

DIAGNOSTIC MODELLING OF DIGITAL SYSTEMS WITH MULTI-LEVEL
DECISION DIAGRAMS

R.Ubar, J.Raik, T.Evartson, M.Kruus, H.Lensen,
Tallinn Technical University

Raja 15, 12618 Tallinn
Estonia

{raiub, jaan, teet}@pld.ttu.ee, {kruus, hl}@cc.ttu.ee

ABSTRACT
To cope with the complexity of today’s digital systems in
diagnostic modelling, hierarchical approaches should be
used. In this paper, the possibilities of using Decision
Diagrams (DD) for diagnostic modelling of digital
systems are discussed. DDs can be used for modelling
systems at different levels of representation like logic
level, register transfer level, instruction set level. The
nodes in DDs can be modelled as generic locations of
faults. For more precise general specification of faults
logic constraints are used. To map the physical defects
from transistor level to logic level a new functional fault
model is introduced.

KEY WORDS
Digital systems, faults and defects, modelling, simulation,
test generation, Boolean derivatives, decision diagrams.

1. Introduction

The most important question in testing today’s complex
digital systems is: how to improve the testing quality at
continuously increasing complexities of systems? Two
main trends can be observed: defect-orientation and high-
level modelling. To follow the both trends, hierarchical
approaches should be used. One way to manage hierarchy
in a uniform way at different levels is to use decision
diagrams (DD).

Traditional low-level test methods and tools for complex
digital systems have lost their importance, other
approaches based mainly on higher level functional and
behavioral methods are gaining more popularity [1-3].
However, the trend towards higher level modelling moves
us even more away from the real life of defects and,
hence, from accuracy of testing. To handle adequately
defects in deep-submicron technologies, new fault models
and defect-oriented test methods should be used. But, the
defect-orientation is increasing even more the complexity.
To get out from the deadlock, these two opposite trends –
high-level modelling and defect-orientation – should be
combined into hierarchical approach. The advantage of
hierarchical approach compared to the high-level

functional modelling lies in the possibility of constructing
test plans on higher levels, and modelling faults on more
detailed lower levels.

The drawback of traditional multi-level and hierarchical
approaches to digital test lies in the need of different
languages and models for different levels. Most frequent
examples are logic expressions for combinational circuits,
state transition diagrams for finite state machines (FSM),
abstract execution graphs, system graphs, instruction set
architecture (ISA) descriptions, flow-charts, hardware
description languages (HDL, VHDL, Verilog etc.), Petri
nets for system level description etc. All these models
need different manipulation algorithms and fault models
which are difficult to merge in hierarchical test methods.
Better opportunities for hierarchical diagnostic modelling
of digital systems provide Decision Diagrams (DD) [4-9].
Binary DDs (BDD) have found already very broad
applications in logic design as well as in logic test [4-5].
Structurally Synthesized BDDs (SSBDD) are able to
represent gate-level structural faults directly in the graph
[6,7]. Recent research has shown that generalization of
BDDs for higher levels provides a uniform model for both
gate and RT level or even behavioral level test generation
[8,9].

On the other hand, the disadvantage of the traditional
hierarchical approaches to test is the traditional use of
gate-level stuck-at fault (SAF) model. It has been shown
that high SAF coverage cannot quarantee, high quality of
testing [10]. The types of faults that can be observed in a
real gate depend not only on the logic function of the gate,
but also on its physical design. These facts are well
known but usually, they have been ignored in engineering
practice. In earlier works on layout-based test techniques
[11,12], a whole circuit having hundreds of gates was
analysed as a single block. Such an approach is
computationally expensive and highly impractical as a
method of generating tests for real VLSI designs. To
handle physical defects in fault simulation, we still need
logic fault models to reduce the complexity of simulation.

In this paper, we present, first, in Section 2 a method for
modelling physical defects by generic Boolean
differential equations which gives a possibility to map the
defects from physical level to logic level. A

generalization of the SAF model called Functional Fault
Model (FFM) is presented in Section 3. FFM can be
regarded as a uniform interface for mapping faults from a
given arbitrary level of abstraction to the next higher
level. For hierarchical diagnostic modelling, DDs are
used. In Section 4 SSBDDs are presented for logic level
test generation and fault simulation. Section 5 explains
how the hierarchical approach can be implemented by
using higher level DDs. Some experimental data are
presented in Section 6 to illustrate the efficiency of the
method. Section 7 concludes the paper.

2. Modelling Defects and Faults
Consider a Boolean function y = f (x1, x2, …, xn)
implemented by an embedded component C in a circuit.
Introduce a Boolean variable d for representing a
physical defect in the component, which may affect the
value y by converting f into another function y = fd (x1,
x2, …, xn). Introduce for the block C a generic parametric
function

 d
n dffddxxxfy ∨==),...,,(** 21 (1)

as a function of a defect variable d, which describes the
behavior of the component simultaneously for both

possible fault-free and
faulty cases. For the faulty
case, the value of d as a
parameter is equal to 1,
and for the fault-free case d
= 0. In other words,

y* = f d if d = 1, and

y* = f if d = 0.

The solutions of the
Boolean differential
equation

 1*
=

∂
∂

=
d
yW d (2)

describe the conditions
which activate the defect d

on a line y. The parametric modeling of a defect d by
equations (1) and (2) allows us to use the constraints Wd =
1, either in defect-oriented fault simulation, for checking
if the condition (2) is fulfilled, or in defect-oriented test
generation, to solve the equation (2) when the defect d
should be activated and tested. To find Wd for a given
defect d we have to create the corresponding logic
expression for the faulty function fd either by logical
reasoning or by carrying out directly defect simulation, or
by carrying out real experiments to learn the physical
behavior of different defects.

The described method represents a general approach to
map an arbitrary physical defect onto a higher (in this
case, logic) level. By the described approach a physical
defect in a component can be represented by a logical

constraint Wd = 1 to be fulfilled for activating the defect.
The event of erroneous value on the output y of a
component can be described as dy = 1, where dy means
Boolean differential. A functional fault representing a
defect d can be described as a couple (dy, Wd). At the
presence of a physical level defect d, we will have a
higher level erroneous signal dy = 1 iff the condition Wd
= 1 is fulfilled.

3. Hierarchical Approach to Test
The method of defining faults by logic conditions Wd
allows us to unify the diagnostic modelling of
components of a circuit (or system) without going into
structural details of components and into the diagnostic
simulation of interconnection network of components. In
both cases, Wd describes how a lower level fault d (a
defect either in a component or in the network) should be
activated at a higher level to a given node. The conditions
Wd can be used both in fault simulation and in test

generation.
Consider a node k
in a circuit (Fig.2)
as the output of a
module Mk,
represented by a
variable xk.
Associate with k a
set of faults Rk =
RF

k ∪ RS
k where

RF
k is the subset of

faults in the module
Mk, and RS

k is a
subset of structural
faults (defects) in

the “network neighbourhood” of Mk. Denote by Wd the
condition when the fault d ∈ Rk will change the value of
xk. Denote by WF

k the set of conditions Wd activating the
defects d ∈ RF

k and by WS
k the set of conditions Wd

activating the defects d ∈ RS
k.

By using WF
k and WS

k we can set up a mapping of faults
from a lower level to a higher level for test generation,
fault simulation, or fault diagnosis purposes.
In test generation, to map a lower level fault d ∈ Rk to the
higher level variable xk, a solution of the equation Wd = 1
is to be found. In fault simulation (or in fault diagnosis)
an erroneous value of xk (denoted by a Boolean
differential dxk=1) can be explained as

dn
n

dd
k WdWdWddx ∨∨∨→ ...2

2
1

1

where for j = 1,2,…n: dj ∈ Rk. To the higher level event
dxk = 1, we set into correspondence a lower level event dj
if the condition Wdj = 1 is fulfilled.
For hierarchical testing purposes we should construct for
each module Mk of the circuit a list of faults Rk with
logical conditions Wd for each fault d ∈ Rk. The set of
conditions WF

k for the functional faults d ∈ RF
k of the

Short
x1

x2

x3

x4

x5

y

Short
x1

x2

x3

x4

x5

y

Fig.1. Transistor circuit

with a short

Component
Low level

kWF
k

WS
k

Environment
Bridging fault

Mapping

Mapping

High level

Component
Low level

kWF
k

WS
k

Environment
Bridging fault

Mapping

Mapping

High level

Fig. 2. Mapping faults from lower

level to higher level

module can be found by low level test generation for the
defects in the module. The set of conditions WS

k for the
structural faults d ∈ RS

k in the environment of the module
can be found as explained in Section 2.

In Fig.3, a general
hierarchical test
concept based on
parametric fault
modeling and the
functional fault
model for a 3-
level system is
illustrated.
Consider a task of
defect oriented
fault simulation in
a system which is
represented at
three levels: RTL,
gate and defect
levels. Let Y be a
RTL variable (an

observable point), yM an output variable of a logic level
module and yG the output of a logic gate with a physical
defect d, then the condition to detect the defect d on the
observable test point Y is

 W = ∂Y/∂yM ∧ ∂ yM /∂yG ∧ Wd = 1, (3)

where ∂Y/∂yM means the fault propagation condition
calculated by high-level modeling, ∂yM/∂yG is the fault
propagation condition (Boolean derivative) calculated by
gate-level modeling, and Wd is the functional fault
condition calculated from (2) by the gate preanalysis.

We used the notation ∂Y/∂yM to denote the dependency of
Y from yM as an analogue of Boolean derivative for
higher level (e.g. RT level) of abstraction for digital
systems., dispite of that there is no mathematics available
for calculating Boolean derivatives at higher (not logic)
levels.

In the following we show how we can calculate Boolean
derivatives with BDDs and thereafter how we can
generalize this operation for higher level representations
based on high-level DDs.

4. Modelling Digital Circuits with BDDs
Consider first, the following graph theoretical definitions
of the BDD. We use the graph-theoretical definitions
instead of traditional ite expressions [4,5] because all the
procedures defined further for SSBDDs are based on the
topological reasoning rather then on graph symbolic
manipulations as traditionally in the case of BDDs.
Definition 1. A BDD that represents a Boolean function
y=f(X), X = (x1,x2, … , xn), is a directed acyclic graph Gy =
(M,Γ,X) with a set of nodes M and a mapping Γ from M to

M. M = MN ∪ MT consists of two types of nodes:
nonterminal MN and terminal MT nodes. A terminal node
mT ∈ MT = {mT,0, mT,1} is labelled by a constant e∈{0,1}
and is called leaf, while all nonterminal nodes m ∈ MN are
labelled by variables x ∈ X, and have exactly two
successors. Let us denote the associated with node m
variable as x(m), then m0 is the successor of m for the
value x(m) = 0 and m1 is the successor of m for x(m) = 1.
Definition 2. By the value of x(m) = e, e ∈ {0,1}, we say
the edge between nodes m ∈ M and me ∈ M is activated.
Consider a situation where all the variables x ∈ X are
assigned by a Boolean vector Xt ∈ {0,1}n to some value.
The activated by Xt edges form an activated path l(m0, mT)
from the root node m0 to one of the terminal nodes mT∈
MT.

a)

b)
Fig.4. Digital circuit and its SSBDD

Definition 3. We say that a BDD Gy = (M,Γ,X) represents
a Boolean function y=f(X), iff for all the possible vectors
Xt ∈ {0,1}n a path l(m0, mT) is activated so that y = f(Xt) =
x(mT).
Definition 4. Consider a BDD Gy=(M,Γ,X) where X is the
vector of literals of a function y = P(X) represented in the
equivalent parenthesis form [7], the nodes m ∈ MN are
labelled by x(m) where x ∈ X and ⎜M ⎜ = ⎜X ⎜. The BDD
is called a structurally synthesized BDD (SSBDD) iff
there exists one-to-one correspondence between literals x

∈ X and nodes m ∈ MN given by the set of labels { x(m) ⎜
x ∈ X, m ∈ MN}, and iff for all the possible vectors Xt ∈
{0,1}n a path l(m0, mT) is activated, so that y = f(Xt) =
x(mT).
Unlike the traditional BDDs [4-5], SSBDDs [7] support
structural representation of gate-level circuits in terms of
signal paths. By superposition of DDs [7], we can create
SSBDDs with one-to-one correspondence between graph

&

&

&

&

&

&

&

1
2

3
4
5

6

7

71

72

73

a

b

c

d

e

y

Macro

&

&&

&&

&&

&

&

&

1
2

3
4
5

6

7

71

72

73

a

b

c

d

e

y

Macro

6 73

1

2

5

7271

y

0

1
6 73

1

2

5

7271

y

0

1

Circuit

Module

System

Network
of gates

Gat e

Functional
approach

Fki Test

F k Test

W F
ki

W S
ki

F Test

W F
k

W S
k

Structural
approach

Network
of modules

W d
ki

Fig.3. Hierarchical approach to
test

nodes and signal paths in the circuit. The whole circuit
can be represented as a network of tree-like subcircuits
(macros), each of them represented by a SSBDD. Using
SSBDDs, it is possible to ascend from the gate-level to a
higher macro level without loosing accuracy of
representing gate-level signal paths.
Fig.4. shows a representation of a tree-like combinational
circuit by a SSBDD. For simplicity, values of variables on
edges of the SSBDD are omitted (by convention, the
right-hand edge corresponds to 1 and the lower-hand edge
to 0). Also, terminal nodes with constants 0 and 1 are
omitted: leaving the graph to the right corresponds to y =
1, and down, to y = 0. The graph contains 7 nodes, and
each of them represents a signal path in a circuit. By bold
lines a full activated path is highlighted in the graph
corresponding to the input pattern x1x2x3x4x5x6 = 110100.
The value of the function y = 1 for this pattern is
determined by the value of the variable x5 = 1 in the
terminal node of the path.
Procedure 1. Calculation of Boolean derivatives. To solve

a Boolean differential equation 1
)(
=

∂
∂

mx
y for the

function y=f(X) with SSBDD Gy, where x ∈ X, and m ∈
MN, the following paths in Gy are to beactivated: 1) l(m0,
m), 2) l(m1,mT,1), 3) l(m0,mT,0).

SSBDD

mlm

lm,1

m1

m0
mT,1

mT,0

lm,0

Root node

Fig.5. Calculation of Boolean Derivatives with SSBDDs

To solve the Boolean differential equation 1
1,7

=
∂
∂
x
y for

the circuit in Fig.4a by using SSBDD means to use the
Procedure 1 for the node m = 71 in the graph in Fig.4b.
The following paths should be activated; (6,¬1,2, 71),
(¬1, mT,1), and (¬1, mT,0), which produces the pattern:
x1x2x3x4x5x6 = 11xx00. To test a physical defect of the
bridge between the lines 6 and 7, which is activated on the
line 7, additional constraints W=¬x6∧x7=1 is to be used,
which updates the test vector to 111x00.

5. Modelling Systems with High Level DDs
Consider now a digital system S = (Z, F) as a network of
components where Z is the set of variables (Boolean,
Boolean vectors or integers), which represent connections
between components, inputs and outputs of the network.

Denote by X ⊂ Z and Y ⊂ Z, correspondingly, the subsets
of input and output variables. V(z) denotes the set of
possible values for z ∈ Z, which are finite.
Let F be the set of digital functions on
Z: zk = fk (zk,1, zk,2, ... , zk,p) = fk (Zk) where zk ∈ Z, fk ∈ F,
and Zk ⊂ Z. Some of the functions fk ∈ F, for the state
variables z ∈ ZSTATE ⊂ Z, are next state functions.
Definition 5. A decision diagram (denoted as DD) is a
directed acyclic graph Gk = (M, Γ, z) where M is a set of
nodes, Γ is a relation in M, and Γ(m) ⊂ M denotes the set
of successor nodes of m ∈ M. The nodes m ∈ M are
marked by labels z(m). The labels can be ether variables
z ∈ Z, or algebraic expressions of z ∈ Z, or constants.
For non-terminal nodes m∈MN, where Γ(m) ≠ ∅, an onto
function exists between the values of z(m) and the
successors me ∈ Γ(m) of m. By me we denote the
successor of m for the value z(m) = e. The edge (m, me)
which connects nodes m and me is called activated iff
there exists an assignment z(m) = e. Activated edges,
which connect mi and mj make up an activated path
l(mi, mj). An activated path l(m0, mT) from the initial node
m0 to a terminal node mT is called full activated path.
Definition 6. A decision diagram Gk represents a function
zk = fk (zk,1, zk,2, …, zk,p) = fk (Zk) iff for each value
v(Zk) = v(zk,1) × v(zk,2) × ... × v(zk,p), a full path in Gk to a
terminal node mT ∈MT in Gk is activated, so that zk =
z(mT) is valid.
Depending on the class of the system (or its
representation level), we may have various DDs, where
nodes have different interpretations and relationships to
the system structure. In RTL descriptions, we usually
partition the system into control and data parts.
Nonterminal nodes in DDs correspond to the control path,
and they are labelled by state and output variables of the
control part serving as addresses or control words.
Terminal nodes in DDs correspond to the data path, and
they are labelled by the data words or functions of data
words, which correspond to buses, registers, or data
manipulation blocks. When using DDs for describing
complex digital systems, we have to first, represent the
system by a suitable set of interconnected components
(combinational or sequential subcircuits). Then, we have
to describe these components by their corresponding
functions which can be represented by DDs. In some
simple cases a digital system can be represented as a
single DD.
Consider a digital system zk=f(Z) represented by a single
graph Gk. We can now generalize Procedure 1 for higher
level functions with the goal to create dependencies
between high level variables as we used the notation
∂Y/∂yM in (3).
Procedure 2. Calculating of high-level dependencies of
signals (conformity test). To make a system level variable
zk depending on an argument z(m)∈Z (denoted as

1
)(
=

∂
∂

mz
zk) for the system function zk=f(Z) with DD Gk.

the following paths are to beactivated: 1) l(m0, m), 2) for
all the values of e ∈ v(z(m)): l(me,mT,e), and the proper
data are to be found by solving the inequality

z(mT,1) ≠ z(mT,2) ≠ … ≠ z(mT,k) where k = | v(z(m)) |.

DD

m

lm
lm,1m1

mT,1

Root node

lm,2m2

mT,2

lm,nmn

mT,n

DD

m

lm
lm,1m1

mT,1

Root node

lm,2m2

mT,2

lm,nmn

mT,n

Fig.6. Calculating RT level dependencies with DDs

Solutions find by Procedure 2 are called conformity tests.
They check if a system is working in a particular working
mode defined by the value of a (control) variable z(m)
properly.

R2M3

e
+M1

a

*M2

b

•

•

R1

IN •

•

•

c

d

y1 y2 y3 y4

R2M3

e
+M1

a

*M2

b

•

•

R1

IN •

•

•

c

d

y1 y2 y3 y4

a)

y4

y3 y1 R1 + R2

IN + R2

R1 * R2

IN* R2

y2

R2 0

1

2 0

1

0

1

0

1

#0

R2

IN

R1
2

3

y4

y3 y1 R1 + R2

IN + R2

R1 * R2

IN* R2

y2

R2 0

1

2 0

1

0

1

0

1

#0

R2

IN

R1
2

3

b)

Fig.7. Representing a data path by a high-level DD

Procedure 3. Scanning test. To generate a scanning test
for a node m ∈ MT in Gy, the following path is to
beactivated: l(m0, m), and the test patterns for testing the
function z(m) should be generated (e.g. on the lower level
representation of z(m), according to the hierarchical
approach described).

It is easy to notice that the scanning test is a particular
case of the conformity test, and results in a similar way as
the conformity test from generalization of Procedure 1.
In Fig.7 a RTL data-path and its high-level DD is
presented. The variables R1, R2 and R3 represent
registers, IN represents the input bus, the integer variables
y1, y2 , y3, y4 represent the control signals, M1, M2, M3 are
multiplexers, and the functions R1+R2 and R1*R2 represent
the adder and multiplier, correspondingly. Each node in
DD represents a subcircuit of the system (e.g. the nodes
y1, y2, y3, y4 represent multiplexers and decoders,). The
whole DD describes the behaviour of the input logic of
the register R2. To test a node means to test the
corresponding subcircuit.
In test pattern simulation, a path is traced in the graph,
guided by the values of input variables until a terminal
node is reached, similarly as in the case of SSBDDs. In
Fig.7 the result of simulating the vector y1, y2, y3, y4, R1,
R2, IN = 0,0,3,2,10,6,12 is R2 = R1*R2 = 60 (bold arrows
mark the activated path). Instead of simulating by a
traditional approach all the components in the circuit, in
the DD only 3 control variables are visited during
simulation, and only a single data manipulation R2 =
R1*R2 is carried out.
We differentiate two testing types used for digital
systems: scanning test (for testing terminal nodes in DDs,
e.g. the data path), and conformity test (for testing
nonterminal nodes, e.g. the control path).
To generate a scanning test for the node R1*R2 of the DD
in Fig.6, a path l(m0, m) = (y4, y3, y2, R1*R2) is to be
activated, and the data DATA = (R1,1,R2,1; R1,2,R2,2; …
R1,m,R2,m) for testing the multiplier are to be generated at
low level by an arbitrary ATPG. The scanning test
consists in cyclically run sequence: For all (a,b)∈DATA:
[Load: R1 = a; Load: R2 = b; Apply: y2 = 0, y3 = 3, y4 = 2;
Read R2].
To generate a conformity test for the node y3, the
following paths are to be activated l(m0, m) = (y4, y3), l(m,
m1) = (y3, y1, R1+R2), l(m, m2) = (y3, IN), l(m, m3) = (y3,
R1), l(m, m4) = (y3, y2, R1*R2) that produces a test vector
y1, y2, y3, y4 = 0,0,D,2. The data vector DATA = (R*1, R*2,
IN*) is found by solving the inequality R1+R2 ≠IN ≠ R1 ≠
R1*R2. The conformity test consists in cyclically run
sequence: For all D ∈ {0,1,2,3}: [Load: R1 = R*1; Load:
R2 = R*2; Apply: y1 = 0, y2 = 0, y3 = D, y4 = 2; IN = IN*;
Read R2].

6. Experimental results
We have carried out two types of experiments: to show
the possibility of increasing the accuracy of diagnostic
modeling digital circuits by introducing the defect-based
functional fault model, and to show the the possibility of
increasing the speed of diagnostic modelling by using
multi-level DD-based approach.

Table 1: Experiments of defect oriented test generation

Number of defects Defect coverage

Redundant
defects

Circuit
All

Gates Syst

100% stuck-at
fault ATPG

New
tool

1 2 3 4 5 6 7 8
c432 1519 226 0 78.6 99.0 99.0 100

c880 3380 499 5 75.0 99.5 99.6 100
c2670 6090 703 61 79.1 98.3 98.3 100
c3540 7660 985 74 80.1 98.5 99.7 99.9
c5315 14794 1546 260 82.4 97.7 99.9 100
c6288 24433 4005 41 77.0 99.8 100 100

Table 1 presents the results of investigating the defect-
oriented test generation. Experiments were carried out
with a new defect-oriented Automated Test Pattern
Generator (ATPG) [13]. We used the ISCAS85 suite as
benchmarks. Column 2 shows the total number of defects
in the fault tables summed over all the gates belonging to
the netlist. Column 3 reflects the number of gate level
redundant defects. In column 4 circuit level redundant
defects are counted. Column 8 shows the number of
defects covered by the new ATPG, while column 5 shows
the ability of logic level SAF-oriented ATPG to cover
physical defects. The next coverage measure shows the
test efficiency. In this value, both, gate level redundancy
of defects (column 6) and circuit level redundancy of
defects (column 7) are taken into account.
The experiments prove that relying on 100 % SAF test
coverage would not necessarily guarantee a good
coverage of physical defects. For example, for circuit
c2670 the defect coverage obtained by SAF tests was
more than 1.6 % lower than the result of the proposed
tool. An interesting remark is, that up to 25% of the
defects were proved redundant by the new tool and can
therefore not be detected by any voltage test. 75% of
defect coverage for c880 gives not much confidence for
this test. Only using the new ATPG allows to prove that
most of the undetected defects are redundant, and that the
real test efficiency is actually 99,66 giving finally a good
confidence to the test.

Table 2: Comparison of ATPGs

Circuit Faults HITEC [1] Gatest [3]
DD-

approach
1 2 3 4 5 6 7 8

Gcd 454 81.1 170 91.0 75 89.9 14
Sosq 1938 77.3 728 79.9 739 80.0 79
Mult 2036 65.9 1243 69.2 822 74.1 50
Ellipf 5388 87.9 2090 94.7 6229 95.0 1198
Risc 6434 52.8 49020 96.0 2459 96.5 151
Diffec 10008 96.2 13320 96.4 3000 96.5 296

Average FC 76.9 87.9 88.6

The experiments of the DD-based ATPG for digital
systems were run on a 366 MHz SUN UltraSPARC 60
server with 512 MB RAM under SOLARIS 2.8 operating

system. The system contains gate-level EDIF interface
which is capable of reading designs of CAD systems
CADENCE, MENTOR GRAPHICS, VIEWLOGIC,
SYNOPSYS, etc. In Table 2, comparison of test
generation results of three ATPG tools are presented on 6
hierarchical benchmarks. The tools used for comparison
include HITEC [1], which is a logic-level deterministic
ATPG and GATEST [3] as a genetic-algorithm based
tool. The experimental results show the high speed of the
new ATPG tool which is explained by the efficient
algorithms based on DDs and by the hierarchical
approach used in test generation

7. Conclusion
A method for modelling defects by a functional fault
model was developed as a general basis for hierarchical
approach to digital test. For hierarchical diagnostic
modelling of digital systyems, multi-level DDs were
proposed as an efficient model for representing digital
systems in a uniform way at different representation
levels.

Acknowledgements: This work has been supported by the
Estonian Science Foundation grants 5649 and 5910.

References
[1] T. M. Niermann, J. H. Patel. HITEC: A test generation package

for sequential circuits. Proc. European Conf. Design Automation
(EDAC), pp.214-218, 1991

[2] J.F. Santucci et al. Speed up of behavioral ATPG. 30th
ACM/IEEE DAC, pp. 92-96, 1993.

[3] E. M. Rudnick, J. H. Patel, G. S. Greenstein, T. M. Niermann.
Sequential circuit test generation in a genetic algorithm
framework. Proc. of DAC, pp. 698-704, 1994.

[4] R.E.Bryant. Graph-based algorithms for Boolean
function manipulation. IEEE Trans. on Computers, Vol.C-
35, No8, 1986, pp.667-690.

[5] S. Minato. BDDs and Applications for VLSI CAD. Kluwer
Academic Publishers, 1996, 141 p.

[6] R.Ubar. Test Synthesis with Alternative Graphs. IEEE
Design&Test of Computers, Spring 1996,pp.48-57.

[7] R.Ubar. Multi-Valued Simulation of Digital Circuits with
Structurally Synthesized Binary Decision Diagrams. OPA
(Overseas Publ. Ass.) N.V. Gordon and Breach Publishers,
Multiple Valued Logic, Vol.4,1998,pp.141-157.

[8] R.Ubar. Combining Functional and Structural Approaches
in Test Generation for Digital Systems. Microelectronics
Reliability, Vol. 38, No 3, pp.317-329, 1998.

[9] J.Raik, R.Ubar. Sequential Circuit Test Generation Using
Decision Diagram Models. IEEE DATE. Munich, March
9-12, 1999, pp. 736-740.

[10] L.M. Huisman. Fault Coverage and Yield Predictions: Do
We Need More than 100% Coverage? Proc. of European
Test Conference, 1993, pp. 180-187.

[11] P.Nigh and W.Maly. Layout - Driven Test Generation.
Proc. ICCAD, 1989, 154-157.

[12] M.Jacomet and W.Guggenbuhl. Layout-Dependent Fault
Analysis and Test Synthesis for CMOS Circuits. IEEE
Trans. on CAD, 1993, 12, 888-899.

[13] J.Raik, R.Ubar, J.Sudbrock, W.Kuzmicz, W.Pleskacz.
DOT: New Deterministic Defect-Oriented ATPG Tool..
Proc. of the 10th IEEE European Test Symposium. Tallinn,
May 22-25, 2005.

