Toward Quality EDA Tools and Tool Flows
Through High-Performance Computing

Aaron Ng and Igor L. Markov
Department of EECS
The University of Michigan
{aaronnn, imarkov } @eecs.umich.edu

Abstract

As the scale and complexity of VLSI circuits increase, Elec-
tronic Design Automation (EDA) tools become much more sophis-
ticated and are held to increasing standards of quality. New-
generation EDA tools must work correctly on a wider range of
inputs, have more internal states, take more effort to develop, and
offer fertile ground for programming mistakes. Ensuring quality
of a commercial tool in realistic design flows requires rigorous
simulation, non-trivial computational resources, accurate report-
ing of results and insightful analysis. However, time-to-market
pressures encourage EDA engineers and chip designers to look
elsewhere. Thus, the recent availability of cheap Linux clusters
and grids shifts the bottleneck from hardware to logistical tasks,
i.e., the speedy collection, reporting and analysis of empirical re-
sults. To be practically feasible, such tasks must be automated;
they leverage high-performance computing to improve EDA tools.

In this work we outline a possible infrastructure solution,
called bX, explore relevant use models and describe our compu-
tational experience. In a specific application, we use bX to auto-
matically build Pareto curves required for accurate performance
analysis of randomized algorithms.

1 Introduction

As the software industry matures and commercial tools be-
come more sophisticated, the importance of quality control grows.
EDA software is especially difficult to test, thanks to long run-
times and the fact that solutions to hard combinatorial and numer-
ical problems cannot always be verified immediately. The value of
quality control is underlined by economical considerations. EDA
tools are much more expensive than office applications, and since
they sell considerably fewer licenses, it is more critical to satisfy
first adopters rather than rely on their bug reports. Commercial
EDA tools are also distinguished by frequent updates and rela-
tively short average lifespans — while spreadsheet formats and
email protocols remain unchanged for many years, the rapid ad-
vance of semiconductor technologies requires new design opti-
mizations. This never-ending demand for new EDA tools makes
quality control more challenging because rigorous simulation must
be completed and result analyzed under time pressure. A case in
point, empirical data reported in recent academic work on place-
and-route [19] required several CPU-months and was produced on
a custom-designed grid-like computational facility PUNCH (Pur-
due Computational Hub). This motivates a closer look at EDA

benchmarking [1], with an eye on new types of automation and
increased productivity.

Unlike office applications, EDA tools are typically used in de-
sign flows assembled by users. Such flows include dozens of ap-
plications, often from different vendors, and the quality of end
result is largely a function of how the tools interoperate. While
each EDA tool addresses a certain niche, such tools are rarely
valuable in isolation. Therefore the number of configurations in
testing and benchmarking can be very large, suggesting the use of
massively-distributed computing systems. Cost considerations for
high-performance computing suggest two types of distributed sys-
tems — clusters and grid-computing networks. A number of high-
performance clusters have been built in the industry and academia
[16, 31] using commodity components, often at a very low cost.
Incidentally, seven of the world’s top-10 supercomputers of 2003
[30] are clusters [21]. Many hardware and EDA vendors already
own high-performance clusters which run EDA tools — either in
production use or for regression-testing. The recent availability
and popularity of cheap 32-bit and 64-bit Linux clusters under-
lines the need for logistical support, i.e., automatically handling
heterogeneous EDA tools, design flows, input and output files, per-
formance data and user-friendly reporting.

Among other tasks, simulation and formal verification are par-
ticularly time-consuming. However, regression-testing is demand-
ing for practically every tool — nightly builds and regression runs
are common both for hardware designs and EDA tools. Such
runs can automatically catch designer and programmer oversights,
and ensure easy diagnostics because relatively few changes can
happen in one day. However, such checks are often performed
with simple-minded scripts and do not identify subtle performance
degradation. For example, several postings at the ESNUG mailing
list maintained by John Cooley observe poorer results with Syn-
opsys DC/PhysOpt versions 2003.03-1 and 2003.06-1 compared
to the version 2003.05-SP2. The newer versions create layouts
with 5-10% larger path delay.! Given the complexity of even basic
algorithms and data structures, EDA tools may contain conceptual
flaws in addition to coding mistakes. Identifying such flaws and
rectifying them requires considerable effort in empirical evalua-
tion and benchmarking. To this end, a study on placement bench-
marking [1] points out the risks of using a small base of bench-
marks — many existing placement tools have clearly been tuned to
certain benchmark sets and perform poorly on other benchmarks.
To be aware of such problems one must use a larger, more diverse
set of benchmarks, in conjunction with automatic means to intelli-
gently summarize simulation results in succinct reports. Not only

'See http://www.deepchip.com/items/0416-08.html
and http://www.deepchip.com/items/0417-01.html
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EDA vendors, but also large EDA customers regularly evaluate
software because committing to an overly specialized, unreliable
tool may threaten time-to-market and jeopardize design projects.

The evaluation of EDA tools typically consists of a large num-
ber of relatively independent jobs, perhaps with some dependence
constraints [1]. Many of these jobs apply the same tool to the
same design problems in different configurations to observe the
difference in results, and thus can run in parallel. Often it is con-
venient to view a chain of several tools as a single tool, e.g., to
determine robust configurations that produce good results or fit
into prescribed constraints on runtime, memory usage, number of
licenses and technology requirements. Explicitly supporting ab-
stractions of this kind is one of the challenges addressed in our
work. Other challenges are in the logistics of scheduling, dis-
tributing and launching thousands of jobs, collecting results and
evaluating them with minimal manpower. Benefits to hardware
engineers include robust and scalable design flows, as well as au-
tomatic monitoring of those flows to detect early signs of trou-
ble. Business success of start-ups working in this field, such as
Reshape, suggests the value of relevant logistical frameworks to
hardware design.

In this paper we propose a logistical framework that greatly au-
tomates the evaluation of EDA tools and tool flows, starting with
Web-based upload of source code or executables, enabling auto-
matic pairing of tools and benchmarks, facilitating automatic pro-
duction of Pareto curves (for randomized optimization algorithms)
or various tabular reports, and allowing the user to mix and match
tool flows that can be subsequently scheduled for empirical evalua-
tion. Such logistical support allows to leverage high-performance
computing technologies for quality control and improvement of
EDA tools.

The remainder of the paper is structured as follows. In Section
2 we cover related work and outline several desired functionalities.
In Section 3 we describe the features and use models of our imple-
mented system. In Section 4 we discuss implementation details of
our system. Section 5 summarizes our computational experience.
Our conclusions and ongoing work are described in Section 6.

2 Background

Our work builds upon an earlier GSRC Bookshelf project [6]
that contributed an extensive online collection of free VLSI de-
sign tools, as well as benchmarks and methodologies for evaluat-
ing them. Thus, our major goal is to make the GSRC Bookshelf
executable, adding support for composing, running and evaluating
tool flows. The proposed system is called Bookshelf. EXE, or bX.

Related work includes Flowtracer [13], WELD [10], Omni-
Flow [4], Odyssey [5], Nelsis [22], ASTAI(R) [3], JavaCAD [11]
and MOSCITO [26]. These contribute a number of useful con-
cepts that we use in this work, such as distributed and collabora-
tive computing, various degrees of automated flow management,
high-level operations with flows (composition, repetition, evalua-
tion, etc), and user-friendly UI There are the load share facilities
for grids such as PBS and Sun’s Grid Engine, which inspire the
leveraging of load sharing across heterogeneous hosts. bX aims to
bridge the gap between the basic provisions of a load share facil-
ity and the users, adding value to a load sharing facility to make
it more useful and convenient for EDA tool evaluation. There are
also the more widely known distributed computing efforts such as
SETI@home. These are different from bX because their servers
and computational clients are hardcoded to deal with very specific
problems. bX, on the other hand, proposes to address a broader do-
main, which is to be able execute untrusted user-submitted code,

safely and securely, on a distributed network. Also, one of the ap-
plications of bX is to evaluate EDA tools, and as such, execution-
time resource usage and solution quality across various hardware
must be accounted for in a consistent manner. bX is similar to
RTDA'’s Flowtracer with a few of the exceptions being that bX
does not perform runtime tracing [20], and we explore, to a greater
depth, various use models made possible by a flow management
and distributed computing infrastructure.

User interface in bX emphasizes simplicity and genericity —
tool developers do not need to modify their tools to work within
the bX framework (as long as the tools can run in batch mode).
It uses typical Web interfaces available through any browser and
does not require users to install new software. Installing bX clients
(for those who wish to contribute CPU time to bX) is also fairly
easy and does not require creating special UNIX accounts or re-
compiling system kernel. bX is also low-maintenance from the
administrator’s perspective as it is automated and self-contained,
in a sense that users are free to perform actions such as upload
tools and benchmarks and execute jobs without any administrative
intervention, as long as the actions are within pre-defined policies.

With the advent of distributed computing, the adoption of more
rigorous practices in benchmarking [1] demands additional flow
automation for verifying correctness, averaging, evaluating com-
binations of flows, finding most difficult benchmarks, etc. A rela-
tively new challenge is the organization of program competitions
and comparisons, both in the simulation and scheduling back-end
and at the front-end UL To further support collaboration, (i) the
results of experiments should be automatically available in di-
gest form, emphasizing the main trends, and (ii) computational
experiments themselves should be easily reproducible by other re-
searchers. A large number of tools, benchmarks and flows should
be available, compatible and easy to manipulate using a common
interface, including job scheduling and contributing new items.
We also observe that some previously proposed distributed sys-
tems do not offer the ability of distributed execution. Distributed
execution unfortunately brings up a host of security-related issues.

3 Features and Use Models

bX automates and simplifies large-scale experimentation. The
user starts by uploading tools and benchmarks, or by selecting
tools and benchmarks made available by other users. The user
may then compose tool flows (with various dependencies) and run
them on selected benchmarks. The user can monitor the status and
progress of all jobs using web-based UI. After the jobs complete,
all results are available through the same interface. Important data
can be extracted from raw output files and tabulated using presen-
tation tools offered by bX.

Flows and scripts. In general, scripts describe the EDA tools
involved in a flow, and inter-tool dependencies that imply the order
of tool invocations. The interface to compose flows is web-based
and tries to accommodate users with various levels of commitment
and expertise: novices may use check-buttons and script wizards
to compose existing tools, and experts may edit and customize bX-
generated scripts to suit their needs. For example, one can set up
bX to find a combination of program execution flags that produce
best results for a given input. This can be accomplished by a bX
script that schedules iterative job runs with varying execution pa-
rameters, and bX will automatically schedule and execute the jobs
over all designated computational hosts and manage their results.
bX scripts are constructed using bX’s Script Composer, described
in Section 4.
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4@ bX: main

Logged in as admin

Info/Help | Accounts Jobs Results

start/stop jobs | check status

User ID: FZYDE752-4
Email: bx@umich.edu
View Dock

Global view fitters (1 active)

Jobs (3190): (3 jobs, 2 flows) running. 3 queued, 3181 stopped

3190) [+ GCEY8874-3, solver: Place2EvallPG, bench: Placer2EvallPG_FS
state: QUEUED

GCEYB8931-5, solver: RBPlaceTesid

. . state: QUEUED

.. GCEY8931-2, salver: WLCalc-Linux

.. State: QUEUED

3189)

3188)

3187) .. ....GCEY8925-5, solver. RBP\aEeTeg host: molniya_eecs.umich edu
...... state: RUNNING
3186) GCEY8925-2, solver: WLCalc-Linux, host: buran_eecs.umich edu
state: RUNNING
g5y e GCEYS895-1, solver: dragon-linux3.01, benci: ﬂstac\ej}:&\:&:&\:
_......slate: STOPPED, runtime: 0.00 s [view runs]
3184 .. GCEY8894-1, solver: dragon-linux3.01, bench: Kites_3x35, host: mc
__.....state: STOPPED, runtime: 0.21 s [view runs]
M3y e GCEY8893-1, solver: dragon-inux3.01, bench: Cross_6x9x2:3x2x2
,,,,,, state: STOPPED, runtime: 0.26 s [view runs]
3182) [-] GCEY8874-3, solver: Place2EvallPG, bench. Placer2EvallPG_Dragon, hos
state: RUNNING
3171) 4] GCEY8874-1, solver: Place2EvallPG, bench: Placer2EvallPG_Capo, host:

state: RUNNING

Figure 1. Real-time monitoring from bX’s web
Ul — (1) Queued flow. (2) Queued jobs. (3) Running jobs.
(4) Completed jobs with links to results. (5) Running flow
with expanded view. (6) Running flow with collapsed view.

Reporting and transparency. bX automatically collects job
information such as runtime, memory usage, the job process’ exit
status, all output files generated by the job, as well as the con-
sole and error output streams (called stdout and stderr on
POSIX-compliant operating systems). The user may monitor the
status, health and progress of flows and jobs in the flow in real-
time. Figure 1 is a screenshot of the web UL bX automatically
stores and organizes the large amounts of flow information, mak-
ing them available later for download or evaluation in bX.

Extracting results from output files for automatic table gen-
eration. After jobs complete, users typically end up with multiple
output files per job, along with the jobs’ execution traces contain-
ing data such as runtime and memory. We find that users routinely
extract data from these output files, and later organize them in a
manner suitable for comparison, either visually or with the help
of additional software. However, since users typically have results
from hundreds or thousands of jobs, users would be burdened with
the additional task of creating and maintaining scripts to perform
these tasks. bX simplifies this process for the user, with automati-
cally generated tables. The user may specify the rows and columns
of a table and bX will automatically tabulate all matching jobs.
The user may then select items to be inserted into the table. Items
can be values from job information (such as runtime), values from
job output files (such as placement wirelength), or links to output
files. The tables are downloadable in a variety of formats. Figure
2 shows a screenshot of a customized table generated in bX, from
the results of a completed flow.

Pareto curves and automatic regression testing. When an
EDA tool evolves from one version to the next, developers and
testers need to compare the quality of result to that of previous
versions. However, final results can often be improved just by in-
creasing runtime, e.g., considering more possibilities. Given that
increased runtime is undesirable, it is important to reason about
trade-offs. Empirically, one can plot quality of results versus run-
time — such plots are often called Pareto curves. They are par-
ticularly appropriate to evaluate randomized algorithms which can

£ bX:main Info/Help Jobs Results Logout

Logged in as admin combination summary

benchmark \ solver | Capo8.7.5 dragon-linux3.01 | fengshui2.1
A
GCEY9813-1 GCEY8874-3 I ~y GCEZ0420-1
HPWL: 55 HPWL: 55 2 HPWL 55
Cross. Sxh2x3xda Runtime: 0.11s | Runtime: 0.2653 Runtime: 0.11s
[placement] [p\acement]A [placement]
L8
GCEY98131 GCEY8874-3 GCEZ0420-1
’ HPWL: 40 HPWL: 40 HPWL- 40
Kites, 35 Runtime: 0.13s | Runtime: 0.21s Runtime: 0.27s
[placement] [placement] [placement]
benchmark / solver | Capo8.7.5 dragon-linux3.01 | fengshui2.1

Requested Items:
Evaluator *stdout. Center-to-center HalfPerim WL (%) @

runtime

Plotter. [placement] @

Download fable as LaTeX: LaTeX

Download iable as "semicolon-separaied-values” (MS Excel)y ssv 5
Download table as "tab-separated-values" (gnuplot): tsv

Download fable as HTML tar gz far gz

Figure 2. Automatic table generation — (/) Link
to job details. (2) Half-perimeter wirelength, extracted from
the stdout of the flow’s Evaluator job. (3) Job runtime,
from the job’s execution trace. (4) Link to the placement
plot image, taken from the flow’s Plotter job. (5) The table
is downloadable in various formats.

produce different outputs if launched many times on the same in-
put data. The performance of a single run is statistically described
by average quality of result and average runtime. However, one
can also perform two runs and take the better result. Plotting av-
erage best-of-two versus double the average runtime will generate
another point on the Pareto curve. Similarly, average-best-of-N
quality can be plotted against runtime of N starts. In practice,
such data can be collected by clever over-sampling which is much
faster than producing all datapoints independently by direct av-
eraging. Either way, this process entails many iterations of dis-
patching tool runs, collecting and processing raw results, gener-
ating Pareto points, checking convergence criteria (enough sam-
ples for a reliable result) and checking the curves for leveling off,
i.e., when additional runtime does not significantly improve the re-
sult anymore. This requires a tedious effort involving hundreds of
jobs for every tool-benchmark pair evaluated; each job taking at
least as long as the tool requires to process the benchmark? Be-
cause of the logistical complications just described, Pareto curves
are practically unavailable unless they can be built automatically.
To this end, bX supports automatic construction of Pareto curves,
and we report on this feature below in Section 5. Observe that
all the job runs that make up the sampling pool for Pareto points
are independent of each other, exhibiting parallelism that is easy
to exploit in a distributed system. In addition to Pareto curves,
bX users may construct regression test suites in bX by selecting
built-in test primitives such as basic less-than/greater-than com-
parison, average percent difference, and comparing outputs with
expected outputs. The user may also upload custom tests to be
used in regression test suites. The test suites can then be launched
at every tool update and left to run unattended; and the results col-
lected later to identify regressions or failures. Features such as
automatic Pareto curve generation minimize user interaction and
increase throughput of jobs in regression testing through automa-
tion and distributed execution.

2For example, a VLSI placer may take 30 minutes to run on a circuit with 200,000
standard cells and several hours on a circuit with 1M standard cells.
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4 Implementation

bX, at its core, is a system that executes and manages jobs on a
distributed network.

Infrastructure. Technologies used in bX are selected based on
their relevance and the existence of foundations for easily building
security upon. C is used for the back-end hosts. XML-RPC is the
language between distributed bX entities. XML-RPC is a speci-
fication and a set of implementations that allow software running
on disparate operating systems, running in different environments
to make procedure calls over the Internet. XML-RPC was selected
over technologies like CORBA and SOAP because it is simple and
suits our needs. XML-RPC uses XML for encoding, and HTTP for
transport. One of the benefits of this is that securing transmissions
is as easy as switching to use HTTPS instead of HTTP. NFS is used
to solve the problem of sharing files across nodes on a geograph-
ically distributed network. NFS was selected because after setup,
NFS allows remote file accesses to work transparently, similar to
local file accesses. NFS is also actively developed, with a focus on
security. An HTTP server acts as a portal between the user and bX.
PERL scripts on the HTTP server allow the user to interact with
bX through dynamic web interfaces. Roughly a third of bX’s over
30,000 lines of new code is for the web front-end, which drives
the Ul The remainder of the code is for the back-end. The bX
back-end currently only runs on Linux because of the dependency
on the /proc file system for capturing execution-time job infor-
mation. In the future, more UNIX-based operating systems may
be supported.

Managing failures. A distributed computing environment is
prone to failures. bX’s fault tolerance is made up by the fault tol-
erance of its sub-components. For example, by using NFS and
HTTP at the application layer, we do not have to worry about the
reliability of the transport layer, such as the correct transmission
of data packets. By propagating the benefits of the solutions of re-
liable sub-components up to the top level, the problem can be sim-
plified to failures such as power loss or network disconnections.
Catastrophic failures such as hardware failures can be solved by
redundancy, but this is a significant topic on its own. At the ap-
plication layer, good database accounting is used to ensure that
bX always transitions from state to state cleanly, is never in an
intermediate state, and is always able to recover to a stable state
after a failure. The underlying levels are abstracted away from the
user level, which sees computational resources as either available
to run the user’s queued jobs or not, and errors are usually more
high-level, such as access permissions on a particular tool.

Security considerations. From a high-level perspective, a ro-
bust implementation of user policies and access control is nec-
essary for security. bX implements access control using groups
and permissions similar to UNIX operating systems. Since bX is
a common element across the distributed network, it can be de-
signed to be the sole interface between users and all aspects of
the network. For the most part, this allows for implementations of
solutions independent of the underlying infrastructures of hetero-
geneous hosts. At a low-level, needs for security are generally due
to the nature of distributed computing. It is necessary to secure:
(i) data transmissions between hosts on the network, (ii) the exe-
cution environment of the computational hosts, and (iii) the data
stored on and reported by computational hosts. To protect the data
transmissions, we plan to enable the security implementations of
NFS and XML-RPC. The other concerns can be addressed by hav-
ing administrative control over the hosts in the distributed infras-
tructure. For example, with respect to item (ii), there are serious
concerns for running untrusted processes on a distributed network

Table 1. Hardware used in bX

Role Machine configuration
Central server CPU: Dual 2GHz AMD Athlon
and Web Ul Memory: 2GB

CPU: Dual 2GHz Pentium 4 Xeon
Memory: 1-3GB

CPU: 2.8GHz Pentium 4
Memory: 1GB

CPU: 2.4GHz

Memory: 1GB

Computational hosts (3)

PBS commander

PBS cluster

of hosts. As a start, the user processes can be confined using the
chroot() system call, severely restricting their access in a host’s file
system. A process must also be restricted in its access to system
calls. With software like Systrace [25], fine-grained policies may
be generated for each process, constraining a process’ access to
the system.

Script Composer. To facilitate the production and reproduc-
tion of flows, flows are instances of bX scripts. bX scripts are
PERL scripts using bX’s Script Composer API. The API is used
to explicitly define the components of a flow and dependencies
between components of a flow. The API provides an abstraction
over the many underlying details of executing jobs such as flow
management and distributed execution. By building on top of a
language like PERL, we also inherit the power and flexibility of a
programming and scripting language.

Automatic Pareto curve generation. The user initiates Pareto
curve generation by selecting a tool and a benchmark to run. The
user also provides bX with a regular expression for extracting a fig-
ure of merit from the outputs of the jobs, which represents solution
quality. bX then starts creating an initial sampling pool by running
a certain number of jobs. After the jobs complete, a Pareto curve is
generated from the sampling pool and evaluated for convergence
and leveling-off. If the resultant plot is not sufficiently accurate,
the sampling pool is doubled by running more jobs, and the pro-
cess is repeated. The stopping criteria for Pareto curve generation
require that curves are strictly decreasing and that the values of the
last 4 points in a curve do not vary by more than 1%. However,
bX will stop Pareto curve generation when the size of the sampling
pool for a curve exceeds 1000 jobs.

5 Computational Experience

bX is run over the University of Michigan TCP/IP intranet, but
can be trivially extended to a geographically distributed TCP/IP
network. Table 1 describes hardware used in bX. For executing
jobs, bX makes use of a combination of regular machines, and a
PBS [24] cluster. The regular machines execute jobs locally, and
the PBS cluster is commanded by bX via a special machine that
manages PBS jobs.

Usage statistics. A prototype version of bX serviced users
from a number of universities: the University of Michigan - Ann
Arbor, Purdue University, Binghamton University, University of
California - Santa Barbara, and University of Waterloo, hosting
92 tools (159 MB), 571 benchmarks (320 MB) and the results
of 11331 jobs (8.3 GB). bX has been used for the evaluation of
EDA tools for circuit layout (Capo, Dragon, Kraftwerk, FengShui,
mPL) as well as verification and Boolean satisfiability (Chaff,
zChaff, zZRes, Berkmin, GRASP, Cassatt).
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Sample applications. Figure 1 shows a screenshot of multiple
instances of a flow in progress, as seen from the web Ul Figure 2
shows how results of flows can be automatically tabulated in bX.

Capo on IBM-PLACEO1
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Figure 3. Pareto plots automatically gener-
ated from runs of different versions of Capo
with the IBM-PLACEO1 benchmark. The plots
suggest steady improvement through all four
versions of Capo on this benchmark.

Capo on IBM-PLACE02
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Figure 4. Pareto plots automatically gener-
ated from runs of different versions of Capo
with the IBM-PLACEO02 benchmark. The plots
suggest steady improvement in versions 8.5
through 8.7 of Capo, but a regression in ver-
sion 8.8 on this benchmark.

Figures 3-5 describe empirical evaluation of free software for
VLSI placement (Capo [7]) and circuit partitioning (MLPart [8]),
which are comparable to industrial tools. Figures 3 and 4 are
Pareto curves automatically generated by bX, demonstrating the
solution quality versus runtime relationships for different versions
of Capo run with IBM-PLACE benchmarks. Figure 3 suggests
that on the IBM-PLACEO1 benchmark, the performance of Capo
steadily improved through the four versions. However, Figure 4
suggests that while versions 8.5 through 8.7 of Capo steadily im-
proved on the IBM-PLACEQ2 benchmark, version 8.8 of Capo
took a step back. For the plots here, a total of 1760 jobs were run,
having a combined runtime of 57.77 CPU hours. The jobs were
distributed over 3 computational hosts at 2 jobs per host at a time.
bX took 16.25 hours to produce the plots. Ideally, it should take

9.63 hours. This discrepancy can be accounted for by a sched-
uler bug, scheduler inefficiency, network file transfer time, and
the fact that the computational hosts were also multi-user worksta-
tions where bX processes are set to run at a lower priority than the
regular processes on the workstations. On the face of it, all these
contributors to the excess time taken allow room for significant
improvement in the future.

MLPart on IBM-PLACEO3
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x "MLPart-old" ——
940 | \ MLPart-new" ----x--—- |

920 -
900 -
880 -

860 -

weight of cut nets

840 -

820 -

800

0 ;5 1‘0 1‘5 éO 2‘5 30 55 4‘0 4‘5 50
runtime

Figure 5. Pareto plots automatically gener-

ated from runs of two MLPart versions with

the IBM-PLACEO3 benchmark. The plots

show that the new variant of MLPart produces
worse results than the old variant.

As with any system for automation, the goals are to minimize
the expense of costly user time, and to assume control of tasks
where human intelligence can be substituted with machine intel-
ligence. We measure the success of bX by savings in user inter-
action time and by an increase in user efficiency. For example,
the process of generating the Pareto curves above was reduced to
checking boxes to select Capo and the IBM-PLACE benchmarks,
and telling bX how to extract a figure of merit from a job’s output
files. Automatic Pareto curve generation has also allowed some
users of bX, who are tool developers, to see the impact of a change
to a tool much sooner. For example, Figure 5 compares a devel-
opment version and a stable version of MLPart. The Pareto plots
generated by bX show that the new variant of MLPart produces
worse solutions than the old variant, and should not be released as
such.

Overhead. bX’s job execution process, from user initiation to
job completion, can be decomposed into these six steps: (i) user
request, (ii) scheduling, (iii) job dispatch to host, (iv) job initial-
ization, (v) job execution and (vi) job result collection. The bulk
of the job execution overhead lies in job initialization and job re-
sult collection. At the initialization step, bX prepares a customized
isolated environment (sandbox) for every job. This procedure in-
volves copying a number of large files over the network, resolving
file dependencies for dynamically linked executables, etc. In our
experience, typical sandboxes are under 100MB and the initial-
ization step takes under 5 seconds in bX. Maintaining synchro-
nized copies on bX computational hosts may improve the overall
response time of bX. Another bottleneck is associated with job
completion and the transfer of the output files of jobs to the cen-
tral server. These costs vary from job to job, dominated by network
file transfer times and influenced by NFS performance [32]. They
can be magnified by inefficiences of the scheduler and virtual de-
pendencies when new jobs cannot be started before a current job
completes.
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6 Conclusions and Ongoing Work

We described a distributed-computing system, bX, designed
to leverage high-performance computing resources for developing
and evaluating high-quality EDA tools. Our implementation was
used by half a dozen beta testers. Ongoing work proceeds along
the following directions.

Database compatibility. We are working toward storing ex-
tracted results in a SQL database, which will facilitate user queries
using the SQL language, e.g., as in [28], and more flexible use of
statistical primitives. Another area of interest is the experimenting
of databases such OpenAccess [23] across a tool flow, in the spirit
of interoperability.

Scalability. We consider the expansion in scale from two ar-
eas — users and computational hosts. An increase in users will
result in the growth of the repository of tools, benchmarks and
jobs, increasing the load on the central server. An increase in
the number of computational hosts will increase the difficulty in
scheduling jobs and managing hosts. However, since computa-
tional hosts can either be single machines or clusters of machines
commanded through a single machine, this suggests a hierarchical
arrangement of resource nodes to prevent a scale explosion. In the
future various network configurations and scheduling algorithms
may be explored. However, the major bottleneck for scalability in
bX is due to security considerations. As mentioned in Section 4,
bX currently relies on having administrative control over the com-
putational hosts on the distributed network, to support features like
executing user-uploaded software. With more work, we hope to
avoid this limitation.

Additional applications. Our work primarily targets EDA tool
evaluation and seeks to automate typical operations. At the same
time, bX includes a general-purpose distributed computing engine
and is certainly applicable in a broader context.
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