
1. Introduction

The latest developments in the electronic industry, namely
the possibility to create and connect billions of transistors
on a single chip, require also new design and synthesis
methodologies. One of the most important features for the
new methodologies is the need to perform architecture
exploration at various levels of abstractions. Designing a
whole system on a single chip (System-on-a-Chip or SoC)
requires also optimization algorithms that take into
account effects from different abstraction levels, and/or
take into account effects from other optimization tasks.

This leads to three important characteristics an optimiza-
tion algorithm should have - a) the algorithm should be
fast enough to search through the ever increasing solution
space; b) the algorithm should be efficient enough to lead
to a solution that differs from the optimal solution as little
as possible; and c) the algorithm should allow to define
complex relationships between system components.

Graph optimization algorithms have been used for various
optimization tasks at different abstraction levels. Classi-
cally, a larger optimization task is divided into sub-tasks
and each of these sub-tasks is solved as a conflict graph
coloring task; or a compatibility graph clustering task.

For instance, the tasks at register-transfer level that are
often mapped to graph coloring tasks are allocation and
binding tasks. These tasks, mapped onto conflict graph

coloring or compatibility graph partitioning tasks, have
been studied by many authors and various solutions have
been proposed to unify them. All these optimization tasks
are intractable for real-life size examples. Thus, different
heuristics that generate solutions fast without guarantee-
ing optimality have been used widely (see, e.g., [1,2]).

In this paper, few examples how to use the fast optimiza-
tion algorithms for SoC architecture exploration,
described in [3], are presented. The original algorithms
were created to solve only the hardware allocation and
binding tasks in a unified manner. The optimization task
was mapped onto weighted conflict graph coloring task.
Initially, four simple greedy heuristics were used. Later
the heuristics have been extended in two ways:

• selection criteria have been extended to widen search
space with a goal to improve results (with the penalty of
speed reduction, of course); and

• cost functions have been extended to cover multiple
physical dimensions, e.g., area, power.

These extensions allowed to map some other optimization
tasks, e.g., memory optimization, onto weighted graph
coloring or partitioning/clustering tasks.

2. Optimization tasks

In this section, the mapping of five hardware synthesis
tasks onto weighted hyper-graph optimization tasks is
described. The first three tasks - functional unit and regis-
ter allocation and binding at register-transfer level; and
memory allocation and binding at functional level - are
solved as weighted conflict graph coloring tasks. The last
two tasks - system task allocation and state machine
decomposition - are mapped onto weighted compatibility
graph clustering tasks.

The nodes of a conflict graph represent behavioral entities
(variable, operation). Hyper-edges give the conflict rela-
tion, i.e., there is an edge when operations can not share
the same resource, e.g., operations are executed in paral-

Using Weighted Graphs for Fast Architecture Exploration

Peeter Ellervee, Tarmo Klaar*, Margus Kruus, Kalle Tammemäe

Dept. of Computer Engineering, Tallinn Technical University, Raja 15, 12618 Tallinn, Estonia
*MicroLink Computer Ltd., Estonia

e-mail: lrv@cc.ttu.ee, tarmo@microlink.ee, {kruus nalle}@cc.ttu.ee

Abstract -- Architecture exploration in the SoC era is
one of the most crucial optimization tasks. The pres-
sure from the market, the enormous number of possi-
ble solutions and the computationally hard nature of
the optimization tasks is the pushing force behind the
quest for fast and good enough optimization algo-
rithms. In this paper, some hardware optimization
tasks are represented as weighted graph coloring and
clustering problems. Fast and simple heuristics have
been developed that find close to optimal solutions.

lel. All nodes are associated with one or more weights that
are used by the cost function. The weights are assigned
during the graph construction and represent operational
characteristics, e.g., bit-width, access frequency.

Conflict graphs are built in a similar manner for all three
coloring tasks - the underlying control-flow or data-flow
is analyzed to find operations that are executed at the
same time. For register allocation, for instance, the life-
time intervals of variables are collected. Variables with
covering lifetimes define the conflicting nodes of the
graph. An example of lifetime intervals of an algorithm
and corresponding conflict hyper-graph are shown in Fig-
ure 1. This allows a better estimation of access frequen-
cies (there is exactly one edge per sate), especially when
each hyper-edge has a weight associated with the profiling
information. The conflict graph construction and the col-
oring tasks are described in [3].

2.1. Register and functional unit allocation / binding

The conflict graphs used for register and functional unit
allocation and binding tasks are typically built by analyz-
ing a scheduled control and data flow graph (CDFG) of an
algorithm. An example CDFG is shown in Figure 2.a).
Variables x and y are stored at the same time and thus cre-
ate an hyper-edge. The register that is used to store vari-
able z can be used to store, in principle, also either x or z.
However, when z share the register with x (instead of y)
increase both in area and power consumption should be
expected. The area increase is caused by the need to use
32-bit multiplexer instead of 8-bit multiplexer. The
increase in power consumption is caused by the triggering
of extra 24 flip-flops when storing variable z.

Cost functions for area (node cost - bit-width - wi):

• area of a single register - areareg(wi) - gates for wi-bit
wide register;

• area for the shared register (i and j) -
areareg(max(wi,wj))+areamux(2,max(wi,wj)) - area of the reg-
ister to store the largest of the variables, plus area of 2-
input multiplexer.

Cost functions for power consumption (node cost - access
frequency - fi):

• power consumption of a single register - powerreg(wi,fi) ;
• power consumption for the shared register (i and j) -

powerreg(max(wi,wj),fi+fj) + powermux(2,max(wi,wj),fi+fj) .

The conflict graph used for functional unit (FU) allocation
and binding task is built and used, in principle, not unlike
for register allocation and binding. Figure 2.c) depicts the
conflict graph that corresponds to the CDFG in Figure
2.a). Additionally, the cost functions should take into
account the type of the FU. For instance, in Figure 2.d),
two different allocation and binding results of the conflict
graph are shown. In the first case, separate adder and sub-
tracter are used to implement operations a2 and s1. In the
second case, both operations have been implemented by
using an adder-subtracter (plus two multiplexers).

It should be noted that the actual parameters for the cost
functions are technology dependent. For instance, cost of
a multiplexer in LSI-10K technology can be approximated
as: areamux(n,w) = w (0.083n2+1.49n+0.154); where n is
the number of data inputs and w is the width in bits.

2.2. Memory allocation and binding

Profiling memory accesses at functional level allows a
significant reduce in complexity of the overall design task.
Also, reduced task complexity allows wider exploration of
different memory configurations, i.e., to select the most
suitable memory architecture. The conflict graph used for
memory allocation and binding task is typically built by
analyzing the ordered sequence of an algorithm. An
example sequence is shown in Figure 3.a). Arrays ‘a’ and
‘b’ are accessed at the same time and thus create an hyper-
edge. The resulting conflict graph (Figure 3.b) allows
three legal mappings of arrays onto physical memories
(allocation and binding) as shown in Figure 3.c). The
most suitable solution depends on many factors - wasted
memory area, number of buses and address generators,
access frequencies, etc. [4]

The following cost functions allow to estimate the mem-
ory area (without bus and address generator costs) where
node cost - word-width (wi), number of words (ni):

S1
S2
S3
S4
S5
S6
S7
S8
S9

S0

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9
1 8 8 1 9 8 8 8 1 8

Variab le
size [b it]

S
ta

te

Figure 1. Lifetime intervals and corresponding conflict graph.

a) lifetime intervals of variables

V0
1

V1
8

V4
9

V5
8

V8
1

V9
8

V2
8

V3
1

V6
8

V7
8

b) conflict hyper-graph

E0

E2

E4

E6
E8

weight

Figure 2. CDFG and corresponding conflict graphs

+
a1 s1

a2

-

+

x y

z

a1
32

s1
8

a2
8

x
32

y
8

z
8

c) FU-s

b) registers

a) CDFG

32
32

32 +

8

8

8
8

8
8

+/-8

8
8

8
8

8 -

8
8

8 +

32
32

32 +

a1

a2

s1

a1

a2 / s1

d) FU allocation and binding

• area of a single memory - areamem(wi,ni) - ni*wi bits, plus
technology dependent overhead;

• area for the shared memory (i and j) -
areamem(max(wi,wj),ni+nj) .

The cost function for power consumption can be defined
in a similar manner (additional node cost - read and write
frequencies - fi

r,fi
w):

• power consumption of a single memory -
powermem(areamem(wi,ni),fi

r,fi
w) ;

• power consumption for the shared memory (i and j) -
powermem(areamem(max(wi,wj),ni+nj),fi

r+fj
r,fi

w+fj
w) .

2.3. System task and state machine partitioning

The system task allocation and state machine decomposi-
tion are mapped onto weighted compatibility graph clus-
tering tasks. This mapping exploits an interesting feature
of weighted graphs that is essentially an extension of
duality of graph coloring and partitioning tasks [1]. Typi-
cally, a weight on an edge represents how close two con-
nected nodes are. At the same time, cost functions can be
defined in such a way that a large enough weight acts as a
very large penalty when trying to group two nodes that are
associated with such an edge. The optimization tool inter-
prets both conflict and compatibility graphs in the same
manner. The only difference is that edges of conflict
graphs have fixed weights that are equal to infinity [3].

Figure 4.a) depicts an example of representing a set of
communicating tasks as a weighted graph. Weights of
edges represent the amount of data to be transferred
between tasks and weights of nodes represent the number
of calculations a task must perform. Two example cost
functions can be defined as follows:

• load of a cluster (processor) - sum of node weights, i.e.,
all calculations, plus weighted sum of internal edge
weights, i.e., all in-cluster data transfers; and

• communication overhead - weighted sum of edge
weights between clusters, i.e., data transfers between
processors.

The cost functions can be more complex, of course. The
importance is that these functions should be able to give
fast estimates when deciding one or another mapping of
tasks onto processors [5].

Similarly, activity in state machines can be represented as
a weighted graph where edge weights represent transition

probabilities and node weights represent state operations
(Figure 4.b). Such model is very useful when partitioning
state machine to save power and/or energy [6].

3. Heuristic graph optimization algorithms

The heuristic algorithms, described below, are based on
the greedy constructive approach where colors (clusters)
are assigned to nodes sequentially. The greedy approach is
the simplest amongst all of the approaches - it is both easy
to implement and it is computationally inexpensive.

For all allocation and binding tasks, a node in the conflict
graph corresponds to a behavioral entity (variable, opera-
tion, array), and a color corresponds to a resource (regis-
ter, functional unit, memory) used for its implementation.
Cost of the existing coloring is evaluated at every step and
the cheapest of two alternatives - using an existing color
or creating a new one - is used. All four heuristics use the
same core algorithm and they differ only how the nodes
are ordered for coloring. The core algorithm and exten-
sions are described in [3].

Figure 5. depicts some of the search trees to illustrate how
a solution may be generated (the breadth-first-search
approach has been assumed). The simple static
approaches check and store only a single solution at every
step - they are very fast but too often get stuck into local
optima (Figure 5.a). The dynamic greedy approach checks
all possibilities but stores also a single solution (Figure
5.b). The extensions were used to overcome the main
drawbacks of the simple greedy approaches. They expand
both checking and storing in such a way that more than
one possible solution is checked and/or stored at every
iteration (Figure 5.c).

It should be noted that both extensions increase also the
computation time. The increase depends linearly on mul-
tiplication of numbers of the extra checking and of the
stored solutions. Thus, designer can make trade-offs
between design quality and time.

Figure 3. Memory allocation as a graph coloring task.

a b

c

c) legal mapping

ba

c

b) co n flic t g rap h

read (a), w rite (b);

read (c);

a) seq u en ce

wasted

Figure 4. Compatibility graph clustering tasks.

a) system task mapping b) state machine partitioning

50

Task#1

10

40

20

Task#2

Task#3Task#4

100
20

5
10

processor #2
load - 70
(40+20+0.1*100)

processor #1
load - 61
(50+10+0.1*10)

S1

S2

S4

S3

S0

FSM

FSM0

FSM1

4. Experiments

More than 200 coloring tasks from real-life designs were
used to compare the heuristic algorithms (see Table 1.).
The largest designs had 222 functional units that were
bound into 92 components, and 91 variables bound into
29 registers. It should be noted that the algorithm H3 was
used with multiple trials, and the best of the bindings was
selected. The number of trials was set to the number of
nodes, but in many cases the best result, or one of the best,
was achieved with the first trial. Only for 58 designs the
results from different heuristics were different (and differ-
ent also from the global optima). For the rest of the
designs all heuristic algorithms obtained the optima.

The column “Best/Minimal” shows how many of the
bindings by that algorithm were also the overall best ones
and how many of the bindings were also globally mini-
mal. The next two columns show how many percents the
cost of the resulted bindings differ from the global mini-
mum. The last column shows the average coloring time of
real-life graphs with 50 to 100 nodes.

The coloring results of 150 random graphs gave compara-
ble results - the average penalty was 1% for H3 and 3-4%
for the others (the maximum penalty was 3% and 10-12%,
correspondingly).

The effects of extensions were analyzed by coloring more
than 120 random graphs (10 to 40 nodes) with one to eight
nodes checked and one to eight partial solutions stored at
every iteration. Results for some interesting cases are pre-

sented in Figure 2. It should be noted that although in
average the results were always improved, in very few
cases the extended heuristics gave slightly inferior results,
a topic for future research.

5. Conclusion

This paper has shown that fast and simple greedy optimi-
zation algorithms give good results, thus allowing to
widen search of different architectural solutions. Several
optimization tasks have been mapped onto weighted
graph coloring and/or clustering tasks. Based on the
results from experiments with more than 400 optimization
tasks (real-life tasks included), it can be stated that the
used heuristics will lead to good enough results in a mat-
ter of seconds. In a significant number of cases they may
also lead to the global optimum.

This work was supported in part by the Estonian Science
Foundation Grants no. 4294 and 5141.

References

[1] G. De Micheli, “Synthesis and Optimization of Digital Cir-
cuits,” McGraw-Hill, Inc., 1994.

[2] S.-Y. Yuan, S.-Y. Kuo, “A New Technique for Optimization
Problems in Graph Theory,” IEEE Trans. on Computer, Vol.
47, No. 2, pp. 190-196, Feb. 1998.

[3] P. Ellervee, T. Klaar, “Using Weighted Graph Coloring Heu-
ristics for Architecture Exploration,” The 19th NORCHIP
Conference, pp. 161-166, Stockholm, Nov. 2001.

[4] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachter-
gaele, A. Vandecappelle, “Custom Memory Management
Methodology: Exploration of Memory Organisation for
Embedded Multimedia System Design,” Kluwer, 1998.

[5] A. Hemani, A. Jantch, S. Kumar, A. Postula, J. Öberg, M.
Millberg, D. Lindqvist, “Network on a Chip: An architecture
for billion transistor area”, The 18th NORCHIP Conference,
pp. 166-173, Turku, Nov. 2000.

[6] B. Oelmann, K. Tammemäe, M. Kruus, M. O’Nils, “Auto-
matic FSM Synthesis for Low-Power Mixed Synchronous/
Asynchronous Implementation,” Special Issue on Low Power
System Design Issues of the VLSI Design Journal, Gordon
and Beach Science Publ., Vol. 12, No. 2, pp. 167-186, 2001.

Table 1. Efficiency of different heuristics

Selection criterion
Best /

Minimal
Average
penalty

Maximum
penalty

Average
time

H1 (largest) 31 / 18 2.8% 8.0% 2.8”

H2 (smallest) 21 / 13 3.8% 10.4% 2.9”

H3 (random) 73 / 49 1.2% 5.6% 31.5”

H4 (dynamic) 10 / 5 4.1% 13.3% 185”

fina l so lu tio nch eck ing selecting

a) sta tic g reedy b) dyn am ic g reedy c) ex tend ed check ing
and se lec ting

Figure 5. Search trees.

Table 2. Efficiency of extended heuristics

Selection criterion
Best /

Minimal
Average
penalty

Maximum
penalty

Average
time

H1 (largest) 85 / 85 1.0% 10.2% 0.1”

 check 4, store 4 93 / 93 0.6% 10.8% 0.9”

H2 (smallest) 90 / 89 1.2% 16.9% 0.1”

 check 8, store 4 91 / 91 0.9% 10.8% 1.9”

H3 (random) 109 / 107 0.3% 7.5% 3.1”

 check 8, store 1 112 / 109 0.2% 3.8% 35”

