
WEB-BASED TOOLS
FOR DECOMPOSITION-ORIENTED DIGITAL DESIGN

M. Kruus, H. Lensen, and A. Sudnitson
Tallinn Technical University

Raja 15, 12618 Tallinn, Estonia
alsu@cc.ttu.ee

ABSTRACT
Decomposition of digital systems is essential to
many computer-aided design applications. Here
we should emphasize the fact that the machine
decomposition is the organic part of synthesis
process. A large hardware behavioral description
is decomposed into several smaller ones. One
goal is to make the synthesis problem more
tractable by providing smaller subproblems that
can be solved efficiently. Another goal is to
create descriptions that can be synthesised into a
structure that meets the design constraints. In the
past, synthesis focused on quality measures
based on area and performance. The continuing
decrease in feature size and increase in chip
density in recent years have given rise to
consider decomposition theory for low power as
new dimension of the design process.
A substantial part of this work is the
development of a user-friendly interactive
system developed for WWW that assists
designers to deepen basic concepts and notions
in digital design and helps to synthesize control
devises. We are concerned with solving complex
combinatorial tasks arising from the process of
design. An approach to modeling of information
flows in networks of finite state machines is
considered. A lower power synthesis framework
can integrate the proposed techniques as result of
the fact that decomposition yields attractive
power reduction in the final implementations.
The system uses Java technology that represents
a powerful tool for the development of platform-
independent interactive software, which can be
used on the WWW through Java enabled Web
browser.

NOMENCLATURE
FSM – Finite State Machine
STG – State Transition Graph
WWW – World Wide Web

1. INTRODUCTION

Synthesis systems typically take a hardware
description language model of a design as the
initial and then the syntheis path follows several
steps: high-level synthesis, state assignment,
logic synthesis and library binding. This work
targets the very first step in this synthesis flow
where the FSM characterizing the control part of
the high-level representation is typically
described in the form of STG and each state is
represented in a symbolic form.

This work focuses on particular but
comprehensive problem of FSMs
decomposition. Decomposition of FSMs is
essential to design optimization in
implementation-independent manner.

Decomposition has been a classic problem
of discrete system theory for many years.
Various techniques have been developed to
enhance the capability and efficiency of
decomposition, and they fall broadly into two
categories: those based on the algebraic theory
[1] and those based on the factorisation or on the
identification in the STG of subroutines or
factors [2].

Theoretical background of our system is
the algebraic structure theory of sequential
machines, which uses partition pair algebra
proposed in [1]. The importance of this theory
lies in the fact that it provides a direct link

between algebraic relationships and physical
realizations of finite state machines. The
mathematical foundation of this theory rest on an
algebraization of the concept of “information” in
a machine and supply the algebraic formalism
necessary to study problems about the flow of
this information in machines as they operate.

The problem of estimation different design
alternatives is probably the most difficult one at
each design stage. The design for low power
cannot be achieved without power prediction
tools. Some authors presented a methodology for
the synthesis of FSMs targeted towards low
power dissipation using information theoretic
measures [3-5]. Unlike previous works, which
focus on the modeling of informational flows of
individual FSM, our approach also covers the
quantitative distribution of information in FSMs
networks.

The outline of this paper is as follows. In
the next section, the introduction of the main
concepts of FSM decomposition behind our
approach is presented. In section 3, we introduce
informational measurements for low power
synthesis of FSM networks. Section 4 describes
the interactive system based on Java applets.
Section 5 concludes the paper.

2. DECOMPOSITION BASICS

Formally, the FSM is defined as a quintuple
< S, X, Y, δ, λ > where
S = { s1, … , sM } is a set of states;
Χ = {x1, … , xL } is a set of binary input
variables;
Υ = {y1, … , yT} is a set of binary output
variables;
δ: D(δ) → S is a multiple valued next state
function
with domain D(δ) = D1 × … × DL × S and
codomain S, Di = {0, 1} represents a set of
values each input variable xi may assume;
λ: D(λ) → R(λ) is an output function with
domain D(λ) = D(δ)
and codomain R(λ) =E1 × … × ET .
Ei = {0, 1} represents a set of values each output
variable yi may assume.

The behavior of a control sequential
component can be described by STG or,
equivalently, by presentation by the list of
transitions.

In this work, we are concerned with the
problem of decomposition of FSM. Informally,
the essence of the decomposition task could be
described as follows. Given a prototype FSM
description of a desired terminal behavior, the
decomposition problem is to find sub-machines
which, when interconnected in a prescribed way,
will display that terminal behavior. Our
procedure of decomposition is based on the
general form of decomposition without the
restriction on their interconnection (Fig. 1). Each
sub-machine corresponds to a partition on the set
of states (a partition π on the set of states, S, in a
machine is a collection of disjoint subsets of
states whose set union is S).

The state behavior of the FSM network [1]
forms the basis of decomposition model. The
state behavior of prototype machine formally is
described by the network of state machines Ai =
< Xi , Si , δi > where
Si is the set states elements of which correspond
to blocks of partition πi.
Xi = Zi ∪ Ei , where Zi is a set of internal
symbolic variables (state variables) and Ei⊆X is
a set of external inputs. Each of the sub-machine
receives, as inputs, not only the primary inputs
and its own sate variables, but also the sate
variables of the other sub-machine.
δi: D(δi) → Si, is a transition function.

To describe the network more thoroughly,
we use the set of internal symbolic variables of
net Z = {zi | zi ∈ Si, i∈I = {1,…,n}} and

Y

E1

CL1

FF1

CL2

FF2

OL

Z1

Z2

X

E2

Fig. 1 Structure of decomposed machine

representation of relation of connection R as
incidence matrix || rij ||.

3. RELATIONSHIP MEASURES FOR LOW
POWER SYNTHESIS

In our reasoning, we proceed from information
theoretic concepts, which are rationalized on the
basis of algebraic structure theory of sequential
machine. In the following, we assume that the
state lines of the FSM are modeled as Markov
chain characterized by the stochastic matrix
(qij)1≤i, j≤m, where qij is the conditional
probability of the FSM being in j-th state given
that it was previously in i-th state. These
probabilities, along with the steady state
probability vector (pi)1 ≤ i ≤ m (we suppose that
all states are reachable) can be found using
standard techniques for probabilistic analysis of
FSMs [3].

Let E = {e1, e2, … eg} be a complete set of
events which may occur with the probabilities
p1, p2, … ,pg In order to quantify the content of
information Shannon introduces the concept of
entropy.

Entropy of E (denoted H(E)) is given by:

∑
∈

⋅−=
Ee

epepEH)(log)()(2 (1)

Depending on the specified sense of event,
we can define several entropy measures, e.g. the
entropy of FSM based on the state of occupation
probabilities or based on the state transition
probabilities. Reasoning similarly, we define the
entropy of partition π as:

∑
∈

⋅−=
π

π
B

BpBpH)(log)()(2 (2)

where the probability of the block B ⊆ S is
defined as the cumulative occupation probability
of the states in B.

Entropy of FSM network corresponding to
the set of partitions, N, is equal to

∑
∈

=
N

HNH
π

π)()((3)

Information theoretic approaches for
power estimation depend on information

theoretic measures of activity. Power
consumption of CMOS circuit is composed
mainly from dynamic power [4] due to
capacitive charging and discharging when a
signal toggles as computed from the equation:

avgtot ECfVPower ⋅⋅⋅⋅= 25.0 (4)

where f is the clock frequency, V is the supply
voltage, Ctot is the total capacitance of the logic
module (or the complexity factor), and Eavg is the
average switching activity of the unit (or the
activity factor). From this equation, we see that
power estimation depends on several factors that
are known only after hardware assignment,
scheduling and placement. Furthermore, the
activity factor is known only after executing the
design. At the register transfer level, much of the
information is not known. Fortunately, for high-
level optimization, relative evaluation of
different designs is more important than absolute
evaluation, and consistency is more important
than accuracy.

Entropy is related to switching activity,
that is if the signal switching is high, it is likely
that entropy is high also [5]. Theoretically
confirmed high correlation proves that partition
entropy is suitable for estimating corresponding
sub-machines, which makes it a good measure
for partition choice for appropriate
decomposition. We propose measures to enable
analysis of the information structure and
information flows of a FSM network to control
low-power synthesis of a sequential circuit. For
estimation of switching activity of FSM as
complete set of events, we consider the set of all
transitions (corresponding to edges of STG) in
the FSM.

4. SOFTWARE SYSTEM

To implement the software system’s architecture
we should follow four main requirements [6] :
• possibility to ran under various operating

systems;
• Implementation of new modules without

changing the rest of the system;
• Realizing a client server architecture;
• Using the same source to generate the

printed and interactive worksheets to prevent
inconsistency after modifications.

These requirements cause the use the
applet concept of Java language. Java is the
natural programming language of choice on the
client side because of its flexibility of GUI
design, convenient network programming, and
platform independence. The last property is
especially significant since it allows the same
applet program to run on client computers of
different platform.

Developed system includes building
tutorial of FSM synthesis theory and additional
useful information for working with client
software. The advantage of the tutorial is
interconnectedness among different topics and
with related tutorials, which is easy to implement
on the WWW using the hypertext mark-up
language.

The sequence of applets is developed.
Next, we discuss main of them from
“informational” point of view. Let us break them
down into three groups.

Group 1 help us to understand the essence
of decomposition problem. The first applet
describes how partitions on a set can be
“multiplied” and “added”. These operations on
partitions play a central role in the structure
theory of FSM and form a basic link between

machine concepts and algebra. The sum of two
partitions π1 and π2 is the smallest partition that
is refined by both π1 and π2. The product of π1

and π2 is the largest partition that refines both π1

and π2. A partition on the set of states of the
FSM can be considered as a measure of
information about the FSM. That it is why the
multiplication of all partitions in the set must be
zero partition in order to preserve all the
information about the source FSM behavior in
the network of FSMs defined by the partition set.
The functionality of the prototype machine is
maintained in the decomposed machine if the
partitions associated with the decomposition are
such that their product is the zero-partition on S
(every block of partition consists exactly of one
state). The next applet exhibits formal
correspondence to intuitive concept of a
”subcomputation”. We consider the concept of a
homomorphism. Since a machine A can be used
to realize its homomorphic image A', we can say
informally that A’ does a part or a
subcomputation of the computation performed
by A. From partition algebra point of view the
concept of homomorphism relates to partitions
with substitution property. We recall that if a
partition π on the set of states of a machine A has

Fig.2 Example applet

the substitution property, than as long as we
know the block of π which contains a given state
of A, we can compute the block of π to which
that state is transformed by any given input
sequence. Intuitively we say that the “ignorance”
about the given state (as specified by the
partition π) does not spread as the machine
operates [1]. The concept of partition pairs is
more general than substitution property and is
introduced to study how “ignorance spreads” or
“information flows” through a sequential
machine when it operates. If (π,π’) is a partition
pair on the FSM A than blocks of π are mapped
into the blocks of π’ by A In other words, if we
only know the block of π which contains the
state of A, then we can compute for every input
the block of π’ to which this state is transferred
by A.

For partition pair 〈πi, πj〉 the conditional
entropy is

() ()ijiij HHH πππππ −⋅=),((5)

The concept of partition pair and its
“informational representation” is presented by
corresponding applet.

It is natural that for any partition π we can
determine the M(π) partition. The operator M(π)
gives the maximum front partition of partition
pair. Informally speaking, for a given partition π,
the partition M(π) describes the least amount of
information we must have about the present state
of A to the next state (i.e., the block of π which
contains the next state of A). Thus these
partitions gives precise meaning to our intuitive
concept “how much do we have to know about
the present state to compute … about the next
state”.

To calculate this partition we need to find
the symbolic cover of the discrete function Fi:
D(δ) → πi. Given a FSM, we first assign one-hot
codes to all states. Then symbolic minimization
is applied to the one-hot coded machine using
multi-valued logic minimization. The result is a
symbolic cover, Ki, of the Fi. Each element of
the symbolic cover is a symbolic prime
implicant, that is a triple 〈β, B’, B〉 where B’ is
the set of states (block of partition M(π)) which
transit to the next state contained in the same
block B of partition π under input condition β.

The number of prime implicates, |Ki|, is
proportional to number of rows in the transition
table of corresponding sub-machine.

Our work proceeds from the fact that the
principal NP-hard problem of FSM
decomposition is searching of a set of partitions
on the set of states of prototype FSM. As it was
shown in [1], only such a set of partitions may
be used for FSM decomposition. The lack of a
methodology of searching of these partitions is
substantial limitation of application of powerful
algebraic decomposition theory in practice. We
attempt to surmount this obstacle.
Implementation of FSM in a device with the lack
of external terminals appears very often in
practice and has always been a problem for
designers.

Group 2 of applets is devoted to choice of
decomposition partition on the set of states of
prototype FSM to meet a requirement on the
number of inputs. Here we should emphasize the
fact that the machine decomposition problem
and the reduction of variable dependence are
virtually identical concepts. This is NP-hard
problem, and amounts to solving a face
hypercube-embedding problem [2]. In spite of
recent advances, computing a decision of this
task remains prohibitive for FSM of practical
complexity. In this applet we show how the
input-state dependencies can be used to decrease
the number of inputs. Theoretical foundation of
our approach is based on the new notion of
partition with don’t care’s and its relation to pair
algebra. One applet implements a method for
FSM decomposition with outputs distributed
among the component FSMs. A partition on the
set of prototype FSM outputs is taken as primary
design requirement.

Group 3 of applets performs construction
of FSM network that realizes the prototype FSM.
We represent a relation of connection of sub-
FSM in the network as incidence matrix || rij ||.
rij = 1 means i-th component FSM receives
information from j-th component FSM. Every
FSM from B is in correspondence with chosen
partition πi. If partition τ=M(πi) is less or equal
to multiplication of partitions from {πj | rij = 1}
than it means that i-th component FSM receives
enough information from component FSMs with
which it is connected accordingly F to compute
the next state.

The idea of the next two applets is to
introduce additional “idle” states into the FSM in
the hope to meet power design constraints. The
network of FSMs consists of components
working alternatively in time, i.e. all components
except one are suspended in one of extra state
(the “wait” state). In [2], similar approach is
called factorisation of the sequential state
machines. This property gives opportunity to
apply sleep mode operation (dynamic power
management) for saving power consumption.
Corresponding applet enables to decompose a
prototype FSM into a set connected component
FSMs with given constraints on the complexity
of component FSMs (a number of inputs,
outputs, states and rows in their transition tables)
on the base of one partition on the set of states.
The number of states of component FSM is
equal to the number of states in corresponding
block of partition π plus 1 (wait or idle state).

5. CONCLUSIONS

Incorporating functional partitioning into a
synthesis methodology leads to several
important advantages. In functional partitioning,
we first partition a functional specification into a
smaller sub-specifications and then synthesise
structure for each, in contrast to the approach of
first synthesizing structure for the entire
specification and then partitioning that structure.
In addition to reducing power, FSM functional
partitioning also provides solutions to a variety
of synthesis problems. One advantage the
improvement in input/output performance and
package count, when partitioning among
hardware blocks with size and input/output
constraints, such as FPGAs or blocks within
ASIC. A second advantage is reduction in
synthesis runtimes. We describe these
improvement advantages, concluding that further
research can lead to improved results from
synthesis environments. This suggests the need
for further investigation and development of
automated functional decomposition tools, in
order to meet design constraints.

The system uses Java technology that
represents a powerful tool for the development
of platform-independent interactive software [6],
which can be used on the WWW through Java
enabled Web browser. The developed synthesis

system should not be considered only as
particular design automation software, but it
should be a research tool we will be able to use
to carry out experiments guided to further
development of logical synthesis theory. The
educational aim of this work is to provide a basic
theoretical background for discrete systems
design using opportunities of asynchronous
mode of education via internet. Asynchronous
learning networks provide in addition a network
of people who can interact with each other using
electronic connectivity tools.

6. REFERENCES

1. Hartmanis J., and Stearns R. E.-Algebraic
Structure Theory of Sequential Machines-
Englewood Cliffs, N.J.: Prentice-Hall, 1966.
2. P. Ashar, S.Devadas, and A.R.NewtonA. R.-
Sequential Logic Synthesis- Kluwer Academic
Publishers, Boston, 1992.
3. Hachtel G. D., Macii E., Pardo A., and
Somenzi F.- Markovian Analysis of Large Finite
State Machines- IEEE Trans. Computer-Aided
Design, Vol. 15, 1996, pp.1479-1493.
4. Macii E., Pedram M., and Somenzi F.-High-
level Power Modeling, Estimation, and
Optimization- IEEE Trans. Computer-Aided
Design, Vol. 17, 1998, pp.1061-1079.
5. Marculescu D., Marculescu R., and Pedram
M.-Information Theoretic Measures for Power
Analysis- IEEE Trans. Computer-Aided Design,
Vol. 15, 1996, pp. 599-610.
6. Wuttke H.-D., Henke K., Peukert R.-Internet
Based Education : An Experimental
Environment for Various Educational Purposes-
Proc. of the IASTED Int. Conf. on Computers
and Advanced Technology in Education,
Philadelphia, PA USA. IASTED/Acta Press No.
292, 1999, pp. 50-54.
7. Sudnitson A., Devadze S., Levenko A.- Finite
State Machine Decomposition- Available:
http://www.pld.ttu.ee/dildis/automata/applets

ACKNOWLEDGEMENTS

This work is partially supported by the Ministry
of Education in Thüringen, Germany (DILDIS
project), and by the Estonian Science Foundation
(Grant No 4876).

