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Abstract– This paper describes a diagnostic 
software package called Turbo Tester. It contains a 
variety of tools related to the area of testing and 
diagnosis of integrated circuits. The range of tools 
includes test generators, logic and fault simulators, 
a test optimizer, a module for hazard analysis, built-
in self-test simulators, design verification and design 
error diagnosis tools. The range of compatible 
diagnostic tools forms, via their interaction and 
complementary operation, a homogeneous research 
environment, which provides good possibilities for 
experimental research. Due to this fact, there are a 
number of scientific papers became possible. These 
papers have been presented at international 
conferences and published in reviewed journals. We 
give a couple of examples of such experiments in this 
paper. We also describe some laboratory work 
scenarios for students. 
 
 
1. Introduction 

 
The increasing complexity of VLSI circuits and 

transition to Systems-on-Chip (SoC) or even 
Networks-on-Chip (NoC) paradigm has made test 
generation one of the most complicated and time-
consuming problems in the domain of digital design. 
The more complex are getting electronics systems, 
the more important become problems of test and 
design for testability, as costs of verification and 
testing are getting the major component of design 
and manufacturing costs of a new product. This fact 
makes the research in the area of testing and 
diagnosis of integrated circuits (IC) a very important 
topic for both the industry and the academy.  

Commercial CAD systems for VLSI design and 
test are both costly and do not provide a good 
variety of competing or complementary approaches 
to a given particular problem. They usually have a 
stiff workflow of standard integrated tools bound 
together and should be executed accordingly to a 
certain scenario. It is good for a designer but not for 
a researcher whose main goal is the search for new 
efficient solutions. 

During the last decade, many different low-cost 
tools running on PCs have been developed to fill this 
gap. They usually include the major basic tools 
needed for IC design: schematics capture, layout 

editors, simulators, and place and route tools. 
However, low-cost systems for solving a large class 
of tasks from the dependability and diagnostics area: 
test synthesis and analysis, fault diagnosis, 
testability analysis, built-in self-test (BIST), 
especially for research and educational purposes, are 
still missing. For this reason, a diagnostic software 
Turbo Tester (TT) is being developed in Tallinn 
Technical University. 

In this paper we briefly describe the main 
functionality of the Turbo Tester package and 
suggest possible areas of experimental research 
where TT can be used. Compared to previous paper 
[6] the reader will find new aspects of application of 
related tools as well as description of new 
functionality added to the package since that time.  

Another possible application field of the TT 
package is the education. Entering the SoC era 
means that the test must become now an integral part 
of the VLSI and system design courses. The next 
generation of engineers involved with System-on-
Chip (SoC) technology should be made aware of the 
importance of test, and trained in test technology to 
enable them to produce high quality and defect-free 
products. Therefore, we have developed a set of 
scenarios of laboratory works, which makes use of 
different aspects of the TT package. In this paper we 
give a short overview of these scenarios, while their 
full version is available in the Web [14]. 

The TT software consists of the following test 
related tools: test generation by different algorithms 
(deterministic, random and genetic), test program 
optimization, fault simulation for combinational and 
sequential circuits, testability analysis and fault 
diagnosis. TT can read the schematic entries of 
various contemporary VLSI CAD tools, e.g. 
Cadence, Synopsys, Mentor Graphics, Viewlogic, 
Compass, OrCAD, etc. which makes TT 
independent of the existing design environment. 
There are Turbo Tester versions available for MS 
Windows, Linux, and Solaris operating systems. The 
software is free of charge and it can be downloaded 
from the Web [13]. 

In the next section we give a short overview of 
the whole TT package and its main tools. It is 
followed by Section 3, which describes some 
research experiments made with TT. The overview 
of laboratory work scenarios is given in Section 4. 
Section 5 is dedicated for conclusions.  
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2. Overview of Turbo Tester Package 
 

The main set of functional modules of the Turbo 
Tester diagnostic software package includes test 
generators, logic and fault simulators, a test 
optimizer, a module for hazard analysis, linear 
feedback shift register (LFSR) emulators for BIST, 
design verification and design error diagnosis tools 
(see Fig. 1). 

The main advantage of the system lies in the 
fact that different methods and algorithms for 
various test problems are implemented and can be 
investigated as separately of each other as working 
together in different combinations. The latter 
provides a variety of different approaches to solution 
optimization for a particular problem. 

Model Synthesis. The component library of 
Turbo Tester consists of Binary Decision Diagram 
(BDD) representations for the library components of 
the circuits to be processed. The library is open and 
can be updated for new components. The model 
generator creates a BDD-representation of the 
design from the netlist of the design, produced by 
e.g. schematic editor. The special kind of BBDs is 
used in Turbo Tester. They are called Structurally 
Synthesized BDDs (SSBDD) and provide a uniform 
approach to solving a wide scale of test design tasks, 
based on a uniform model and a restricted set of 
standard procedures. Unlike traditional BDDs, 
SSBDDs support test synthesis for gate-level 
structural faults. Moreover, the design can be 
represented either at the gate-level or at the macro-
level. The latter one is a somewhat higher 
representation level, where the basic elements are 
macros consisting of several gates at once. On the 
macro-level, a BDD is to be created for each macro, 
where one-to-one correspondence between signal 
paths in the macro and nodes in the BDD will be 
established. For some tasks, such representation 
gives faster runtimes at the same accuracy [8]. A 
hierarchical DD model, which combines RT-level 

DDs and binary DDs is also possible. This allows 
migration of methods developed for logical level 
also to higher (behavioral and register-transfer) 
levels, where tools for hierarchical test generation 
and simulation have already been implemented [3]. 

Test Generation. For automatic test pattern 
generation (ATPG), random, deterministic and 
genetic test pattern generators (TPG) are 
implemented [4]. Mixed TPG strategies based on 
different methods can also be investigated. Tests can 
be generated for both, combinational and sequential 
circuits. Stuck-at faults and transition faults can be 
considered. The number of faults to be processed at 
the macro level will be less than the number of faults 
at the gate level (each macro-level fault represents, 
in general, a subset of gate-level faults). This causes 
the increase in productivity of test generation at the 
macro level compared to that of the gate-level. The 
best test generation efficiency for complex systems 
can be achieved by using the hierarchical DD 
representation [3]. 

Test Pattern Analysis. There are single-fault 
simulation, parallel fault simulation, and critical path 
tracing fault analysis methods implemented in the 
system. These competing approaches can be 
investigated and compared for circuits of different 
complexities and structures. As the result of using 
these tools, fault tables are calculated and test 
quality is evaluated for given test sequences. In a 
defect-oriented simulation mode the fault simulator 
uses a special defect library [1]. The physical defect 
model includes short (or bridging) faults and will be 
soon extended by open faults. 

Test Set Optimization. The tool minimizes the 
number of test patterns in the test set by means of 
static compaction. The technique implements 
effective representation of fault matrices by 
weighted bipartite graphs. The approach contains a 
preprocessing step for determining the set of 
essential vectors. Subsequently, implications and a 
greedy search algorithm are applied. The proposed 
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Fig. 1 Overview of Turbo Tester environment 



method offers significantly fast performance in 
terms of run times [10]. 

Multi-valued Simulation. In Turbo Tester, 
multi-valued simulation is applied to model the 
possible hazards that can occur in logic circuits. The 
dynamic behavior of a logic network during one 
single transition period can be describes by a 
representative waveform on the output or simply by 
a corresponding logic value. In other words, each 
waveform type has a corresponding symbol of some 
given alphabet. Turbo Tester’s multi-valued 
simulator implements 5-valued and 8-valued 
alphabets [11]. 

Design Error Diagnosis. After a digital system 
has been designed according to specifications, it 
might go through a refinement process in order to be 
consistent with certain design requirements (e.g. 
timing specifications). The changes introduced by 
this process (by a human or a CAD system) may 
lead to undesired functional inconsistencies 
compared to the original design. Such design errors 
should be identified via design verification. A design 
error diagnosis technique should be applied 
afterwards in order to locate and correct the error. In 
Turbo Tester we use the same SSBDD model for 
both the specification (the design before 
modifications) and the design to be corrected. An 
advantage of our particular approach is the fact that 
it does not need a special diagnostic test to be 
created. It uses a normal test set instead [9]. 

Testability Analysis. The real cost of a digital 
product is expressed as: Cost(Design + Test) < 
Cost(Design) + Cost(Test). It follows from the fact, 
that the total product cost can be minimized by 
regarding the design and test of a product as one 
integral activity rather than the two disjoint 
unrelated activities. The latter approach is called 
design for testability (DFT). Among the most 
promising DFT methods are those aimed at 

enhancing the testability through adding redundant 
hardware elements or test-points (additional outputs 
for observing; inputs for controlling; additional flip-
flops in scan-path etc.) to the circuit. The testability 
analysis tools of the system can be used for 
enumerating untestable faults, for selecting 
statistically hard-to-test faults, and for estimating the 
controllability, observability and testability 
characteristics for the nodes of the design. The tools 
are used for finding out where to alter the design to 
improve the testability. 

Evaluation of Built-In Self Test (BIST) 
Quality. The BIST approach is represented by 
applications for Built-In Logic Block Observer 
(BILBO) and Circular Self-Test Path (CSTP) 
emulation. Different BIST architectures can be 
simulated and the self-test quality of these 
architectures can be evaluated. There is a tool, which 
utilizes a genetic search algorithm for automatically 
finding good BIST architectures. It is possible to use 
also the general "store-and-generate" approach, 
where the whole test sequence will be generated on 
the basis of a given set of test vectors (i.e. the stored 
part of the test). All these vectors serve as initial 
input test patterns for on-line test generation by 
BILBO or CSTP (i.e. the generated part of the test). 
A Hybrid BIST technique represents an opposite 
approach, which also partially utilizes deterministic 
patterns but in the very end of the sequence. This 
makes it possible to achieve higher fault coverage by 
shorter test sequence [7]. In Section 3 we discuss the 
Hybrid BIST framework in more detail. 

Design Interface. Turbo Tester has a powerful 
design interface from EDIF 2.0.0 netlist format, 
which supports both, combinational and sequential 
designs. In this way, TT can read the schematic 
entries of various contemporary VLSI CAD tools, 
e.g. Cadence, Synopsys, Mentor Graphics, 

Fig. 2 Graphical user interface 
 



Viewlogic, Compass, OrCAD etc., which makes the 
system open to different design environments. 

Graphical User Interface. Turbo Tester 
Graphical User Interface (GUI) is under 
development. The current working version is shown 
in Figure 2. It is available for MS Windows OS 
only. Similarly to most of the contemporary CAD 
systems, TT has a dedicated shell window with a 
command prompt. The Turbo Tester tools can be 
executed as from this command prompt as by 
selecting corresponding entries from corresponding 
menus. The process output is displayed on the shell 
window. There is a handy visualization utility called 
Waveform Viewer (see Fig. 3), which illustrates 
properties of test sequences obtained with different 
test pattern generators. 

 
Fig.3 An example of test data representation in TT 

 
WEB Interface. An Internet version of the 

Turbo Tester system (Web-TT) is available now as 
well. This new Web-based interface has the same 
functionality as the standalone TT. Users work with 
Web-TT by using simple HTML web pages via 
HTTP Internet protocol and process their data and 
results even without installing this system on their 
local PC. The user’s OS and system requirements 
are not critical because TT performs all tasks on the 
remote server machine. Basically, an Internet 
connection and some Web browser (such as 
Netscape or MS Internet Explorer) at user’s disposal 
are enough for the using of this system. An entry 
point of the Web-TT is a Welcome page (Fig. 4). 
This page contains login form, system overview and 
site navigation help. The module selection page 
contains a list of all available TT modules. User 
should select one of them and step through a set of 
initial parameters for the module. Every module has 
its own number and types of initial parameters that 
user has to set. Then the task will be submitted to the 
system for the execution. For the monitoring and 
administrating of user tasks there is a status page. 
User has an opportunity to observe the state of all 
his tasks there. After the task is performed user can 
download its results at any time from the status 
page. Web-based TT system provides an attractive 
alternative to the standalone version that offers 
separation of user interface from the low-level logic, 
easy of administrate and support, extensibility, and 

most importantly easy of use. Moreover, users will 
always work with the latest version of TT and does 
not need to download or install the system locally. 

 
Fig. 4 Welcome page fragment of TT Web interface 

 
System Portability. At present, Turbo Tester 

can be installed under MS Windows, Linux, and 
Solaris 2.x operating systems. 

User Documentation. Turbo Tester installation 
includes a comprehensive reference manual [12], 
where all the functions of the system are explained. 
The manual is constantly updated together with the 
Turbo Tester package. It is designed in a style that is 
common to most of the CAD system 
documentations. The document complies partly with 
IEEE standard Std 1063-1987 for software user 
documentation. The manual is available at [13]. 

 
 

3. Research Experiments with TT 
 

There is a number of scientific papers describing 
research carried out using Turbo Tester that have 
been published in international conferences as well 
as reviewed journals [1,3,4,5,7,8,9,10,11]. In this 
section, we give a couple of examples of possible 
research experiments with Turbo Tester. 

Since test generation is one of the most 
important steps in the whole diagnostic framework, 
let us consider properties of the three described 
above combinational ATPGs available in TT 
package. Table 1 provides information about test 
quality and test generation time for ISCAS’85 
benchmark circuits [2]. The test quality is 
represented by fault coverage (FC) and test length 
(TL). It should be mentioned that FC was measured 
on SSBDD model, where a compacted fault list is 
used [8]. Therefore, the percentage shows the ratio 
between detected representative faults and whole 
compacted fault set. The test time was measured on 
a PC with 800 MHz Pentium III processor, 256 MB 
RAM under MS Windows OS.  

The deterministic ATPG was run in two modes: 
adjusted for a fast run and for a high FC. These 
modes are denoted in Table 1 by (1) and (2) 
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respectively. The simulation-based ATPGs (genetic 
and random) were adjusted to approximate the 
highest possible fault coverage with minimum 
amount of necessary test vectors. In most cases the 
genetic framework based ATPG was performing 
best by providing shortest test at the same or higher 
fault coverage. The best test generation time, 
however, was the one by the deterministic ATPG. In 
most cases it is several orders of magnitude shorter 
than that of other ATPGs. The reason, why the test 
length by that ATPG is not that good, lies in the fact 
that it is impossible to adjust it for test set 
minimization. Test compaction should be used after 
deterministic ATPG for that purposes. 
 

 ATPG Time, s FC, % TL 
Deterministic (1) 
Deterministic (2) 

0,03 
180,37 

86,20 
93,02 

72 
84 c432 Genetic 

Random 
5,37 
6,28 

93,02 
93,02 

34 
35 

Deterministic (1) 
Deterministic (2) 

0,07 
0,07 

96,01 
99,33 

112 
132 c499 Genetic 

Random 
0,37 
0,60 

99,33 
99,33 

84 
84 

Deterministic (1) 
Deterministic (2) 

0,02 
0,02 

99,29 
100 

63 
77 c880 Genetic 

Random 
13,17 
26,16 

100 
100 

33 
34 

Deterministic (1) 
Deterministic (2) 

0,10 
0,10 

93,20 
99,51 

93 
124 c1355 Genetic 

Random 
0,56 
0,65 

99,51 
99,51 

84 
84 

Deterministic (1) 
Deterministic (2) 

0,08 
0,08 

95,38 
99,48 

108 
140 c1908 Genetic 

Random 
20,43 
16,23 

99,48 
99,48 

106 
108 

Deterministic (1) 
Deterministic (2) 

0,12 
0,21 

93,60 
95,51 

134 
155 c2670 Genetic 

Random 
42,22 

373,73 
95,39 
95,39 

95 
104 

Deterministic (1) 
Deterministic (2) 

0,17 
772,85 

91,32 
95,51 

155 
212 c3540 Genetic 

Random 
125,99 
140,02 

95,54 
95,54 

108 
113 

Deterministic (1) 
Deterministic (2) 

0,26 
9,87 

92,83 
98,89 

103 
171 c5315 Genetic 

Random 
140,91 
200,60 

98,89 
98,89 

73 
79 

Deterministic (1) 
Deterministic (2) 

0,17 
0,17 

99,23 
99,34 

43 
45 c6288 Genetic 

Random 
36,70 

179,79 
99,34 
99,34 

16 
16 

Deterministic (1) 
Deterministic (2) 

0,65 
837,31 

92,76 
97,75 

168 
279 c7252 Genetic 

Random 
262,07 
581,74 

96,66 
96,48 

147 
183 

 
Table 1 Experimental results by different ATPGs 

 
Another good example of a research topic to be 

investigated using the Turbo Tester is the solution 
optimization in the Hybrid BIST framework. This 
approach makes use of cheap pseudorandom vectors 
at the first step when the fault coverage grows very 
fast and does not virtually depend on certain vectors. 
These vectors are generated on-line by an LFSR. At 
the second step, it applies a very limited amount of 
deterministic vectors that cover remaining hard-to-

test faults. Such vectors are generated in advance 
and stored in memory. 

There are several related issues which still have 
not found efficient solutions in the research and 
industrial community. One of such issues is the 
problem of finding the proper breakpoint between 
the first and the second parts of the test. This 
problem was illustrated in [7] and one of solutions 
was proposed there as well. The Turbo Tester’s 
BIST emulator and the deterministic ATPG were 
used for this purpose.  Figure 5 shows a graphical 
solution for this problem as the trade-off between 
the memory cost and testing time. Let have the 
whole cost of the BIST to be defined as 

CTOTAL = CTIME + CHW = αTG + βMS 
where CTIME is the cost related to the time needed for 
test, CHW is the hardware cost related to the BIST 
architecture, TG is the length of the test generated by 
LFSR, MS is the number of patterns to be stored, and 
α,β are constants to scale the test length and 
memory space. It would be very time consuming to 
find experimentally all the curves shown in Figure 5, 
except the generated test length TG. The practical 
way is in trying to find the curve for MS with as least 
as possible number of experiments, and to try to 
predict the curve on the basis of experimental data, 
and to approach then step by step to the real 
optimum by choosing as few as possible additional 
experiments. It is possible to solve such a task by 
Turbo Tester via writing a simple script, which has 
to analyze the results and to perform required steps. 

 
Fig. 5 Optimization of hybrid BIST 

 
 

4. Laboratory Work Scenarios 
 
The main aim of developed laboratory works 

scenarios is to teach and train students to integrate 
design and test, to give them knowledge on how to 
create testable designs or designs with self-testing 
capabilities, and how to obtain test patterns of better 
quality. The following laboratory works were 
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developed to train the engineering skills in the field 
of test: 
§ Test generation 
§ Design for testability 
§ Built-in self-test 
§ Design error diagnosis. 

Test generation. The goal is to get acquainted 
with the problem and CAD tools of creating test 
patterns for digital circuits. At first, tests for the 
given circuit are generated manually. The fault 
simulation tool evaluates the quality of the manual 
tests. Then three different test-generating tools 
(based on deterministic, random and genetic 
algorithms) are used and compared with each other. 

Design for testability. The goal is to show how 
the management of controllability and observability 
of test points in the circuit can improve the quality 
of testing. At first, a testability analysis is carried out 
for the given circuit by using test generation and 
fault simulation tools. Then, based on the testability 
information achieved, the circuit should be 
redesigned with the goal to get a test with a good 
quality i.e. with good fault coverage. Tradeoff 
problems between the redesign cost and test quality 
are investigated. 

Built-in self-test. BIST is the capability of a 
circuit to test itself. Students concentrate themselves 
in an off-line BIST consisting of a test pattern 
generator (TPG), unit under test (UUT) and a 
response analyzer (RA).  

TPG and RA usually are based on a LFSR. 
There are several disadvantages of such a structure: 
the tests generated usually are long, and they do not 
guarantee sufficient fault coverage. To overcome 
these drawbacks, a Hybrid BIST approach may be 
used. In this approach, a test engineer should solve 
the following problems: 
§ to find the best LSFR configuration for on-line 

test generation to achieve the highest fault 
coverage at the minimum length of pseudo-
random test sequence; 

§ to find the best LFSR for response analysis to 
guarantee the minimum loss of accuracy in 
fault detection; 

§ to find the best level of mixing pseudo-random 
and stored tests as tradeoff between memory 
cost and testing time. 

The task of the laboratory research for students 
is to find solutions for these problems. The students 
are not asked to carry out boring measurements, to 
simply press buttons for starting a program and 
getting results which are nothing but a simple 
confirmation of what they already know from 
lectures. Instead, they are asked to solve a series of 
engineering problems. They have a set of tools at 
their disposal and they have to plan and carry out 
experiments by themselves to find answers for the 
given questions. 

Design error diagnosis. The goal is to learn 
how to compose diagnostic tests and to localize 

faults in a given circuit. Iterative using CAD tools, 
theoretical reasoning and manual work for 
generating additional “better” tests, students will get 
experience in solving extremely demanding 
engineering challenges. 

The laboratory works have received good 
credits from students of Tallinn Technical 
University (Estonia), Darmstadt University of 
Technology (Germany), and Jonköping University 
(Sweden). It is under consideration to utilize TT for 
teaching Design for Testability in other universities 
of Eastern and Western Europe. 

 
 

5. Conclusions 
 
In this paper we have described a diagnostic 

software package called Turbo Tester, which has 
been developed in Tallinn Technical University. The 
package contains a variety of tools related to testing 
and diagnosis of VLSI circuits. The range of tools 
includes test generators, logic and fault simulators, a 
test optimizer, a module for hazard analysis, LFSR 
emulators for BIST, design verification and design 
error diagnosis tools. 

The described extensive range of compatible 
diagnostic tools forms a homogeneous research 
environment via their interaction and 
complementary operation. Such a principle allows 
for interesting experimental research to be 
conducted. There are a number of scientific papers 
describing research carried out using the Turbo 
Tester environment. These papers have been 
presented at international conferences and published 
in reviewed journals. 

Since the TT package provides a good 
environment for interesting laboratory work 
scenarios for students, we have developed such 
scenarios and we also described them briefly in 
current paper.  

There are Turbo Tester versions available for 
MS Windows, Linux, and Solaris operating systems. 
The software can be downloaded from [13] free of 
charge. 

 
Acknowledgements 

 
This work was supported partly by the 

Thuringian Ministry of Science, Research and Art 
(Germany), by the EU Framework V project 
REASON, and by the Estonian Science Foundation 
Grant No 5649. 

 
References 

 
[1] M. Blyzniuk, FT. Cibakova, E. Gramatova, W. 

Kuzmicz, M. Lobur, W. Pleskacz, J. Raik, R. 
Ubar. “Hierarchical Defect-Oriented Fault 
Simulation for Digital Circuits,” IEEE 



European Test Workshop, Cascais, Portugal, 
Mai 23-26, 2000, pp.151-156. 

[2] F. Brglez, H. Fujiwara, “A neutral netlist of 10 
combinatori-al benchmark circuits and a target 
translator in FORTRAN,” ISCAS, Special 
Session on ATPG and Fault Simulation , 1985. 

[3] M. Brik, G. Jervan, A. Markus, J. Raik, R. 
Ubar, "Hierarchical Test Generation for Digital 
Systems", Mixed Design of Integrated Circuits, 
pp. 131-136, Kluwer Academic Publishers, 
1998. 

[4] E. Ivask, J. Raik, R. Ubar. ”Comparison of 
Genetic and Random Techniques for Test 
Pattern Generation,” Proc. of the 6th Baltic 
Electronics Conference, Oct. 7-9, 1998, 
Tallinn, pp. 163-166. 

[5] E. Ivask, J. Raik, R. Ubar. ”Fault Oriented Test 
Pattern Generation for Sequential Circuits 
Using Genetic Algorithms,” IEEE European 
Test Workshop, Cascais, Portugal, Mai 23-26, 
2000, pp. 319-320. 

[6] G. Jervan, A. Markus, P. Paomets, J. Raik, R. 
Ubar. “Turbo Tester: A CAD System for 
Teaching Digital Test,” in "Microelectronics 
Education". Kluwer Academic Publishers, 
pp.287-290, 1998. 

[7] G. Jervan, Z. Peng, R. Ubar. ”Test Cost 
Minimization for Hybrid BIST,” IEEE Int. 
Symp. on Defect and Fault Tolerance in VLSI 

Systems. Tokio, October 25-28, 2000, pp.283-
291. 

[8] A. Jutman, J. Raik, R. Ubar, "SSBDDs: 
Advantageous Model and Efficient Algorithms 
for Digital Circuit Modeling, Simulation & 
Test," in Proc. of 5th International Workshop 
on Boolean Problems (IWSBP'02), Freiberg, 
Germany, Sept. 19-20, 2002, pp. 157-166. 

[9] A. Jutman, R. Ubar, "Design Error Diagnosis 
in Digital Circuits with Stuck-at Fault Model," 
Journal of Microelectronics Reliability. 
Pergamon Press, Vol. 40, No 2, 2000, pp.307-
320. 

[10] A. Markus, J. Raik, R. Ubar. ”Fast and 
Efficient Static Compaction of Test Sequences 
Using Bipartite Graph Representation,” Proc. 
of the Second Electronic Circuits and Systems 
Conference ECS'99, pp. 17-20, Bratislava, 
Slovakia, Sept. 6-8, 1999. 

[11] R. Ubar. “Dynamic Analysis of Digital Circuits 
with Multi-Valued Simulation,” Microelectro-
nics Journal, Elsevier Science Ltd., Vol. 29, 
No. 11, Nov. 1998, pp.821-826. 

[12] Turbo Tester Reference Manual, Version 
02.10, Tallinn Technical University, Estonia, 
October 2002. Available at [13]. 

[13] Turbo Tester home page URL: 
http://www.pld.ttu.ee/tt 

[14] Laboratory training URL: 
http://www.pld.ttu.ee/diagnostika/labs

 
 

http://www.pld.ttu.ee/tt
http://www.pld.ttu.ee/diagnostika/labs

