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ABSTRACT:  In this paper we present a new checking sequence design method for finite state machines (FSMs). 
Microprogram automaton model is used to describe source FSM. The proposed method enables to compose a universal 
checking sequence which will be independent of  FSM implementation. The fault classification for microprogram 
automaton (MPA) model is introduced. It is shown that composed sequence checks all the observed faults. A design for 
testability method is proposed to guarantee the existence of a short distinguishing sequence for MPA and reduce the 
length of checking sequence. The introduced methods are illustrated by examples. Experimental results on MCNC FSM 
benchmark examples show that  the most of real complexity digital control units have a short distinguishing sequence 
and checking sequences composed by our method are considerably shorter than the upper bound shows.  
 
Introductions 
 
For a long time the formalized methods for digital 
control systems logical design, based on finite 
automata theory, were not widely used in practical 
design. The main reason was the high combinatorial 
complexity of optimization tasks. However, with the 
growth of the integration degree of digital components 
the situation is changed and highly efficient formalized 
design methods present today the only way to 
guarantee design correctness and quality. Most of the 
modern formalized methods for digital control units 
design use the Finite State Machine (FSM) model to 
describe the source unit. But it is also well-known  that 
FSMs are difficult  to  test. The test methods, based on 
checking experiments  theory  [1,2] are not often used  
because of the high upper  bound  of checking  
sequence  length.  In the same time  this approach can 
be acceptable if FSM is implemented on a single chip 
(like PLA with internal register) and the present state 
of FSM is not directly observable.  
 
In this  paper,  we  propose  to use so-called 
microprogram automaton (MPA) model [3] to 
compose an universal checking sequence which will be 
independent of FSM implementation. The fault 
classification for MPA model is introduced. It is shown 
that composed sequence enables to check all the 
observed faults in MPA. A testable design method is 
proposed to guarantee the existence of distinguishing 
sequence [1,2] for MPA and reduce the length of 
checking sequence. The proposed methods are 
illustrated by examples. Results of the experiments 
using the MCNC FSM benchmark examples are 
provided and analyzed. 
 
 
 
 

Basic Notations 
 
Our basic research object is regarded as Microprogram 
Automaton (MPA). This model is quite similar to the 
ordinary initial FSM model, but includes sets of binary 
vectors as input and output alphabets. 

 

 
Fig. 1.  MPA Model 

 

Microprogram Automaton A is defined [3] as  

system { } { }A L S M s= 

0 1 0 1 0, , , , , , ,δ λ , 

where  

     { }0 1,
L

 is input  alphabet, L - the number of 
binary inputs;   
     S   - set of  internal  states,  |S| = n;   

     { }0 1, M
- output  alphabet, M - the number of 

binary outputs; 

{ }δ: ,S L
× 0 1 → S    - transition function; 

   { } { }λ: , ,S
L M

× →0 1 0 1   - output function; 

     s0  - initial state of MPA. 

 



The input and output vectors are denoted by 
x x xL1 2...  and  y y yM1 2... ,respectively. 

MPA A can be presented by the list of its transitions 
(Tab.1.), similar to the state and output tables of FSM.  
 
Any row from this list describes one of generalized 
transitions (G-transitions) of MPA. The set of  MPA 
transitions is determined by the set of  generalized 
input vectors (G-inputs) ~ ~ .... ~x x xL1 2  , where  

~ ,
_

, ,xi xi xi i L∈ ×







≤ ≤1  and ~xi = ×  denotes that  

described G-transition is not dependent of input xi . 

For any transition of MPA there exist the sets of 
essential inputs (on which transition and output 
functions depend) and inessential inputs. For essential 

inputs ~ ,
_

xi xi x i∈








 , for  inessential inputs 

~xi = × . Any row of transition list describes the set of 

elementary transitions (E-transitions).  
 
Number of 
transition 

Initial 
state 

Final 
state 

Generalized 
input vector 

Output vector 

1  
2  
3 

s1 s2  
s2  
s5 

x1  
-x1x2  
-x1-x2 

y1y2  
y1y3  
y1y2 

4 
5 
6 

s2 s1  
s2  
s3 

-x1-x3  
x1-x3  

x3 

y3y4  
y4  

y1y2y3 
7 
8 
9 

s3 s1  
s2  
s4 

-x1-x4  
x1-x4  

x4 

y3y4  
y3  

y2y3y4 
10 
11 

s4 s1  
s2 

x3  
-x3 

y1  
y4 

12 s5 s4 1 y3y4 
 

Table 1.  Transition list of MPA A 
 
 
For example,  G-transition in row 7 describes four E-
transitions from state s3  to state s1  under input 

vectors 0000, 0010, 0100, 0110. For this generalized 

transition { }x x1 4,   and { }x x2 3,  are the sets of 

essential and inessential inputs. The number of 
generalized transitions in the list is denoted as H.  
 
Distinguishing sequence design for MPA 
 
In this section we will discuss about distinguishing 
sequence design method for MPA. Our approach is 
based on the checking experiments theory [1,2], but 
some useful properties of MPA model give us 
possibility to find a short DS in the most of cases. If it 
is not possible, we will apply the input or output 
expansion to guarantee the existence of a short DS. 
 

Let { }p X X Xk Xi
L

= ∈1 2 0 1... , ,  be a sequence 

of input vectors.  Length of sequence p is denoted by 
d(p). The set of finite length input  and output 

sequences is denoted by { }{ }0 1,
*L

 and 

{ }{ }0 1,
*M

, respectively. 

 

Function  { }{ }δ
_
: ,

*
S L S× →0 1   is said to be a 

generalized transition function of MPA A.  ( )δ
_

,s p  
defines the final state of MPA if  input sequence p  is 
applied in the initial state s. 
 

Function { }{ } { }{ }λ
_

: ,
*

,
*

S L M
× →0 1 0 1  is said 

to be a generalized output function of MPA A and 

( )λ
_

,s p  defines the output sequence if input sequence 
p is applied in the initial state s. 
 
Input sequence p is said to be the distinguishing 
sequence [1] (DS) for MPA A, iff for any pair of states 

s t S, ∈     ( ) ( )λ λ
_

,
_

, .s p t p s t= ⇔ =  
 
In the following, MPA A is regarded as k-testable iff 
there exist the DS for MPA A and d(DS)=k. 
 
The main problem of FSM testing is usually regarded 
as an identification  problem: checking sequence α  
must distinguish a correct (fault-free) machine from all 
other (faulty) ones. In common case the checking 
sequence α   for FSM A  can be constructed by the 
Hennie's method [1] and it must check all states and 
transitions of  FSM A (by applying DS  after any 
transition under check).  The length of checking 
sequence essentially depends upon the number of 
transitions under check and the length of distinguishing 
sequence. 
 
MPA has usually a considerable redundancy of 
outputs.  This property is very characteristic for real 
digital control units. Almost any G-transition has a 
unique output reaction. Therefore, majority of MPAs 
have a very short DS. For our example there are only 
some G-transitions with similar output reaction. It is 
enough ordinary in practical design that any input 
vector can be regarded as DS for MPA. 
 
Described property enables us to avoid the high 
complexity algorithms for DS design [1,2], based 
usually on investigation of FSMs successor tree. Of 
course, there are possible rare MPAs with long DS. In 
these cases we assume that the methods of testable 



design can be applied (for example, by introducing 
some extra inputs and/or outputs).  
 
Let us denote by g(i), 1≤ ≤i H , the number of  E-
transitions described by G-transition in row i  and by U 
the set of  all G-transitions of MPA A. Following 
method enables to find DS for 1-testable MPA A.  
 
Algorithm 1 
 
1.    i=0, k=1 
2.    i=i+1; find the set W U⊂   of G-transitions  
from states sk sn+1,..., , which have a  similar output 

vector with generalized transition i.  
3.   If  W ≠ ∅  then include G-transition  i  into W; 
select the transition w W∈ , which have greatest  
value g(w) in the set W  ; ban G-inputs of other G-
transitions from set W as DS ; U U W= \ . 
4.    If there are no more G-transitions from state k, 
then k=k+1. 
5.    If  k<n, then goto 2. 
6.  End. 
 
Note that if there are some G-transitions with equal 
g(w) in step 3 then select such G-transition w which 
brings along minimum new restrictions for DS.  
 
As a result of proposed algorithm we get the set of 
input vectors each of which can be used as a DS for 
observed MPA. Let us illustrate proposed method by 
our example. Karnough map is used to describe the 
steps of  algorithm (Tab.2). 
 
         x3x4 
x1x2 

00 01 11 10 

00 r1 r1 DS r1 
01 r1 r1 DS r1 
11 r2 r2 DS DS 
10 r2 r2 DS DS 

 
Table 2.  Karnough map for DS 

 
 
Transitions from state s1 have not similar output 

reactions with other states. Consequently, output 
vectors y y1 2  and y y1 3  can be used to distinguish 

state s1  with no restrictions on input vector. G-

transition 4 from state s2  has similar output reaction 

with G-transitions 7 and 12. Since transition 12 is 
unconditional, output reaction y y3 4  must be attached 

to state s5 .  Therefore we have restrictions on input 

vector denoted by r1 on Karnough map. G-transition 5 
has a similar reaction with G-transition 11. Hence there 
are four E-transitions described in row 5 and eight E-
transitions in row 11, lets ban G-input of transition 5 
(restrictions are denoted by r2). No other similar output 

reactions occurs in our MPA. Undaged input vectors 
can be used as DS for MPA A. These vectors are 
denoted by DS on Karnough map. 
 
The above  algorithm  fails if the source  MPA is not 1-
testable. But 1-testability can be achieved by 
introducing some extra binary inputs or outputs.  Lets  
discuss  about these  possibilities.  MPA B (Tab.3) is 
not 1-testable  (moreover, it also  has  not  longer  DS),  
but  1-testability results from introducing  an extra 
input x3 . For MPA  B'  (Tab.4), where  

( )δ si x si, 3 =  and  ( )λ si x, 3   gives a unique 

reaction for any state si , G-input  x3  can be used as 

DS. 1-testability of MPA B can also be achieved by  
introducing one extra  output ( y4 ) as it is done for 

MPA B''  (Tab.5). An extra output y4 =1 for G-

transitions 2 and 3 and y4 =0 for other  G-transitions. 

As a result, G-input x
_

1 can be used as a DS. Denote 

that he  number of extra  outputs  z may be greater than 
1 and in common case it can be estimated as follows: 

( )( )z int W≤ +log | |max2 1,  where Wmax  is the set W 

with  maximal power in algorithm 1. We assume in 
following  that source MPA is 1-testable or 1-
testability is achieved by above methods. 
 
 
Number of 
transition 

Initial 
state 

Final 
state 

Generalized 
input vector 

Output 
vector 

1  
2  
3 

s1 s2  
s1  
s3 

x1  
-x1x2  
-x1-x2 

y1  
y1y3  
y2y3 

4 
5 

s2 s1   
s3 

x1  
-x1 

y1  
y2y3 

6 
7 

s3 s2  
s1 

x2  
-x2 

y1y3  
y1 

 
Table 3.  MPA B 

 
 
Number of 
transition 

Initial 
state 

Final 
state 

Generalized 
input vector 

Output 
vector 

1  
2  
3 
4 

s1 s2  
s1  
s3 
s1 

x1-x3  
-x1x2-x3  
-x1-x2-x3 

x3 

y1  
y1y3  
y2y3 
y1 

5 
6 
7 

s2 s1   
s3 
s2 

x1-x3  
-x1-x3 

x3 

y1  
y2y3 
y2 

8 
9 

10 

s3 s2  
s1 
s3 

x2-x3  
-x2-x3 

x3 

y1y3  
y1 

y1y2 
 

Table 4.  MPA B’ 
 



 
Number of 
transition 

Initial 
state 

Final 
state 

Generalized 
input vector 

Output 
vector 

1  
2  
3 

s1 s2  
s1  
s3 

x1  
-x1x2  
-x1-x2 

y1  
y1y3y4  
y2y3y4 

4 
5 

s2 s1   
s3 

x1  
-x1 

y1  
y2y3 

6 
7 

s3 s2  
s1 

x2  
-x2 

y1y3  
y1 

 
Table 5.  MPA B’’ 

 
Checking sequence design for MPA 
 
The problem of checking sequence design can be 
regarded as task of composing the input  sequence  
able to  distinguish  a fault-free FSM from all faulty 
FSMs.  It is assumed  usually that any fault in FSM 
does not increase the number of FSM states.  FSM is 
considered  as "black box" in this  approach and the 
states of FSM is assumed not to be directly   
observable.  According  these assumptions,  the  input  
sequence  α is  said  to be the  checking sequence,  if it 
passes all  states and  transitions  of FSM (from known 
initial state) and final state of any  transition is checked 
by DS.  In previous section we reduced the length of 
DS:  d(DS)=1. However, now  we  have   another   
problem:  we   cannot   check   all E-transitions  of 
MPA, because of the great number of binary inputs in 
common case.  Let us discuss how to decrease the 
number of checkable transitions without the loss of 
generality of our approach. 
 
First of all, we will design the checking sequence that 
enables to pass and  check  all  G-transitions  of MPA.  
Such a  sequence  is enough easy to compose:  it can 
be build up as some  traversal α  of state transition 
graph (STG) of MPA with DS after any G-transition 
under  check.  The  initial  part of such  traversal  α  
for  MPA A (Tab.1) can be composed from initial state 
s1 as follows: 
 
State s1 s2 s3 s4 s5         s2  .... 
E-input 1011 0011 0011 0011  0111    ....... 
 
Note that DS can be chosen  from results of algorithm 
1 (Tab.2) and the new  G-transition  under check can 
be  regarded  as DS for previous  G-transition  if  it is  
possible.  Checking  sequence  α  
checks  actually  one of  E-transitions  from any  G-
transitions under check. Inessential inputs of used  E-
transition are fixed by random way. 
 
Lets introduce the fault classification for MPA and 
determine how these faults can be detected by 
sequence α . We  assumed  that MPA is a "black  box" 
and  only its  inputs  are controllable  and its outputs  
are  observable.  All the faults of MPA can be divided 
into  external and  internal  faults.   
 

External faults are regarded as permanent faults on 
MPA inputs and outputs  (like  stuck-at  faults in some 
digital  implementation). All  external  faults are surely  
detectable  by sequence α , since these faults change 
the output reaction of some  G-transitions  or deform 
the arguments of output and  transition  functions,  
which can also be  detected  by sequence  α .   
 
The  internal  faults are regarded as the faults  
changing the MPA "internal   behaviour"  and  deform  
some   G-transitions  in  MPA description.  There  can 
be  denoted    three  main  types  of internal faults:  the 
faults of output function, faults of the transition  
function and faults of G-inputs.   
 
The  faults of output  function  are  extra or  missing  
faults of binary  outputs of some  G-transition.  These 
faults can be easily detected from MPA outputs  
immediately if faulty  G-transition  is applied.  
Sequence  α   includes  all  G-transitions  and  thus all 
output faults can be checked.   
 
The faults of  transition  function  can be described as 

the final state  faults: ( )δ si x,  gives as result the 

faulty  final  state. Fault is  detectable by applying DS 
after faulty  G-transition  and ,thus, can be checked by 
sequence α . 
 
G-input  faults means that G-input of some  transition 
is deformed (like    shrinkage    and   growth    fault   in    
AND-array   of PLA-implementation).  These  faults 
are  difficult  to describe by MPA model.  G-input is 
faulty if there is an extra binary input or there  misses a 
required  input.  An extra  input in  G-transition means  
that in the  faulty  G-transition  the  number of  
included E-transitions  is  decreased   (shrinkage  
fault).  Such  a  fault transforms MPA under check into  
incompletely  defined one.  Fault can be  detected,  if  
two  E-transitions  from  G-transition  are included into 
checking  sequence:  the unessential inputs of first E-
transition  are inversed in another. Note that one of 
these E-transitions gives as result don't care values of 
transition and output functions, which can be regarded 
as fault sign. The missing G-input faults (the growth 
faults) are the most unpleasant for our approach. As 
the result of missing fault there are two G-transitions 
that are satisfied by some input vector. This is 
unacceptable for MPA model. MPA model is unable to 
decide which will be the final state and output reaction 
if such a fault occurs. Denote that we have not solved 
the state encoding task and our MPA model has 
abstract states. Detection of such faults is possible if 
we fix the transition and output function values as don't 
care if two G-transitions are satisfied simultaneously, 
which will be also regarded as fault sign. 
 
Let us return to composed checking sequence α . 
Sequence α  was composed as the traversal of STG 
and includes DS after any checked transition. 
Therefore sequence α  can detect all external faults 



and also all faults in transition and output functions. 
The G-input faults can be detected if the sequence α ' 
is concatenated to sequence α . Sequence α ' includes 
the second traversal to detect shrinkage G-input faults. 
Sequence α ' is shorter than sequence α , since α ' 
don't include DS after transitions. Note that sequences 
α  and α ’ may be partially covered.  
The length of sequence α  has the following upper 
bound: ( ) ( )d n Hα ≤ + ×1 , where n is the  number 
of MPA states and H is the number of G-transitions of 
MPA. Each of H G-transitions must be passed with 
following DS (d(DS)=1) and there is possible that 
transfer sequence  (with length ( )≤ −n 1 ) is  
necessary  to reach next G-transition under check. 
 
The length of α ' can be estimated: ( )d n Hα ' ≤ × . 
 
The length of concatenation αα ':  
( ) ( )d n Hαα ' ≤ + ×2 1 . For our first example 

(Tab.1): ( )d αα ' ≤ × =11 12 132  input vectors. The 
actual length in our example is 30 input vectors. 
 
The complete checking sequence α α ’ can be 
presented as follows (Table 6). ‘+’ in forth column 
shows that input vector can be used as DS for MPA A. 
 
Initial state Input vector Next state /DS/ 
s1 1110 s2 + 
s2 1010 s3 + 
s3 0011 s4 + 
s4 0011 s1 + 
s1 0111 s2 + 
s2 0111 s3 + 
s3 1110 s2 + 
s2 1111 s3 + 
s3 0110 s1  
s1 0011 s5 + 
s5 1111 s4 + 
s4 1110 s1 + 
s1 1001 s2  
s2 0101 s1  
s1 0111 s2 + 
s2 1000 s2  
s2 0011 s3 + 
s3 1110 s4 + 
s4 0000 s2  
s2 0010 s3 + 
s3 0000 s1  
s1 0100 s2  
s2 1101 s2  
s2 0000 s1  
s1 0000 s5  
s5 0000 s4  

s4 1101 s2  
s2 0010 s3  
s3 1000 s2  
s2 0000 s1  

 
Table 6.  CS for MPA A 

 
The checking sequence for MPA B (Tab.3) is 
presented after output expansion (MPA B’’, Tab.5): 
 
Initial state Input vector Final state /DS/ 
s1 01 s1 + 
s1 00 s3 + 
s3 01 s2 + 
s2 00 s3 + 
s3 00 s1 + 
s1 01 s1 + 
s1 10 s2  
s2 01 s3 + 
s3 11 s2  
s2 10 s1  
s1 00 s3 + 
s3 10 s1  
s1 11 s2  
s2 11 s1  

 
Table 7.  CS for MPA B’’ 

 
Note that input vectors 00 and 01 can be used as DS 
after expanding. 
 
Experimental results and conclusions 
 
The proposed methods of checking sequences design 
are implemented in CAD system DILOS - the system 
of decompositional design of digital control units, 
created in Department of Computer Engineering 
(Tallinn Technical University). Subsystem TESTER 
includes next main parts related with proposed 
methods: DSSYN - distinguishing sequence design 
procedure for 1-testable MPAs; EXSYN - expansion 
procedure to guarantee the 1-testability of MPA; 
CSSYN - checking sequence design procedure for 1-
testable MPA. Experimental results on MCNC 
benchmarks showed that the most of real complexity 
digital control units have the short distinguishing 
sequence, but 65% of observed examples were not 1-
testable. The extra output or input introducing is used 
for these cases.  
The experimental researches showed also that real 
checking sequences are essentially shorter than the 
upper bound shows and their length is 15...60 % of the 
estimated upper bound. Some experimental results are 
illustrated in Table 8. 

 
 
 
 



 
 

 FSM Initial 
Inputs 

Initial 
Outputs 

States Extra Inputs or Extra 
Outputs 

CS upper 
bound 

CS actual 
length  

lion 2 3 4 0 55 27 
train11 2 1 11 +2 Outputs 300 124 
mark1 5 16 15 0 352 149 

beecount 3 4 7 +2 Outputs 224 113 
beecount 3 4 7 +1 Input 280 127 

tav 4 4 4 +1 Input 265 175 
tav 4 4 4 +2 Outputs 245 126 

dk27 1 2 7 +2 Outputs 112 38 
keyb 7 2 19 +3 Outputs 3400 907 
ex1 9 19 20 +1 Output 2898 926 
ex4 6 9 14 +1 Output 315 160 

train4 2 1 4 +2 Outputs 70 40 
 

Table 8.  Experimental results 
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