

Turbo Tester - Diagnostic Package for Research and Training

M.Aarna1, E.Ivask1, A.Jutman1, E.Orasson1, J.Raik1, R.Ubar1, V.Vislogubov1, H.-D.Wuttke2

1Tallinn Technical University
Raja 15, 12618 Tallinn, Estonia

tt@pld.ttu.ee

2Technical University Ilmenau
Helmholtzplatz 1, 98693 Ilmenau, Germany

Dieter.Wuttke@tu-ilmenau.de

Abstract– This paper describes a diagnostic
software package called Turbo Tester. It contains a
variety of tools related to the area of testing and
diagnosis of integrated circuits. The range of tools
includes test generators, logic and fault simulators,
a test optimizer, a module for hazard analysis, built-
in self-test simulators, design verification and design
error diagnosis tools. The range of compatible
diagnostic tools forms, via their interaction and
complementary operation, a homogeneous research
environment, which provides good possibilities for
experimental research. Due to this fact, there are a
number of scientific papers became possible. These
papers have been presented at international
conferences and published in reviewed journals. We
give a couple of examples of such experiments in this
paper. We also describe some laboratory work
scenarios for students.

1. Introduction

The increasing complexity of VLSI circuits and

transition to Systems-on-Chip (SoC) or even
Networks-on-Chip (NoC) paradigm has made test
generation one of the most complicated and time-
consuming problems in the domain of digital design.
The more complex are getting electronics systems,
the more important become problems of test and
design for testability, as costs of verification and
testing are getting the major component of design
and manufacturing costs of a new product. This fact
makes the research in the area of testing and
diagnosis of integrated circuits (IC) a very important
topic for both the industry and the academy.

Commercial CAD systems for VLSI design and
test are both costly and do not provide a good
variety of competing or complementary approaches
to a given particular problem. They usually have a
stiff workflow of standard integrated tools bound
together and should be executed accordingly to a
certain scenario. It is good for a designer but not for
a researcher whose main goal is the search for new
efficient solutions.

During the last decade, many different low-cost
tools running on PCs have been developed to fill this
gap. They usually include the major basic tools
needed for IC design: schematics capture, layout

editors, simulators, and place and route tools.
However, low-cost systems for solving a large class
of tasks from the dependability and diagnostics area:
test synthesis and analysis, fault diagnosis,
testability analysis, built-in self-test (BIST),
especially for research and educational purposes, are
still missing. For this reason, a diagnostic software
Turbo Tester (TT) is being developed in Tallinn
Technical University.

In this paper we briefly describe the main
functionality of the Turbo Tester package and
suggest possible areas of experimental research
where TT can be used. Compared to previous paper
[6] the reader will find new aspects of application of
related tools as well as description of new
functionality added to the package since that time.

Another possible application field of the TT
package is the education. Entering the SoC era
means that the test must become now an integral part
of the VLSI and system design courses. The next
generation of engineers involved with System-on-
Chip (SoC) technology should be made aware of the
importance of test, and trained in test technology to
enable them to produce high quality and defect-free
products. Therefore, we have developed a set of
scenarios of laboratory works, which makes use of
different aspects of the TT package. In this paper we
give a short overview of these scenarios, while their
full version is available in the Web [14].

The TT software consists of the following test
related tools: test generation by different algorithms
(deterministic, random and genetic), test program
optimization, fault simulation for combinational and
sequential circuits, testability analysis and fault
diagnosis. TT can read the schematic entries of
various contemporary VLSI CAD tools, e.g.
Cadence, Synopsys, Mentor Graphics, Viewlogic,
Compass, OrCAD, etc. which makes TT
independent of the existing design environment.
There are Turbo Tester versions available for MS
Windows, Linux, and Solaris operating systems. The
software is free of charge and it can be downloaded
from the Web [13].

In the next section we give a short overview of
the whole TT package and its main tools. It is
followed by Section 3, which describes some
research experiments made with TT. The overview
of laboratory work scenarios is given in Section 4.
Section 5 is dedicated for conclusions.

mailto:tt@pld.ttu.ee
mailto:Dieter.Wuttke@tu-ilmenau.de

2. Overview of Turbo Tester Package

The main set of functional modules of the Turbo
Tester diagnostic software package includes test
generators, logic and fault simulators, a test
optimizer, a module for hazard analysis, linear
feedback shift register (LFSR) emulators for BIST,
design verification and design error diagnosis tools
(see Fig. 1).

The main advantage of the system lies in the
fact that different methods and algorithms for
various test problems are implemented and can be
investigated as separately of each other as working
together in different combinations. The latter
provides a variety of different approaches to solution
optimization for a particular problem.

Model Synthesis. The component library of
Turbo Tester consists of Binary Decision Diagram
(BDD) representations for the library components of
the circuits to be processed. The library is open and
can be updated for new components. The model
generator creates a BDD-representation of the
design from the netlist of the design, produced by
e.g. schematic editor. The special kind of BBDs is
used in Turbo Tester. They are called Structurally
Synthesized BDDs (SSBDD) and provide a uniform
approach to solving a wide scale of test design tasks,
based on a uniform model and a restricted set of
standard procedures. Unlike traditional BDDs,
SSBDDs support test synthesis for gate-level
structural faults. Moreover, the design can be
represented either at the gate-level or at the macro-
level. The latter one is a somewhat higher
representation level, where the basic elements are
macros consisting of several gates at once. On the
macro-level, a BDD is to be created for each macro,
where one-to-one correspondence between signal
paths in the macro and nodes in the BDD will be
established. For some tasks, such representation
gives faster runtimes at the same accuracy [8]. A
hierarchical DD model, which combines RT-level

DDs and binary DDs is also possible. This allows
migration of methods developed for logical level
also to higher (behavioral and register-transfer)
levels, where tools for hierarchical test generation
and simulation have already been implemented [3].

Test Generation. For automatic test pattern
generation (ATPG), random, deterministic and
genetic test pattern generators (TPG) are
implemented [4]. Mixed TPG strategies based on
different methods can also be investigated. Tests can
be generated for both, combinational and sequential
circuits. Stuck-at faults and transition faults can be
considered. The number of faults to be processed at
the macro level will be less than the number of faults
at the gate level (each macro-level fault represents,
in general, a subset of gate-level faults). This causes
the increase in productivity of test generation at the
macro level compared to that of the gate-level. The
best test generation efficiency for complex systems
can be achieved by using the hierarchical DD
representation [3].

Test Pattern Analysis. There are single-fault
simulation, parallel fault simulation, and critical path
tracing fault analysis methods implemented in the
system. These competing approaches can be
investigated and compared for circuits of different
complexities and structures. As the result of using
these tools, fault tables are calculated and test
quality is evaluated for given test sequences. In a
defect-oriented simulation mode the fault simulator
uses a special defect library [1]. The physical defect
model includes short (or bridging) faults and will be
soon extended by open faults.

Test Set Optimization. The tool minimizes the
number of test patterns in the test set by means of
static compaction. The technique implements
effective representation of fault matrices by
weighted bipartite graphs. The approach contains a
preprocessing step for determining the set of
essential vectors. Subsequently, implications and a
greedy search algorithm are applied. The proposed

Design Error
Diagnosis

Test
Generation

BIST
Emulation

Design Test
Set

Levels:
Gate
Macro
RTL

Fault
Table

Test Set
Optimization

Methods:
BILBO
CSTP
Hybrid

Fault
Simulation

Faulty
Area

Circuits:
Combinational
Sequential

Logic
Simulation

Formats:
EDIF
AGM

Defect
Library

Hazard
Analysis

Data

Specifi-
cation

Algorithms:
Deterministic
Random
Genetic

Multivalued
Simulation

Fault models:
Stuck-at faults
Physical defects

Fig. 1 Overview of Turbo Tester environment

method offers significantly fast performance in
terms of run times [10].

Multi-valued Simulation. In Turbo Tester,
multi-valued simulation is applied to model the
possible hazards that can occur in logic circuits. The
dynamic behavior of a logic network during one
single transition period can be describes by a
representative waveform on the output or simply by
a corresponding logic value. In other words, each
waveform type has a corresponding symbol of some
given alphabet. Turbo Tester’s multi-valued
simulator implements 5-valued and 8-valued
alphabets [11].

Design Error Diagnosis. After a digital system
has been designed according to specifications, it
might go through a refinement process in order to be
consistent with certain design requirements (e.g.
timing specifications). The changes introduced by
this process (by a human or a CAD system) may
lead to undesired functional inconsistencies
compared to the original design. Such design errors
should be identified via design verification. A design
error diagnosis technique should be applied
afterwards in order to locate and correct the error. In
Turbo Tester we use the same SSBDD model for
both the specification (the design before
modifications) and the design to be corrected. An
advantage of our particular approach is the fact that
it does not need a special diagnostic test to be
created. It uses a normal test set instead [9].

Testability Analysis. The real cost of a digital
product is expressed as: Cost(Design + Test) <
Cost(Design) + Cost(Test). It follows from the fact,
that the total product cost can be minimized by
regarding the design and test of a product as one
integral activity rather than the two disjoint
unrelated activities. The latter approach is called
design for testability (DFT). Among the most
promising DFT methods are those aimed at

enhancing the testability through adding redundant
hardware elements or test-points (additional outputs
for observing; inputs for controlling; additional flip-
flops in scan-path etc.) to the circuit. The testability
analysis tools of the system can be used for
enumerating untestable faults, for selecting
statistically hard-to-test faults, and for estimating the
controllability, observability and testability
characteristics for the nodes of the design. The tools
are used for finding out where to alter the design to
improve the testability.

Evaluation of Built-In Self Test (BIST)
Quality. The BIST approach is represented by
applications for Built-In Logic Block Observer
(BILBO) and Circular Self-Test Path (CSTP)
emulation. Different BIST architectures can be
simulated and the self-test quality of these
architectures can be evaluated. There is a tool, which
utilizes a genetic search algorithm for automatically
finding good BIST architectures. It is possible to use
also the general "store-and-generate" approach,
where the whole test sequence will be generated on
the basis of a given set of test vectors (i.e. the stored
part of the test). All these vectors serve as initial
input test patterns for on-line test generation by
BILBO or CSTP (i.e. the generated part of the test).
A Hybrid BIST technique represents an opposite
approach, which also partially utilizes deterministic
patterns but in the very end of the sequence. This
makes it possible to achieve higher fault coverage by
shorter test sequence [7]. In Section 3 we discuss the
Hybrid BIST framework in more detail.

Design Interface. Turbo Tester has a powerful
design interface from EDIF 2.0.0 netlist format,
which supports both, combinational and sequential
designs. In this way, TT can read the schematic
entries of various contemporary VLSI CAD tools,
e.g. Cadence, Synopsys, Mentor Graphics,

Fig. 2 Graphical user interface

Viewlogic, Compass, OrCAD etc., which makes the
system open to different design environments.

Graphical User Interface. Turbo Tester
Graphical User Interface (GUI) is under
development. The current working version is shown
in Figure 2. It is available for MS Windows OS
only. Similarly to most of the contemporary CAD
systems, TT has a dedicated shell window with a
command prompt. The Turbo Tester tools can be
executed as from this command prompt as by
selecting corresponding entries from corresponding
menus. The process output is displayed on the shell
window. There is a handy visualization utility called
Waveform Viewer (see Fig. 3), which illustrates
properties of test sequences obtained with different
test pattern generators.

Fig.3 An example of test data representation in TT

WEB Interface. An Internet version of the

Turbo Tester system (Web-TT) is available now as
well. This new Web-based interface has the same
functionality as the standalone TT. Users work with
Web-TT by using simple HTML web pages via
HTTP Internet protocol and process their data and
results even without installing this system on their
local PC. The user’s OS and system requirements
are not critical because TT performs all tasks on the
remote server machine. Basically, an Internet
connection and some Web browser (such as
Netscape or MS Internet Explorer) at user’s disposal
are enough for the using of this system. An entry
point of the Web-TT is a Welcome page (Fig. 4).
This page contains login form, system overview and
site navigation help. The module selection page
contains a list of all available TT modules. User
should select one of them and step through a set of
initial parameters for the module. Every module has
its own number and types of initial parameters that
user has to set. Then the task will be submitted to the
system for the execution. For the monitoring and
administrating of user tasks there is a status page.
User has an opportunity to observe the state of all
his tasks there. After the task is performed user can
download its results at any time from the status
page. Web-based TT system provides an attractive
alternative to the standalone version that offers
separation of user interface from the low-level logic,
easy of administrate and support, extensibility, and

most importantly easy of use. Moreover, users will
always work with the latest version of TT and does
not need to download or install the system locally.

Fig. 4 Welcome page fragment of TT Web interface

System Portability. At present, Turbo Tester

can be installed under MS Windows, Linux, and
Solaris 2.x operating systems.

User Documentation. Turbo Tester installation
includes a comprehensive reference manual [12],
where all the functions of the system are explained.
The manual is constantly updated together with the
Turbo Tester package. It is designed in a style that is
common to most of the CAD system
documentations. The document complies partly with
IEEE standard Std 1063-1987 for software user
documentation. The manual is available at [13].

3. Research Experiments with TT

There is a number of scientific papers describing
research carried out using Turbo Tester that have
been published in international conferences as well
as reviewed journals [1,3,4,5,7,8,9,10,11]. In this
section, we give a couple of examples of possible
research experiments with Turbo Tester.

Since test generation is one of the most
important steps in the whole diagnostic framework,
let us consider properties of the three described
above combinational ATPGs available in TT
package. Table 1 provides information about test
quality and test generation time for ISCAS’85
benchmark circuits [2]. The test quality is
represented by fault coverage (FC) and test length
(TL). It should be mentioned that FC was measured
on SSBDD model, where a compacted fault list is
used [8]. Therefore, the percentage shows the ratio
between detected representative faults and whole
compacted fault set. The test time was measured on
a PC with 800 MHz Pentium III processor, 256 MB
RAM under MS Windows OS.

The deterministic ATPG was run in two modes:
adjusted for a fast run and for a high FC. These
modes are denoted in Table 1 by (1) and (2)

BILBO
Deterministic
Genetic
Random

Number of Test Vectors

Progressive Coverage of Test Patterns

Fa
ul

t C
ov

er
ag

e
(%

)

respectively. The simulation-based ATPGs (genetic
and random) were adjusted to approximate the
highest possible fault coverage with minimum
amount of necessary test vectors. In most cases the
genetic framework based ATPG was performing
best by providing shortest test at the same or higher
fault coverage. The best test generation time,
however, was the one by the deterministic ATPG. In
most cases it is several orders of magnitude shorter
than that of other ATPGs. The reason, why the test
length by that ATPG is not that good, lies in the fact
that it is impossible to adjust it for test set
minimization. Test compaction should be used after
deterministic ATPG for that purposes.

 ATPG Time, s FC, % TL
Deterministic (1)
Deterministic (2)

0,03
180,37

86,20
93,02

72
84 c432 Genetic

Random
5,37
6,28

93,02
93,02

34
35

Deterministic (1)
Deterministic (2)

0,07
0,07

96,01
99,33

112
132 c499 Genetic

Random
0,37
0,60

99,33
99,33

84
84

Deterministic (1)
Deterministic (2)

0,02
0,02

99,29
100

63
77 c880 Genetic

Random
13,17
26,16

100
100

33
34

Deterministic (1)
Deterministic (2)

0,10
0,10

93,20
99,51

93
124 c1355 Genetic

Random
0,56
0,65

99,51
99,51

84
84

Deterministic (1)
Deterministic (2)

0,08
0,08

95,38
99,48

108
140 c1908 Genetic

Random
20,43
16,23

99,48
99,48

106
108

Deterministic (1)
Deterministic (2)

0,12
0,21

93,60
95,51

134
155 c2670 Genetic

Random
42,22

373,73
95,39
95,39

95
104

Deterministic (1)
Deterministic (2)

0,17
772,85

91,32
95,51

155
212 c3540 Genetic

Random
125,99
140,02

95,54
95,54

108
113

Deterministic (1)
Deterministic (2)

0,26
9,87

92,83
98,89

103
171 c5315 Genetic

Random
140,91
200,60

98,89
98,89

73
79

Deterministic (1)
Deterministic (2)

0,17
0,17

99,23
99,34

43
45 c6288 Genetic

Random
36,70

179,79
99,34
99,34

16
16

Deterministic (1)
Deterministic (2)

0,65
837,31

92,76
97,75

168
279 c7252 Genetic

Random
262,07
581,74

96,66
96,48

147
183

Table 1 Experimental results by different ATPGs

Another good example of a research topic to be

investigated using the Turbo Tester is the solution
optimization in the Hybrid BIST framework. This
approach makes use of cheap pseudorandom vectors
at the first step when the fault coverage grows very
fast and does not virtually depend on certain vectors.
These vectors are generated on-line by an LFSR. At
the second step, it applies a very limited amount of
deterministic vectors that cover remaining hard-to-

test faults. Such vectors are generated in advance
and stored in memory.

There are several related issues which still have
not found efficient solutions in the research and
industrial community. One of such issues is the
problem of finding the proper breakpoint between
the first and the second parts of the test. This
problem was illustrated in [7] and one of solutions
was proposed there as well. The Turbo Tester’s
BIST emulator and the deterministic ATPG were
used for this purpose. Figure 5 shows a graphical
solution for this problem as the trade-off between
the memory cost and testing time. Let have the
whole cost of the BIST to be defined as

CTOTAL = CTIME + CHW = αTG + βMS
where CTIME is the cost related to the time needed for
test, CHW is the hardware cost related to the BIST
architecture, TG is the length of the test generated by
LFSR, MS is the number of patterns to be stored, and
α,β are constants to scale the test length and
memory space. It would be very time consuming to
find experimentally all the curves shown in Figure 5,
except the generated test length TG. The practical
way is in trying to find the curve for MS with as least
as possible number of experiments, and to try to
predict the curve on the basis of experimental data,
and to approach then step by step to the real
optimum by choosing as few as possible additional
experiments. It is possible to solve such a task by
Turbo Tester via writing a simple script, which has
to analyze the results and to perform required steps.

Fig. 5 Optimization of hybrid BIST

4. Laboratory Work Scenarios

The main aim of developed laboratory works

scenarios is to teach and train students to integrate
design and test, to give them knowledge on how to
create testable designs or designs with self-testing
capabilities, and how to obtain test patterns of better
quality. The following laboratory works were

Fault Cover %

C real_min
C est imated _m in

Predicted cost
Real cost

C TOTAL (Total cost of BIST)

Stored
test

length
M S

Generated
test

length
T G

100%

developed to train the engineering skills in the field
of test:
§ Test generation
§ Design for testability
§ Built-in self-test
§ Design error diagnosis.

Test generation. The goal is to get acquainted
with the problem and CAD tools of creating test
patterns for digital circuits. At first, tests for the
given circuit are generated manually. The fault
simulation tool evaluates the quality of the manual
tests. Then three different test-generating tools
(based on deterministic, random and genetic
algorithms) are used and compared with each other.

Design for testability. The goal is to show how
the management of controllability and observability
of test points in the circuit can improve the quality
of testing. At first, a testability analysis is carried out
for the given circuit by using test generation and
fault simulation tools. Then, based on the testability
information achieved, the circuit should be
redesigned with the goal to get a test with a good
quality i.e. with good fault coverage. Tradeoff
problems between the redesign cost and test quality
are investigated.

Built-in self-test. BIST is the capability of a
circuit to test itself. Students concentrate themselves
in an off-line BIST consisting of a test pattern
generator (TPG), unit under test (UUT) and a
response analyzer (RA).

TPG and RA usually are based on a LFSR.
There are several disadvantages of such a structure:
the tests generated usually are long, and they do not
guarantee sufficient fault coverage. To overcome
these drawbacks, a Hybrid BIST approach may be
used. In this approach, a test engineer should solve
the following problems:
§ to find the best LSFR configuration for on-line

test generation to achieve the highest fault
coverage at the minimum length of pseudo-
random test sequence;

§ to find the best LFSR for response analysis to
guarantee the minimum loss of accuracy in
fault detection;

§ to find the best level of mixing pseudo-random
and stored tests as tradeoff between memory
cost and testing time.

The task of the laboratory research for students
is to find solutions for these problems. The students
are not asked to carry out boring measurements, to
simply press buttons for starting a program and
getting results which are nothing but a simple
confirmation of what they already know from
lectures. Instead, they are asked to solve a series of
engineering problems. They have a set of tools at
their disposal and they have to plan and carry out
experiments by themselves to find answers for the
given questions.

Design error diagnosis. The goal is to learn
how to compose diagnostic tests and to localize

faults in a given circuit. Iterative using CAD tools,
theoretical reasoning and manual work for
generating additional “better” tests, students will get
experience in solving extremely demanding
engineering challenges.

The laboratory works have received good
credits from students of Tallinn Technical
University (Estonia), Darmstadt University of
Technology (Germany), and Jonköping University
(Sweden). It is under consideration to utilize TT for
teaching Design for Testability in other universities
of Eastern and Western Europe.

5. Conclusions

In this paper we have described a diagnostic

software package called Turbo Tester, which has
been developed in Tallinn Technical University. The
package contains a variety of tools related to testing
and diagnosis of VLSI circuits. The range of tools
includes test generators, logic and fault simulators, a
test optimizer, a module for hazard analysis, LFSR
emulators for BIST, design verification and design
error diagnosis tools.

The described extensive range of compatible
diagnostic tools forms a homogeneous research
environment via their interaction and
complementary operation. Such a principle allows
for interesting experimental research to be
conducted. There are a number of scientific papers
describing research carried out using the Turbo
Tester environment. These papers have been
presented at international conferences and published
in reviewed journals.

Since the TT package provides a good
environment for interesting laboratory work
scenarios for students, we have developed such
scenarios and we also described them briefly in
current paper.

There are Turbo Tester versions available for
MS Windows, Linux, and Solaris operating systems.
The software can be downloaded from [13] free of
charge.

Acknowledgements

This work was supported partly by the

Thuringian Ministry of Science, Research and Art
(Germany), by the EU Framework V project
REASON, and by the Estonian Science Foundation
Grant No 5649.

References

[1] M. Blyzniuk, FT. Cibakova, E. Gramatova, W.

Kuzmicz, M. Lobur, W. Pleskacz, J. Raik, R.
Ubar. “Hierarchical Defect-Oriented Fault
Simulation for Digital Circuits,” IEEE

European Test Workshop, Cascais, Portugal,
Mai 23-26, 2000, pp.151-156.

[2] F. Brglez, H. Fujiwara, “A neutral netlist of 10
combinatori-al benchmark circuits and a target
translator in FORTRAN,” ISCAS, Special
Session on ATPG and Fault Simulation , 1985.

[3] M. Brik, G. Jervan, A. Markus, J. Raik, R.
Ubar, "Hierarchical Test Generation for Digital
Systems", Mixed Design of Integrated Circuits,
pp. 131-136, Kluwer Academic Publishers,
1998.

[4] E. Ivask, J. Raik, R. Ubar. ”Comparison of
Genetic and Random Techniques for Test
Pattern Generation,” Proc. of the 6th Baltic
Electronics Conference, Oct. 7-9, 1998,
Tallinn, pp. 163-166.

[5] E. Ivask, J. Raik, R. Ubar. ”Fault Oriented Test
Pattern Generation for Sequential Circuits
Using Genetic Algorithms,” IEEE European
Test Workshop, Cascais, Portugal, Mai 23-26,
2000, pp. 319-320.

[6] G. Jervan, A. Markus, P. Paomets, J. Raik, R.
Ubar. “Turbo Tester: A CAD System for
Teaching Digital Test,” in "Microelectronics
Education". Kluwer Academic Publishers,
pp.287-290, 1998.

[7] G. Jervan, Z. Peng, R. Ubar. ”Test Cost
Minimization for Hybrid BIST,” IEEE Int.
Symp. on Defect and Fault Tolerance in VLSI

Systems. Tokio, October 25-28, 2000, pp.283-
291.

[8] A. Jutman, J. Raik, R. Ubar, "SSBDDs:
Advantageous Model and Efficient Algorithms
for Digital Circuit Modeling, Simulation &
Test," in Proc. of 5th International Workshop
on Boolean Problems (IWSBP'02), Freiberg,
Germany, Sept. 19-20, 2002, pp. 157-166.

[9] A. Jutman, R. Ubar, "Design Error Diagnosis
in Digital Circuits with Stuck-at Fault Model,"
Journal of Microelectronics Reliability.
Pergamon Press, Vol. 40, No 2, 2000, pp.307-
320.

[10] A. Markus, J. Raik, R. Ubar. ”Fast and
Efficient Static Compaction of Test Sequences
Using Bipartite Graph Representation,” Proc.
of the Second Electronic Circuits and Systems
Conference ECS'99, pp. 17-20, Bratislava,
Slovakia, Sept. 6-8, 1999.

[11] R. Ubar. “Dynamic Analysis of Digital Circuits
with Multi-Valued Simulation,” Microelectro-
nics Journal, Elsevier Science Ltd., Vol. 29,
No. 11, Nov. 1998, pp.821-826.

[12] Turbo Tester Reference Manual, Version
02.10, Tallinn Technical University, Estonia,
October 2002. Available at [13].

[13] Turbo Tester home page URL:
http://www.pld.ttu.ee/tt

[14] Laboratory training URL:
http://www.pld.ttu.ee/diagnostika/labs

http://www.pld.ttu.ee/tt
http://www.pld.ttu.ee/diagnostika/labs

