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ABSTRACT 
To cope with the complexity of today’s digital systems in 
diagnostic modelling, hierarchical approaches should be 
used. In this paper, the possibilities of using Decision 
Diagrams (DD) for diagnostic modelling of digital 
systems are discussed. DDs can be used for modelling 
systems at different levels of representation like logic 
level, register transfer level, instruction set level. The 
nodes in DDs can be modelled as generic locations of 
faults. For more precise general specification of faults 
logic constraints are used. To map the physical defects 
from transistor level to logic level a new functional fault 
model is introduced. 
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1.  Introduction 
 
The most important question in testing today’s complex 
digital systems is: how to improve the testing quality at 
continuously increasing complexities of systems? Two 
main trends can be observed: defect-orientation and high-
level modelling. To follow the both trends, hierarchical 
approaches should be used. One way to manage hierarchy 
in a uniform way at different levels is to use decision 
diagrams (DD).  

Traditional low-level test methods and tools for complex 
digital systems have lost their importance, other 
approaches based mainly on higher level functional and 
behavioral methods are gaining more popularity [1-3]. 
However, the trend towards higher level modelling moves 
us even more away from the real life of defects and, 
hence, from accuracy of testing. To handle adequately 
defects in deep-submicron technologies, new fault models 
and defect-oriented test methods should be used. But, the 
defect-orientation is increasing even more the complexity. 
To get out from the deadlock, these two opposite trends – 
high-level modelling and defect-orientation – should be 
combined into hierarchical approach. The advantage of 
hierarchical approach compared to the high-level 

functional modelling lies in the possibility of constructing 
test plans on higher levels, and modelling faults on more 
detailed lower levels.  

The drawback of traditional multi-level and hierarchical 
approaches to digital test lies in the need of different 
languages and models for different levels. Most frequent 
examples are logic expressions for combinational circuits, 
state transition diagrams for finite state machines (FSM), 
abstract execution graphs, system graphs, instruction set 
architecture (ISA) descriptions, flow-charts, hardware 
description languages (HDL, VHDL, Verilog etc.), Petri 
nets for system level description etc. All these models 
need different manipulation algorithms and fault models 
which are difficult to merge in hierarchical test methods. 
Better opportunities for hierarchical diagnostic modelling 
of digital systems provide Decision Diagrams (DD) [4-9]. 
Binary DDs (BDD) have found already very broad 
applications in logic design as well as in logic test [4-5]. 
Structurally Synthesized BDDs (SSBDD) are able to 
represent gate-level structural faults directly in the graph 
[6,7]. Recent research has shown that generalization of 
BDDs for higher levels provides a uniform model for both 
gate and RT level or even behavioral level test generation 
[8,9]. 

On the other hand, the disadvantage of the traditional 
hierarchical approaches to test is the traditional use of 
gate-level stuck-at fault (SAF) model. It has been shown 
that high SAF coverage cannot quarantee, high quality of 
testing [10]. The types of faults that can be observed in a 
real gate depend not only on the logic function of the gate, 
but also on its physical design. These facts are well 
known but usually, they have been ignored in engineering 
practice. In earlier works on layout-based test techniques 
[11,12], a whole circuit having hundreds of gates was 
analysed as a single block. Such an approach is 
computationally expensive and highly impractical as a 
method of generating tests for real  VLSI designs. To 
handle physical defects in fault simulation, we still need 
logic fault models to reduce the complexity of simulation.  

In this paper, we present, first, in Section 2 a method for 
modelling physical defects by generic Boolean 
differential equations which gives a possibility to map the 
defects from physical level to logic level. A 



generalization of the SAF model called Functional Fault 
Model (FFM) is presented in Section 3. FFM can be 
regarded as a uniform interface for mapping faults from a 
given arbitrary level of abstraction to the next higher 
level. For hierarchical diagnostic modelling, DDs are 
used. In Section 4 SSBDDs are presented for logic level 
test generation and fault simulation. Section 5 explains 
how the hierarchical approach can be implemented by 
using higher level DDs. Some experimental data are 
presented in Section 6 to illustrate the efficiency of the 
method. Section 7 concludes the paper. 

 

2.  Modelling Defects and Faults 
Consider a Boolean function y = f (x1, x2, …, xn) 
implemented by an embedded component C in a circuit. 
Introduce a Boolean variable d for representing a  
physical defect in the component, which may affect the 
value y by converting  f into another function  y = fd (x1, 
x2, …, xn).  Introduce for the block C a generic parametric 
function 

           d
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as a function of a defect variable d, which describes the 
behavior of the component simultaneously for both 

possible fault-free and 
faulty cases. For the faulty 
case, the value of  d as a 
parameter is equal to 1, 
and for the fault-free case d 
= 0. In other words,  

y* = f d   if  d = 1, and 

y* = f    if d = 0. 

The solutions of the 
Boolean differential 
equation  

         1*
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∂
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d
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describe the conditions 
which activate the defect d 

on a line y. The parametric modeling of a defect  d  by 
equations (1) and (2) allows us to use the constraints Wd = 
1, either in defect-oriented fault simulation, for checking 
if the condition (2) is fulfilled, or in defect-oriented test 
generation, to solve the equation (2) when the defect d 
should be activated and tested. To find Wd for a given 
defect d we have to create the corresponding logic 
expression for the faulty function fd either by logical 
reasoning or by carrying out directly defect simulation, or 
by carrying out real experiments to learn the physical 
behavior of different defects.  

The described method represents a general approach to 
map an arbitrary physical defect onto a higher (in this 
case, logic) level. By the described approach a physical 
defect in a component can be represented by a logical 

constraint Wd = 1 to be fulfilled for activating the defect. 
The event of erroneous value on the output  y  of a 
component can be described as dy = 1, where dy means 
Boolean differential. A functional fault representing a 
defect d can be described as a couple (dy, Wd). At the 
presence of a physical level defect d,  we will have a 
higher level erroneous signal  dy = 1 iff the condition  Wd 
= 1 is fulfilled. 
 

3.  Hierarchical Approach to Test 
The method of defining faults by logic conditions Wd 
allows us to unify the diagnostic modelling of 
components of a circuit (or system) without going into 
structural details of components and into the diagnostic 
simulation of interconnection network of components. In 
both cases, Wd describes how a lower level fault d (a 
defect either in a component or in the network) should be 
activated at a higher level to a given node. The conditions 
Wd can be used both in fault simulation and in test 

generation. 
Consider a node k 
in a circuit (Fig.2) 
as the output of a 
module Mk, 
represented by a 
variable xk. 
Associate with  k a 
set of faults Rk = 
RF

k ∪ RS
k  where 

RF
k is the subset of 

faults in the module 
Mk, and RS

k is a 
subset of structural 
faults (defects) in 

the “network neighbourhood” of Mk. Denote by Wd the 
condition when the fault d ∈ Rk will change the value of 
xk. Denote by WF

k the set of conditions Wd activating the 
defects d ∈ RF

k and by WS
k the set of conditions Wd 

activating the defects d ∈ RS
k.  

By using WF
k and  WS

k we can set up a mapping of faults 
from a lower level to a higher level for test generation, 
fault simulation, or fault diagnosis purposes.  
In test generation, to map a lower level fault d ∈ Rk  to the  
higher level variable xk, a solution of the equation Wd = 1 
is to be found.  In fault simulation (or in fault diagnosis) 
an erroneous value of xk (denoted by a Boolean 
differential dxk=1) can be explained as  

dn
n

dd
k WdWdWddx ∨∨∨→ ...2

2
1

1
 

where for j = 1,2,…n: dj ∈ Rk. To the higher level event 
dxk  = 1, we set into correspondence a lower level event dj 
if the condition Wdj = 1 is fulfilled.  
For hierarchical testing purposes we should construct for 
each module Mk of the circuit a list of faults Rk with 
logical conditions Wd for each fault d ∈ Rk. The set of 
conditions WF

k for the functional faults d ∈ RF
k of the 
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module can be found by low level test generation for the 
defects in the module. The set of conditions WS

k for the 
structural faults d ∈ RS

k in the environment of the module 
can be found as explained in Section 2.   

 
In Fig.3, a general 
hierarchical test 
concept based on 
parametric fault 
modeling and the 
functional fault 
model for a 3-
level system is 
illustrated.  
Consider a task of 
defect oriented 
fault simulation in 
a system which is 
represented at 
three levels: RTL, 
gate and defect 
levels. Let Y be a 
RTL variable (an 

observable point), yM an output variable of a logic level 
module and yG  the output of a logic gate with a physical 
defect d, then the condition to detect the defect d on the 
observable test point Y  is 

                    W  = ∂Y/∂yM   ∧  ∂ yM /∂yG  ∧  Wd = 1,          (3) 

where ∂Y/∂yM  means the fault propagation condition 
calculated by high-level modeling, ∂yM/∂yG  is the fault 
propagation condition (Boolean derivative) calculated by 
gate-level modeling, and Wd is the functional fault 
condition calculated from (2) by the gate preanalysis. 

We used the notation ∂Y/∂yM  to denote the dependency of 
Y  from yM  as an analogue of Boolean derivative for 
higher level (e.g. RT level) of abstraction for digital 
systems., dispite of that there is no mathematics available 
for calculating Boolean derivatives at higher (not logic) 
levels.  

In the following we show how we can calculate Boolean 
derivatives with BDDs and thereafter how we can 
generalize this operation for higher level representations 
based on high-level DDs. 

 
4.  Modelling Digital Circuits with BDDs 
Consider first, the following graph theoretical definitions 
of the BDD. We use the graph-theoretical definitions 
instead of traditional ite expressions [4,5] because all the 
procedures defined further for SSBDDs are based on the 
topological reasoning rather then on graph symbolic 
manipulations as traditionally in the case of BDDs. 
Definition 1. A BDD that represents a Boolean function 
y=f(X), X = (x1,x2, … , xn), is a directed acyclic graph Gy = 
(M,Γ,X) with a set of nodes M and a mapping Γ from M to 

M. M = MN ∪ MT consists of two types of nodes: 
nonterminal MN and terminal MT nodes. A terminal node 
mT ∈ MT = {mT,0, mT,1} is labelled by a constant e∈{0,1} 
and is called leaf, while all nonterminal nodes m ∈ MN are 
labelled by variables x ∈ X, and have exactly two 
successors. Let us denote the associated with node m 
variable as x(m), then m0 is the successor of m for the 
value x(m) = 0 and m1 is the successor of m for x(m) = 1.  
Definition 2. By the value of x(m) = e,  e ∈ {0,1}, we say 
the edge between nodes m ∈ M  and me ∈ M is activated. 
Consider a situation where all the variables x ∈ X are 
assigned by a Boolean vector Xt ∈ {0,1}n  to some value. 
The activated by Xt edges form an activated path l(m0, mT) 
from the root node m0 to one of the terminal nodes mT∈ 
MT.  

a) 

b) 
Fig.4. Digital circuit and its SSBDD 

Definition 3. We say that a BDD Gy = (M,Γ,X) represents 
a Boolean function  y=f(X), iff for all the possible vectors 
Xt ∈ {0,1}n a path l(m0, mT) is activated so that y = f(Xt) = 
x(mT).  
Definition 4. Consider a BDD Gy=(M,Γ,X) where X is the 
vector of literals of a function y = P(X) represented in the 
equivalent parenthesis form [7], the nodes m ∈ MN are 
labelled by x(m) where x ∈ X and ⎜M ⎜ = ⎜X ⎜. The BDD 
is called a structurally synthesized BDD (SSBDD) iff 
there exists one-to-one correspondence between literals x 

∈ X and nodes m ∈ MN given by the set of labels { x(m) ⎜ 
x ∈ X, m ∈ MN}, and iff for all the possible vectors Xt ∈ 
{0,1}n a path l(m0, mT) is activated, so that y = f(Xt) = 
x(mT).  
Unlike the traditional BDDs [4-5], SSBDDs [7] support 
structural representation of gate-level circuits in terms of 
signal paths. By superposition of DDs [7], we can create 
SSBDDs with one-to-one correspondence between graph 
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nodes and signal paths in the circuit. The whole circuit 
can be represented as a network of tree-like subcircuits 
(macros), each of them represented by a SSBDD. Using 
SSBDDs, it is possible to ascend from the gate-level to a 
higher macro level without loosing accuracy of 
representing gate-level signal paths. 
Fig.4. shows a representation of a tree-like combinational 
circuit by a SSBDD. For simplicity, values of variables on 
edges of the SSBDD are omitted (by convention, the 
right-hand edge corresponds to 1 and the lower-hand edge 
to 0). Also, terminal nodes with constants 0 and 1 are 
omitted: leaving the graph to the right corresponds to y = 
1, and down, to y = 0. The graph contains 7 nodes, and 
each of them represents a signal path in a circuit. By bold 
lines a full activated path is highlighted in the graph 
corresponding to the input pattern x1x2x3x4x5x6  = 110100. 
The value of the function y = 1 for this pattern is 
determined by the value of the variable x5 = 1 in the 
terminal node of the path.  
Procedure 1. Calculation of Boolean derivatives. To solve 

a Boolean differential equation 1
)(
=

∂
∂

mx
y  for the 

function y=f(X) with SSBDD Gy, where x ∈ X, and  m ∈ 
MN, the following paths in Gy are to beactivated: 1) l(m0, 
m), 2) l(m1,mT,1), 3) l(m0,mT,0). 
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Fig.5. Calculation of Boolean Derivatives with SSBDDs 

To solve the Boolean differential equation 1
1,7

=
∂
∂
x
y  for 

the circuit in Fig.4a by using SSBDD means to use the 
Procedure 1 for the node m = 71 in the graph in Fig.4b. 
The following paths should be activated; (6,¬1,2, 71), 
(¬1, mT,1), and  (¬1, mT,0), which produces the pattern: 
x1x2x3x4x5x6 = 11xx00. To test a physical defect of the 
bridge between the lines 6 and 7, which is activated on the 
line 7, additional constraints W=¬x6∧x7=1 is to be used, 
which updates the test vector to 111x00. 

5.  Modelling Systems with High Level DDs 
Consider now a digital system S = (Z, F) as a network of 
components where Z is the set of variables (Boolean, 
Boolean vectors or integers), which represent connections 
between components, inputs and outputs of the network. 

Denote by X ⊂ Z and Y ⊂ Z, correspondingly, the subsets 
of input and output variables. V(z) denotes the set of 
possible values for z ∈ Z, which are finite.  
Let F be the set of digital functions on 
Z: zk = fk (zk,1, zk,2, ... , zk,p) = fk (Zk ) where zk ∈ Z, fk ∈ F, 
and Zk  ⊂ Z. Some of the functions fk ∈ F, for the state 
variables z ∈ ZSTATE ⊂ Z, are next state functions. 
Definition 5.  A decision diagram (denoted as DD) is a 
directed acyclic graph  Gk = (M, Γ, z) where M is a set of 
nodes, Γ is a relation in M, and Γ(m) ⊂ M denotes the set 
of successor nodes of m ∈ M. The nodes m ∈ M are 
marked by labels z(m). The labels can be ether variables 
z ∈ Z, or algebraic expressions of z ∈ Z, or constants.  
For non-terminal nodes m∈MN, where Γ(m) ≠ ∅, an onto 
function exists between the values of z(m) and the 
successors me ∈ Γ(m) of m. By me we denote the 
successor of m for the value z(m) = e. The edge (m, me) 
which connects nodes m and me is called activated iff 
there exists an assignment z(m) = e. Activated edges, 
which connect mi and mj make up an activated path 
l(mi, mj). An activated path l(m0, mT) from the initial node 
m0 to a terminal node mT is called full activated path. 
Definition 6.  A decision diagram Gk  represents a function 
zk = fk (zk,1, zk,2, …, zk,p) = fk (Zk) iff for each value 
v(Zk) = v(zk,1) × v(zk,2) × ... × v(zk,p), a full path in Gk to a 
terminal node mT ∈MT in Gk is activated, so that zk = 
z(mT)   is valid. 
Depending on the class of the system (or its 
representation level), we may have various DDs, where 
nodes have different interpretations and relationships to 
the system structure. In RTL descriptions, we usually 
partition the system into control and data parts. 
Nonterminal nodes in DDs correspond to the control path, 
and they are labelled by state and output variables of the 
control part serving as addresses or control words. 
Terminal nodes in DDs correspond to the data path, and 
they are labelled by the data words or functions of data 
words, which correspond to buses, registers, or data 
manipulation blocks. When using DDs for describing 
complex digital systems, we have to first, represent the 
system by a suitable set of interconnected components 
(combinational or sequential subcircuits). Then, we have 
to describe these components by their corresponding 
functions which can be represented by DDs. In some 
simple cases a digital system can be represented as a 
single DD. 
Consider a digital system zk=f(Z) represented by a single 
graph Gk. We can now generalize Procedure 1 for higher 
level functions with the goal to create dependencies 
between high level variables as we used the notation 
∂Y/∂yM  in (3). 
Procedure 2. Calculating of high-level dependencies of 
signals (conformity test).  To make a system level variable 
zk depending on an argument z(m)∈Z (denoted as 

1
)(
=

∂
∂

mz
zk ) for the system function  zk=f(Z) with DD Gk. 



the following paths are to beactivated: 1) l(m0, m), 2) for 
all the values of e ∈ v(z(m)):  l(me,mT,e), and the proper 
data are to be found by solving the inequality 

z(mT,1) ≠ z(mT,2) ≠ … ≠ z(mT,k) where k = | v(z(m)) |. 
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Fig.6. Calculating RT level dependencies  with  DDs 

 
Solutions find by Procedure 2 are called conformity tests. 
They check if a system is working in a particular working 
mode defined by the value of a (control) variable z(m) 
properly. 
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Fig.7. Representing a data path by a high-level DD 

 
Procedure 3. Scanning test.  To generate a scanning test 
for a node m ∈ MT  in Gy, the following path is to 
beactivated:  l(m0, m), and the test patterns for testing the 
function z(m) should be generated (e.g. on the lower level 
representation of z(m), according to the hierarchical 
approach described). 

It is easy to notice that the scanning test is a particular 
case of the conformity test, and results in a similar way as 
the conformity test from generalization of Procedure 1. 
In Fig.7 a RTL data-path and its high-level DD is 
presented. The variables R1, R2  and R3  represent 
registers, IN represents the input bus, the integer variables 
y1, y2 , y3, y4  represent the control signals,  M1, M2, M3 are 
multiplexers, and the functions R1+R2 and R1*R2 represent 
the adder and multiplier, correspondingly. Each node in 
DD represents a subcircuit of the system (e.g. the nodes 
y1, y2, y3, y4 represent  multiplexers and decoders,). The 
whole DD describes the behaviour of the input logic of 
the register R2. To test a node means to test the 
corresponding subcircuit. 
In test pattern simulation, a path is traced in the graph, 
guided by the values of input variables until a terminal 
node is reached, similarly as in the case of SSBDDs.  In 
Fig.7 the result of simulating the vector y1, y2, y3, y4, R1, 
R2, IN = 0,0,3,2,10,6,12 is R2 = R1*R2 = 60 (bold arrows 
mark the activated path). Instead of simulating by a 
traditional approach all the components in the circuit, in 
the DD only 3 control variables are visited during 
simulation, and only a single data manipulation R2 = 
R1*R2 is carried out. 
We differentiate two testing types used for digital 
systems: scanning test (for testing terminal nodes  in DDs, 
e.g. the data path), and conformity test (for testing 
nonterminal nodes, e.g. the control path). 
To generate a scanning test for the node R1*R2 of the DD 
in Fig.6, a path l(m0, m) = (y4, y3, y2, R1*R2) is to be 
activated, and the data DATA = (R1,1,R2,1; R1,2,R2,2; … 
R1,m,R2,m) for testing the multiplier are to be generated at 
low level by an arbitrary ATPG. The scanning test 
consists in cyclically run sequence: For all  (a,b)∈DATA: 
[Load: R1 = a; Load: R2 = b; Apply: y2 = 0, y3 = 3, y4 = 2; 
Read R2]. 
To generate a conformity test for the node y3, the 
following paths are to be activated l(m0, m) = (y4, y3), l(m, 
m1) = (y3, y1, R1+R2), l(m, m2) = (y3, IN), l(m, m3) = (y3, 
R1), l(m, m4) = (y3, y2, R1*R2) that produces a test vector  
y1, y2, y3, y4 = 0,0,D,2. The data vector DATA = (R*1, R*2, 
IN*) is found by solving the inequality R1+R2 ≠IN ≠ R1 ≠ 
R1*R2. The conformity test consists in cyclically run 
sequence: For all  D ∈ {0,1,2,3}: [Load: R1 = R*1; Load: 
R2 = R*2; Apply: y1 = 0, y2 = 0, y3 = D, y4 = 2; IN = IN*;  
Read R2]. 
 
6.  Experimental results 
We have carried out two types of experiments: to show 
the possibility of increasing the accuracy of diagnostic 
modeling digital circuits by introducing the defect-based 
functional fault model, and to show the the possibility of 
increasing the speed of diagnostic modelling by using 
multi-level DD-based approach. 

 



Table 1: Experiments of defect oriented test generation 

Number of defects Defect coverage 

Redundant 
defects 

 

Circuit 
All  

Gates Syst 

100% stuck-at 
fault ATPG 

New 
tool 

1 2 3 4 5 6 7 8 
c432 1519 226 0 78.6 99.0 99.0 100 

c880 3380 499 5 75.0 99.5 99.6 100 
c2670 6090 703 61 79.1 98.3 98.3 100 
c3540 7660 985 74 80.1 98.5 99.7 99.9 
c5315 14794 1546 260 82.4 97.7 99.9 100 
c6288 24433 4005 41 77.0 99.8 100 100 

Table 1 presents the results of investigating the defect-
oriented test generation. Experiments were carried out 
with a new defect-oriented Automated Test Pattern 
Generator (ATPG) [13]. We used the ISCAS85 suite as 
benchmarks. Column 2 shows the total number of defects 
in the fault tables summed over all the gates belonging to 
the netlist.  Column 3 reflects the number of gate level 
redundant defects. In column 4 circuit level redundant 
defects are counted. Column 8 shows the number of 
defects covered by the new ATPG, while column 5 shows 
the ability of logic level SAF-oriented ATPG to cover 
physical defects. The next coverage measure shows the 
test efficiency. In this value, both, gate level redundancy 
of defects (column 6) and circuit level redundancy of 
defects (column 7) are taken into account.  
The experiments prove that relying on 100 % SAF test 
coverage would not necessarily guarantee a good 
coverage of physical defects. For example, for circuit 
c2670 the defect coverage obtained by SAF tests was 
more than 1.6 % lower than the result of the proposed 
tool. An interesting remark is, that up to 25% of the 
defects were proved redundant by the new tool and can 
therefore not be detected by any voltage test. 75% of 
defect coverage for c880 gives not much confidence for 
this test. Only using the new ATPG allows to prove that 
most of the undetected defects are redundant, and that the 
real test efficiency is actually 99,66 giving finally a good 
confidence to the test.  

Table 2: Comparison of ATPGs 

Circuit Faults HITEC [1] Gatest [3] 
DD-

approach 
1 2 3 4 5 6 7 8 

Gcd 454 81.1 170 91.0 75 89.9 14 
Sosq 1938 77.3 728 79.9 739 80.0 79 
Mult 2036 65.9 1243 69.2 822 74.1 50 
Ellipf 5388 87.9 2090 94.7 6229 95.0 1198 
Risc 6434 52.8 49020 96.0 2459 96.5 151 
Diffec 10008 96.2 13320 96.4 3000 96.5 296 

Average FC 76.9 87.9 88.6 
 
The experiments of the DD-based ATPG for digital 
systems were run on a 366 MHz SUN UltraSPARC 60 
server with 512 MB RAM under SOLARIS 2.8 operating 

system. The system contains gate-level EDIF interface 
which is capable of reading designs of CAD systems  
CADENCE, MENTOR GRAPHICS,  VIEWLOGIC, 
SYNOPSYS, etc. In Table 2, comparison of test 
generation results of three ATPG tools are presented on 6 
hierarchical benchmarks. The tools used for comparison 
include HITEC [1], which is a logic-level deterministic 
ATPG and GATEST [3] as a genetic-algorithm based 
tool. The experimental results show the high speed of the 
new ATPG tool which is explained by the efficient 
algorithms based on DDs and by the hierarchical 
approach used in test generation 
 
7.  Conclusion 
A method for modelling defects by a functional fault 
model was developed as a general basis for hierarchical 
approach to digital test. For hierarchical diagnostic 
modelling of digital systyems, multi-level DDs were 
proposed as an efficient model for representing digital 
systems in a uniform way at different representation 
levels.  

Acknowledgements: This work has been supported by the 
Estonian Science Foundation grants 5649 and 5910. 

References 
[1] T. M. Niermann, J. H. Patel. HITEC: A test generation package 

for sequential circuits. Proc. European Conf. Design Automation 
(EDAC), pp.214-218, 1991 

[2] J.F. Santucci et al.  Speed up of behavioral ATPG. 30th 
ACM/IEEE DAC, pp. 92-96, 1993. 

[3] E. M. Rudnick, J. H. Patel, G. S. Greenstein, T. M. Niermann. 
Sequential circuit test generation in a genetic algorithm 
framework. Proc. of DAC, pp. 698-704, 1994. 

[4] R.E.Bryant. Graph-based  algorithms  for  Boolean  
function  manipulation. IEEE Trans. on Computers, Vol.C-
35, No8, 1986, pp.667-690.  

[5] S. Minato. BDDs and Applications for VLSI CAD. Kluwer 
Academic Publishers, 1996, 141 p. 

[6] R.Ubar. Test Synthesis with Alternative Graphs. IEEE 
Design&Test of Computers, Spring 1996,pp.48-57. 

[7] R.Ubar. Multi-Valued Simulation of Digital Circuits with 
Structurally Synthesized Binary Decision Diagrams. OPA 
(Overseas Publ. Ass.) N.V. Gordon and Breach Publishers, 
Multiple Valued Logic, Vol.4,1998,pp.141-157. 

[8] R.Ubar. Combining Functional and Structural Approaches 
in Test Generation for Digital Systems. Microelectronics 
Reliability, Vol. 38, No 3, pp.317-329, 1998. 

[9] J.Raik, R.Ubar. Sequential Circuit Test Generation Using 
Decision Diagram Models. IEEE DATE. Munich, March  
9-12, 1999, pp. 736-740. 

[10] L.M. Huisman. Fault Coverage and Yield Predictions: Do 
We Need More than 100% Coverage? Proc. of European 
Test Conference, 1993, pp. 180-187. 

[11] P.Nigh and W.Maly. Layout - Driven Test Generation. 
Proc. ICCAD, 1989, 154-157. 

[12] M.Jacomet and W.Guggenbuhl. Layout-Dependent Fault 
Analysis and Test Synthesis for CMOS Circuits. IEEE 
Trans. on CAD, 1993, 12, 888-899. 

[13] J.Raik, R.Ubar, J.Sudbrock, W.Kuzmicz, W.Pleskacz. 
DOT: New Deterministic Defect-Oriented ATPG Tool.. 
Proc. of the 10th IEEE European Test Symposium. Tallinn, 
May 22-25, 2005. 


