sets in the given benchmark family. 
Furthermore, the compaction times are short. However, the 
fastest compaction is achieved by applying greedy optimization, 
which allows to reach optimal or nearly optimal results for the 
benchmark test sets. Table 2 presents important statistics about 
the efficiency of the three algorithms. 

Table 2. Comparison of static compaction methods 
 Genetic 

[1] 
Greedy 

[3] 
Branch-

and-
bound 

average compaction 49.86 % 50.06 % 50.27 % 
best compaction results 32 30 40 
proved optimal results N/A 30 40 
 
 In addition to the fact that the above experiments allow us 
to compare different methods for static compaction of test sets, 
they reveal some interesting properties of realistic fault 
matrixes. Probably the most significant of these are the ratio of 
essential patterns in the compacted test set and the ratio of 
patterns selected by search state pruning (see subsection 3.2) in 
the compacted result. As our experiments showed, in average 89 
% (62 % - 100 %) of the patterns in the compacted test sets 
were essential. Furthermore, in average 99 % (87 % - 100 %) of 
the patterns in the compacted test sets were selected during 
search space pruning. This surprising result explains the relative 
efficiency of the simple greedy compaction method presented in  
[3] on given benchmark test sets. 
 

5. CONCLUSIONS 
 
In this paper, the case of static compaction, where the test set is 
divided into test sequences was considered. Three different 
recently proposed methods were compared, including genetic 
algorithm, greedy optimization and branch-and-bound based 
approaches. Experiments showed that the branch-and-bound 
technique allows the best compaction results being capable of 
finding globally optimal results for all the test sets in the given 
benchmark family. Furthermore, the compaction times were 
short, never exceeding 400 seconds on a 366 MHz SUN 
UltraSPARC server. However, the fastest compaction was 
achieved by applying greedy optimization, which allowed to 
reach optimal or nearly optimal results for the benchmark test 
sets. The relative efficiency of the greedy approach was mainly 
due to the fact that according to our study, vast majority of 
patterns in the compacted real world sequential circuit test sets 
were essential. In addition, the search space could be efficiently 
pruned by using dominance relationships of faults and 
sequences. 
 

6. REFERENCES 
 
[1] F. Corno et al. "New static compaction techniques of test 
sequences for sequential circuits". ED&TC, 1997, pp.37-43. 
 
[2] M. S. Hiao et al., "Sequential circuit test generation using 
dynamic state traversal", Proc. ED&TC, pp. 22-28, 1997. 
 
[3] J. Raik et al., “Fast static compaction of test sequences using 
implications and greedy search”, Proc. ETW 2001, pp. 207-209. 
 
[4] URL: http://www.cad.polito.it 
 
[5] F. Corno et al., "GATTO: A genetic algorithm for automatic 
test pattern generation … ", IEEE Trans. CAD, Aug. 1996. 
 
[6] T.M. Niermann, J.H. Patel, "HITEC: A test generation 
package for sequential circuits", Proc. of EDAC, 1991. 
 
[7] G. Cabodi, F. Corno, P. Prinetto, M. Sonza Reorda, 
"Symbat’s user guide", Politecnico di Torino, Sept. 1993. 

http://www.cad.polito.it


Table 3. Static compaction results for the GATTO test set 

 
 

*   - SUN SPARC 5 workstation 
** - SUN UltraSPARC 60 server 
bold numbers – best compaction result 
underlined numbers – after pruning, all faults are covered 

 

circuit # faults Initial test set Essential test After pruning
# seq. # vec. # seq. # vec. # vectors # vec. time, s # vec. time, s # vec. time, s

s208 216 36 1096 4 290 347 347 8,0 347 0,08 347 0,01
s298 309 24 302 10 130 141 141 8,0 141 0,09 141 0,01
s344 322 19 141 6 49 66 66 7,0 66 0,08 66 0,01
s349 330 19 144 9 75 84 84 7,0 84 0,09 84 0,01
s382 399 17 840 7 485 485 485 8,0 485 0,08 485 0,01
s386 373 38 418 11 199 221 221 17,0 221 0,11 221 0,03
s400 425 16 916 6 443 502 502 9,0 502 0,06 502 0,01
s420 453 33 797 5 325 333 333 21,0 333 0,10 333 0,01
s444 475 22 1434 9 788 788 788 12,0 788 0,11 788 0,02
s499 538 29 465 8 182 192 192 19,0 192 0,19 192 0,04
s510 550 37 989 4 146 237 237 18,0 263 0,32 237 0,05
s526 556 18 1050 8 696 769 769 14,0 769 0,09 769 0,02
s526n 554 16 862 6 523 523 523 12,0 523 0,08 523 0,01
s641 466 48 395 23 219 221 221 25,0 221 0,24 221 0,04
s713 582 55 557 19 226 250 250 10,0 250 0,37 250 0,06
s820 816 38 669 13 335 347 347 14,0 347 0,19 347 0,03
s832 837 10 425 10 184 196 196 12,0 196 0,16 196 0,03
s838 929 37 1323 5 323 412 473 16,0 482 0,18 473 0,05
s938 929 37 1323 5 323 412 473 16,0 482 0,18 473 0,05
s953 1053 75 1099 26 447 539 539 20,0 539 0,91 539 0,15
s967 1038 72 1223 27 606 669 669 19,0 679 0,82 669 0,14
s991 877 20 448 9 365 365 365 5,0 365 0,30 365 0,05
s1196 1215 133 1805 67 1086 1124 1131 43,0 1124 0,93 1124 0,18
s1238 1327 123 1554 62 956 976 1007 50,0 1004 0,91 1004 16,4
s1269 1309 52 450 23 198 245 245 17,0 245 0,70 245 3,36
s1423 1516 107 2691 25 1237 1279 1284 46,0 1279 0,99 1279 0,20
s1488 1471 65 1824 16 867 946 946 24,0 946 1,07 946 0,20
s1494 1491 62 1244 19 652 652 652 25,0 652 0,89 652 0,15
s1512 1281 52 772 12 261 289 289 27,0 294 0,55 289 0,09
s3271 3206 132 2529 43 1047 1087 1532 111,0 1210 5,40 1178 27,6
s3330 2866 108 2028 39 1018 1067 1067 110,0 1070 2,86 1067 0,51
s3384 3360 58 888 17 327 410 410 60,0 410 2,85 410 0,49
s4863 4666 112 1533 31 666 738 746 154,0 749 5,64 745 2,41
s5378 4603 71 919 37 464 493 493 139,0 493 3,24 493 0,58
s6669 6506 64 592 29 240 301 303 114,0 301 6,62 301 1,12
s13207 9810 34 544 6 159 187 187 207,0 187 1,70 187 0,32
s15850 11724 10 153 2 79 91 91 96,0 91 0,44 91 0,09
s35932 38449 59 903 6 247 308 308 706,0 308 25,0 308 4,39
s38417 27733 95 1617 22 588 672 697 1601,0 698 11,78 684 2,75
s38584 36303 271 8065 95 3416 3705 N/A 4918,0 3812 60,0 3806 341,9

GA result* [1] Branch-and-bound**greedy result* [3]


