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ABSTRACT:  In this work we present a method of Finite 
State Machine (FSM) decomposition where shift registers 
are used as memory of FSM network components. Every 
component of the network is realized on a separate shift 
register. This approach improves the testability of the FSM 
network. State splitting method is described for the 
minimization of the number of used shift registers. Described 
algorithms are illustrated by examples. As conclusion, the 
overview of the experimental results is presented. 
 
1  Introduction 
 
   FSM (Finite State Machine) testing has been always a 
complicated problem. One way to solve the testing 
problem is based on Checking Experiments Theory [2]. 
As an improvement to this approach, the length of the CS 
can be significantly reduced by using shift registers as 
FSM memory [1]. This solution reduces the complexity of 
the test experiments. If a FSM is realized on the shift 
register with length N and register’s content is directly 
visible via output function, then any sequence of N input 
symbols appears to be Distinguishing [2] for this 
particular FSM. 

 
Fig. 1 

 
   Intention to realize a FSM on the shift registers  
(Fig. 1) may be treated as a special decomposition 
problem of this initial FSM [3]. Such a decomposition can 
be accomplished using a complete set of partitions 
P = { πi  |  1 ≤ i ≤ n } 
where each partition of states consists of 2 blocks. Each 
partition in set  P  corresponds to one position in shift 
register. In [3] the conditions, required for the existence of 
such a decomposition are listed. In our current work we 
describe the algorithms for FSM realization on shift 

registers, using the state splitting method of the initial 
FSM.  
 
2  Basic Notations 
 
FSM model as our research target may be treated as triple   
A = ( I ,  S ,  δ )   or in other words — the output function 
of the automation is dropped as unimportant in our 
context. In this triple: 
S – set of automation’s states; 
I – input alphabet; 
δ:  S × Ι  →  S     —  transition function of FSM 
Definition 1: Partition on the set S is a set of disjoint 
subsets:  { B1 B2  . . .  Bn }  where each  Bi ⊂  S ; 
B1 ∪ B2 ∪ . . . ∪ Bn  = S ;   
Bi ∩ Bj  = ∅   
1 ≤ i, j ≤  n;    i ≠ j 
Definition 2: Set of partitions { π1 π2  . . . πn } is 

complete, if   π 1  ⋅  π 2   ⋅ . . . ⋅  π n   =  0π   
Definition 3:  π [ s ]  =  B, where  B ∈ π  and  s ∈ B 
Definition 4:  Partition pair   (π , π’)  is called symmetric 
if there exists one to one mapping  ϕ :  π  ↔ π’     so that 
for any block  Β ∈ π 
ϕ (Β) =  π’ [δ (s, a) ]       where 
B ∈ π     s ∈ B      a ∈ I 
Definition 5:  N-chain is a sequence of symmetric 
partition pairs    (π i - 1 , π i )   where   2 ≤ i ≤ N 
 
The existence of this N-chain is the required and 
sufficient condition, indicating that the considered 
automation may be realized on shift register with length N  
[3].  If the set of partitions is complete, then the FSM can 
be realized on a single shift register.  
   Let us introduce the set of all possible symmetric 
partition pairs    
{ (π j , π j’ ) }     of a FSM. 
 
π c  = ∏ π j      and   π r  = ∏ π j’     are the least partitions 
which build up a symmetric partition pair. 
   In  [3]  are described the algorithms finding these 
partitions   π c   and   π r  and all N-chains for a particular 
FSM. Denote that N-chains constructed in [3] does not 



consist of 2-block partitions. Each N-chain describes in 
[3] a FSM network, where components  
A 1 . . . .  A n    have more than 2 states. In other words, 
the realization of   A 1 . . . .  A n     requires  
] log 2  | π i | [   shift registers with length N.     
| π i |  is the number of blocks in partition  π i   and  
expression  ] e [  forces the nearest integer value above  e. 
 
3 Realization of FSM on shift registers 
 
In  [3]  it remains unspecified, how to choose from the set 
of all N-chains a minimal subset for realization of FSM on 
shift registers. In the following we describe a selection 
algorithm, allowing to minimize the total summary length 
of used shift registers. 
   Let us assume, that some N-chain has  t  blocks in each 
partition. From such a N-chain can be derived 
( 2 t – 1  -  1 )   different N-chains, where each partition 
contains 2 blocks. Further we call them 2-block N-chains. 
Each N-chain corresponds in realization to one shift 
register with length N. 
   Each 2-block N-chain describes some subautomation of 
the initial FSM. For evaluation and comparision of the 
different available N-chains it is reasonable to introduce  
quantitative evaluation function. This function uses the 
multiplication   π t  of all partitions in a N-chain: 

π t = ∏
=

N

1  i
π i   ( 1 ) 

   It’s evident, that    π t  ≥  π c  ⋅  π r   and different 
partitions  π t   may be relatively to each other 
incomparable.  The evaluation function for N-chains [4]:  
 

R (π t )  =  M ⋅ E ( π t )  +  ( M - | π t | )     ( 2 ) 
where 
M  —   number of FSM states in partition  π t 
E ( π t ) — number of states in the greatest block of π t . 
| π t |  —  number of blocks in   π t  . 
If   π t  = 0π    then   R ( π t ) = M.   If   π t  = 1π    then   
R ( π t ) = M 2 + M – 1.  Consequently,  N-chain 
realizes the more of automation, the less the value of 
function  R ( π t )  is. 
   The problem of FSM realization on shift registers turns 
to problem of finding the minimal set of  2-block   
N-chains, where     Π π t   =    π c  ⋅  π r  . 
 
   In the following we describe the algorithm, composing 
the complete set of partitions  π i: 
Π π i   =    0π  ,  appropriate for shift register realization 
of FSM. 
Algorithm 1 

 
1.   Find all N-chains   [3]. 
2.   Compose  all  2-block  N-chains. 
3.   For each N-chain calculate the multiplication of its 

partitions   π t  and evaluation function  R (π t )  (2). 

4.   Assign   τ  =  1π 

5.   Find    
t

min { R (τ ⋅ π t )  }. 

   N-chain, corresponding to the multiplication   π t ,  must 
be added to the set of partitions under construction. If 
there are N-chains having the equal value of evaluation 
function, then the shorter chain is preferred and will be 
chosen. 
6.   Assign   τ  =  τ ⋅ π t 
7.   if    τ  =  π c  ⋅  π r       then go to step 10. 
8.    if   E (τ )   = 2     then go to step 11. 
9.    go to step 5. 
10.  if    π c  ⋅  π r   =  0π     then go to step 12. 
11.   if   for partitions  { π i } constructed so far  
Π π i   >    0π  ,  then add 1 appropriate partition to ensure    

Π π i   =    0π  . 
12.   End. 
 
Condition   E (τ )  = 2   on step 8 has the following 
explanation.  If    E (τ )  = 2 , then the set of partitions 

{ π i } may be forced to meet   Π π i   =    0π     by adding 
just one 2-block partition.  In other words, we expand the 
shift register by one bit.  It’s evident, that this is the best 
solution in our case. 
 
Example 1 
 
Let us have the following automation  A  ( Table 1).  
 

S \ I a b  S \ I a b 
1 2 3  13 14 14 
2 3 4  14 15 15 
3 5 5  15 16 16 
4 6 6  16 17 17 
5 4 4  17 18 18 
6 7 7  18 1 1 
7 8 10  19 20 20 
8 9 9  20 21 21 
9 10 12  21 18 22 
10 11 11  22 23 23 
11 12 19  23 22 18 
12 13 13     

 
Table 1.  FSM   A 

 
FSM  A   has 2-, 3-, 4-, 5- and 6-chains. 



Applying algorithm described above and minimal values 
of the evaluation function, we get the first 2-chain  
( π 1 , π 2 )   with following partitions: 
π 1   =  { { 4, 7, 8, 9, 11, 12, 14, 17, 20, 21, 22, 23 } 
  { 1, 2, 3, 5, 6, 10, 13, 15, 16, 18, 19 } }; 
π 2   =  { { 6, 8, 9, 10, 12, 13, 15, 18, 19, 21, 22, 23 } 
  { 1, 2, 3, 4, 5, 7, 11, 14, 16, 17, 20 } }; 
 
Second pass of the algorithm collects also 2-chain  
( π 3 , π 4 )  where: 
π 3   =  { { 3, 4, 6, 8, 15, 16, 17, 18, 19, 21, 22, 23 } 
  { 1, 2, 5, 7, 9, 10, 11, 12, 13, 14, 20 } }; 
π 4   =  { { 1, 5, 6, 7, 9, 16, 17, 18, 20, 22, 23 } 
  { 2, 3, 4, 8, 10, 11, 12, 13, 14, 15, 19, 21 } }; 
 
Because the greatest block of the multiplication 
π 1 ⋅ π 2  ⋅  π 3  ⋅ π 4     contains 2 states,  we need one 
additional partition to split this block also. Suitable 
partition could be: 
π 5   =  { { 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 15, 22 } 
  { 5, 13, 14, 16, 17, 18, 19, 20, 21, 23 } }; 
 
   Consequently, the treated FSM  A  can be realized using  
two  2-bit  shift registers and one additional trigger ( Fig. 
2). Denote, that the minimal number of the single memory 
elements (triggers) needed for the realization of the same 
FSM is also 5. 

 
Fig. 2 

 
4   State splitting of the initial FSM 
 
However, it appears to be impossible completely to realize 
any random FSM on shift registers. In this case another 
approach can be used, where original FSM is altered to 
another functionally equivalent automation, using state 
splitting method. Obtained in this way modified FSM is in 
turn suitable for shift register realization. 
Definition 6: Cover on the set S is a set of subsets: 
{ B1 B2  . . .  Bn }  where each  Bi ⊂  S ; 

B1 ∪ B2 ∪ . . . ∪ Bn  = S ;  but 
Bi ∩ Bj ≠ ∅    for some blocks  B. 
1 ≤ i, j ≤  n;    i ≠ j 
   Let us have a partition of S marked  π    and a cover of  S  
marked  ϕ . 
 
Definition 7:   Pair  ( π , ϕ )  is called  symmetric mixed 
pair, if between blocks of   π  and  ϕ  can be established 
one-to-one mapping  ψ : π ↔  ϕ  so that for each B ∈ π 
ψ (Β)  =   ϕ [ δ (s,a) ] 
where     Β ∈ π ,    s ∈ Β ,    a ∈ Ι 
   Let us assume, that symmetric partition pairs  
(π i - 1 , π i )   2 ≤ i ≤ N   build an  N-chain and  (πΝ , ϕ)  
is a symmetric mixed pair. 
 
Definition 8:  Chain   (π 1 , π 2 ) (π 2 , π 3 )  . . . . .  
(π N - 1 , π N ) (π N , ϕ )   is called  extended N-chain. 
 
   Let us assume   π N   =  { B1 , B2 }.   Appropriate ϕ  
giving symmetric mixed pair with   π N   can be found in 
following way: 
ϕ  = δ ( π N )  =  { δ ( B1) , δ ( B2 ) }      where 

δ ( Bi )  =  { ∪ δ (s, x)  |  s ∈ Bi  ,  x ∈ Ι  } 
 
   Splitting those states of the initial FSM, which reside 
simultaneously in both blocks of  ϕ ,  we obtain another 
modified FSM with set of states S’. For this new one 
there exists  (N+1)-chain on the set of splitted states. 
In following we present an algorithm for composing  
2-block  (N+1)-chain on the splitted set of states  S’, 
giving the corresponding automation on this set  S’. 
 
Algorithm 2 
 
1.   ϕ  = δ ( π N ) .      Build extended N-chain. 
2. Find the set of splitted states: 
       v  =  δ ( B1)  ∩  δ ( B2 ) 
3. For each state  si  compose  a related set  D (si ) in 

following way:  
    { si   |  si  ∉ v } 

D (si ) =     
      { si

1
 , si

2
  |  si ∈ v } 

 
4. Create the set of states of modified FSM: 

 S’  =  Υ
S   si ∈

D (si )  

5. In partitions   π j ,   1 ≤ j ≤ N   substitute the state 
si ∈ v   to its related set  D (si ). 

6. Turn the set  ϕ  into partition  π N+1   in following 
way: 



If   si ∈ δ ( B1 )  &  si ∈ v  then replace  si  with si
1

 ; 

If   si ∈ δ ( B2 )  &  si ∈ v  then replace  si  with  si
2

 . 

7. Define the new transition function  δ , resulting the 
partitions  π N  and   π N+1   appear to be a symmetric 
partition pair on the set  S’. 

8. End 
 
Example 2 
 

S \ I b b  S \ I a b 
1 1 5  1 1 5 
2 4 2  21 42 22 
3 5 5  22 42 22 
4 6 3  3 5 5 
5 2 4  41 6 3 
6 2 2  42 6 3 
    5 21 41 
    6 21 21 

 
Table 2.  FSM  B                 Table 3.  FSM  B’ 
 
Let us assume that for automation  B  ( Table 2 ) the 
following partitions   π c  and   π r   are calculated: 
π c   =  { {1, 3}  {2, 5, 6} {4} } 
π r   =  { {1, 5}  {2, 4} {3, 6} } 
 
There are no 3-chains for automation  B.  Using minimal 
value of evaluation function  R (π t )   we choose 2-block 
2-chain, containing following partitions   π 1   and  π 2 : 
π 1   =  { { 1, 3, 4 }  { 2, 5, 6 } } 
π 2   =  { { 1, 3, 5, 6 }  { 2, 4 } } 
 
At this point algorithm 2 is applied. We obtain 
ϕ  =   δ ( π 2 )  =  { {1, 2, 4, 5} {2, 3, 4, 6} } 
v  =  {1, 2, 4, 5}  ∩  {2, 3, 4, 6}  =  {2, 4} 
D (2)  =  { 21, 22 } D (4)  =  { 41, 42 } 
 
Set of splitted states contains 8 members: 
S’  =  {1, 21, 22, 3, 41, 42, 5, 6 } 

  Algorithm steps 5 and 6 compose 3-chain on the set S’ : 
π 1   =  { { 1, 3, 41, 42 }  { 21, 22, 5, 6 } } 
π 2   =  { { 1, 3, 5, 6 }  { 21, 22, 41, 42 } } 
π 3   =  { { 1, 21, 41, 5 }  { 22, 3, 42 , 6 } } 
 
In algorithm step 7 we achieve a splitted FSM  B’ 
( Table 3 ). 
Due to   π 1 ⋅ π 2  ⋅ π 3  =  0π   the FSM  B’  can be realized 
entirely using one 3-bit shift register. 
State splitting method may be applied iteratively, i.e. the 
obtained splitted automation may be again treated as an 
initial FSM and algorithm 2 can be used repeatedly. 
 
5 Conclusions 
 
??????? ???? ???? ???? ???? ???? ????? ???? ??? 
   Described state splitting method significantly increases 
the range of automations, having shift register 
realizations. 
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