
Des macroblock. 05.06.98, Programmable Logic Laboratory. Http://www.pld.ttu.ee/

1

DES MACROBLOCK

1. Overview
The DES macroblock implements the Data Encryption Standard
first described in FIPS publication 46, 15 January 1977. The same
standard is also known under ANSI X3.92. The block operates in
Electronic CodeBook (ECB) mode. It accepts 64 bits of input and
56 bits of key, returning 64 bits of output. Both enciphering and
deciphering functions are supported. The key and data are written
to and read from block using 8 bit bus.

2. Architecture
The DES algorithm is implemented sequentially with S-BOXES
optimized to gates. The block is synchronous and expects block IO
operations to be related to clock signal.

3. DES Block input/output ports
3.1 Inputs

• Data input bus DATAIN 8
• Asynchronous reset ASYN_RES 1
• Clock, active positive front CLK 1
• DES function select ENCRYPT 1
• Read FIFOS RD_PULS 1
• Write FIFOS WR_PULS 1
• DES block select CS_DES 1
• Key or Data FIFO select D_SEL 1

3.2 Outputs
• Data output bus DATAOUT 8
• DES block ready DES_RDY 1

Des macroblock. 05.06.98, Programmable Logic Laboratory. Http://www.pld.ttu.ee/

2

4. Block operating descriptions

DATAFLOW

DMUX

MAIN
CONTROL

FSM

KEY
 SCHEDULERencrypt

des_rdy

KEY FIFO 56 bits

DATA FIFO 64 bits

d_sel

asyn_res
clk

rd_puls
wr_puls
cs_des

datain

dataout

4.0 Before using the block reset line should be held high for at least one
clock cycle to initialise internal data and control structures

4.1 Write data to block
4.2.1 Select DATA FIFO with d_sel = 1 or

KEY FIFO d_sel = 0
4.2.2 Put 8 bits of data to block input, LSB first
4.2.3 Select write to FIFO with setting WR_PULS=0
4.2.4 After at least one clock cycle set WR_PULS=1. If slow device needs

to extend this time then block will wait for WR_PULS to become
inactive, writing data to internal FIFO with each rising clock edge during
WR_PULS=0.

4.2.5 Repeat 4.2.2 to 4.2.4 for remaining bytes

4.3 Read data from block
4.3.1 Select DATA FIFO with d_sel = 1
4.3.2 You can now read out the lowest bytes from DES BLOCK
4.3.3 Increment read pointer with setting RD_PULS=0 . The same holds

place with read pulse width as with write pulse.
4.3.4 Set RD_PULS=1 and repeat steps 4.3.2 to 4.3.3 to read out all bytes

Des macroblock. 05.06.98, Programmable Logic Laboratory. Http://www.pld.ttu.ee/

3

4.4 DES functions (encryption / decryption)
4.4.1 Fill DATA FIFO as described earlier.
4.4.2 If you want to use DES encryption function set ENCRYPT = 1

decryption function set ENCRYPT = 0
4.4.3 If you write to KEY FIFO then the last byte written into block will
 initiate selected DES function.
4.4.1 After 31 Clock cycles DES_RDY should go to active state and you

can read out the results from DATA FIFO as described earlier.

Notes.
• High active DES_CS signal enables all block functions.
• Both RD_PULS and WR_PULS signals are checked for being inactive before coming

out from IO/DES cycles. This ensures that slower devices can properly communicate
with block. The block will insert WAIT cycles if control signals are held active for
more than required, what is one clock cycle.

• IO operation takes 2 clock cycles for byte IO
• DES functions take 31 cycles for DES encrypt or decrypt
• Input signals (d_sel, encrypt) are not latched and should not change state during

operation cycle.
• The expected gate count should not exceed 4,5Kgates. The results with mapping to 2

input NOR, Inverter and D type flip-flop gave the following figures: 129 DFF, 2768
NOR2, 1678 INV

• The speed depends on target technology. The design has S-Boxes in different
hierarchy, for the speed of conversion cycle depends solely on these delays. If
required, S-Boxes could be flattened to produce faster circuits. As it is now the slowest
S-BOX has 7 gate delays.

• To use the block for 3DES implementations you should use it 3 times with the
following schedule:

1.1 Fill the DATA FIFO
1.2 Select the encrypt mode
1.3 Fill the KEY FIFO with first key. This will run DES 1.
1.4 Wait for DES_RDY to become active (31 cycles)
1.5 select the decrypt mode
1.6 Fill the KEY FIFO with second key. This will run DES 2.
1.7 Wait for DES_RDY to become active (31 cycles)
1.8 select the encrypt mode
1.9 Fill the KEY FIFO with third key. This will run DES 3.
1.10 Wait for DES_RDY to become active (31 cycles)
1.11 read out DATA FIFO

Des macroblock. 05.06.98, Programmable Logic Laboratory. Http://www.pld.ttu.ee/

4

5. DES MACROBLOCK validation

5.1 General
DES block is verified using testbench file. It exercises the block with

test vectors for DES Electronic Code Book (ECB) implementation, taken
from: "Validating the Correctness of Hardware Implementations of the
NBS Data Encryption Standard" , NBS Special Publication 500-20, 1980.
The vectors will test
• Initial Permutation and Expansion
• Inverse Permutation and Expansion
• Key Permutation
• Right-shifts in Decryption
• Data permutation
• S-Boxes
The test vectors are in file des.test. This original test vector file contains
entries like the following:
encrypt
#
 0101010101010101 95F8A5E5DD31D900 8000000000000000

Here the first entry is the key, the second the plaintext ant the third the
expected result. The function selector encrypt,decrypt show DES
function type. The key is in standard format, where low bits of each key
byte represent data for parity check.
First this file is edited to gather all decryptions together. The resulting file
des.test_decrypt_0to56_encrypt_the_rest contains first 57 decryptions and
the remaining encryptions. All the comments are stripped off. The resulting
file contains only data and the first line is:
8001010101010101 95A8D72813DAA94D 0000000000000000

This data has to be converted for use with DES block what has 8 bits IO
bus. For that purposes use PERL script FORMAT_DESD what creates file
DATA.in for testbench. The start of DATA.in is(\n is enter as usually):
00\n00\n00\n00\n00\n00\n80
4D\nA9\nDA\n13\n28\nD7\nA8\n95
00\n00\n00\n00\n00\n00\n00\n00

The plaintext and ciphertext are the same, the key has parity data thrown
away. They are in file LSB first.

Des macroblock. 05.06.98, Programmable Logic Laboratory. Http://www.pld.ttu.ee/

5

5.2 TESTBENCH is in file DESTEST.vhd
• the libraries used
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_misc.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_textio.all;
use std.textio.all;
entity TESTER is
-- test bench, no io
end TESTER;
architecture AA of TESTER is
• DES block component
component DESBLOCK
port (ASYN_RES: in std_logic; -- ASYNC RESET

 CLK: in std_logic; -- CLOCK, +edge
 ENCRYPT: in std_logic; -- ENCRYPT=1, DECRYPT=0
 RD_PULS: in std_logic; -- read fifo=0
 WR_PULS: in std_logic; -- write fifo

 CS_DES: in std_logic; -- chip select
 D_SEL: in std_logic; -- 1=data, 0=key
 DATAIN: in std_logic_vector(7 downto 0); -- data in

 DES_RDY: out std_logic; -- DES READY
 DATAOUT: out std_logic_vector(7 downto 0) -- data out

);

end component;
signal DATAIN: std_logic_vector(7 downto 0); -- data to des block
signal DATAOUT: std_logic_vector(7 downto 0); -- data from des block
signal RD_PULS: std_logic; -- fifo read pulse
signal WR_PULS: std_logic; -- fifo write pulse
signal CS_DES: std_logic; -- des block select
signal ENCRYPT: std_logic; -- mode 0 - decrypt, 1-
encrypt
signal CLOCK: std_logic; -- clock input to system
signal D_SEL: std_logic; -- DATA/KEY FIFO select
signal RESET: std_logic; -- main ASYNC reset
signal DES_RDY: std_logic; -- Block ready
-- FILE IO temp variables
signal FILE_IO: std_logic; -- rising front active IO
signal DATAEN: std_logic; -- FILE IO direction
-- TIMING CONSTANTS
CONSTANT CLKCY: time := 50 NS; -- CLOCK CYCLE LENGTH
CONSTANT HOLD_DELAY: time := 3 NS; -- CLOCK Propagation + lib
hold
begin

DUT:DESBLOCK port map
(
 ASYN_RES => RESET,
 CLK => CLOCK,
 ENCRYPT => ENCRYPT,
 RD_PULS => RD_PULS,
 WR_PULS => WR_PULS,
 CS_DES => CS_DES,
 D_SEL => D_SEL,

 DATAIN => DATAIN,
 DES_RDY => DES_RDY,
 DATAOUT => DATAOUT
);

Des macroblock. 05.06.98, Programmable Logic Laboratory. Http://www.pld.ttu.ee/

6

• This process interacts with disk file. The byte is read upon rising
edge of FILE_IO from file DATA.in

FILEIO: process
file OUTWR: text is out "DATA.out";
file INRD: text is IN "DATA.in";
variable ILINE, OLINE: line;
variable DAT_TMP_IN, DAT_TMP_OUT: std_logic_vector(7 downto 0);
begin
wait until FILE_IO’EVENT and FILE_IO=’1’ ;
-- Reading from file
if (DATAEN=’0’ and
 RESET=’1’ and
 (not endfile(INRD))) then
readline(INRD,ILINE);
hread(ILINE, DAT_TMP_IN);
DATAIN<=DAT_TMP_IN;
end if;
-- Writing to file
if (DATAEN=’1’ and
 RESET=’1’) then
DAT_TMP_OUT:=DATAOUT;
hwrite(OLINE, DAT_TMP_OUT);
writeline(OUTWR,OLINE);
end if;
end process;
• Clock creation
-- Main system clock
KELL: process
begin
wait for CLKCY/2 ;
if(RESET = ’0’) then
CLOCK<=’0’;
else
CLOCK<= not CLOCK;
end if;
end process;
-- Test stimuli process
• This process exercises the DES block
TEST: process
-- read the testdata from file to compare
variable FILEDATA: std_logic_vector(63 downto 0);
-- des cycle data output
variable CHECKDATA: std_logic_vector(63 downto 0);
-- error
variable VIGA: std_logic;
-- conversions counter
variable COUNTER: integer range 0 to 1000;
begin
• Initiate control for File IO
FILE_IO <= ’0’; -- file IO will take place on rising edge of this signal
DATAEN <= ’0’; -- file IO direction, here only read
• Reset the DES block
RESET<=’0’; -- main asynchronous reset
RD_PULS<=’1’; -- read pulse
WR_PULS<=’1’; -- write pulse
CS_DES<=’0’; -- select des, active hi
D_SEL<=’1’; -- begin with data fifo select
VIGA:=’0’; -- no error to begin with
COUNTER:=0; -- conversion counter
wait for CLKCY; -- reset delay

Des macroblock. 05.06.98, Programmable Logic Laboratory. Http://www.pld.ttu.ee/

7

• Start with the main test loop
RESET<=’1’;
while (VIGA=’0’) loop -- all entries from file until error

 -- last entry generates error by itself
• Test cycle Initialisation
-- In test table first entries are decrypt, then encrypt
if(COUNTER>57) then ENCRYPT<=’1’;
 else ENCRYPT<=’0’;
 end if;

CS_DES<=’1’; -- select block
FILE_IO <= ’0’; -- file IO on positive front
RD_PULS<=’1’; -- FIFO read pulse
WR_PULS<=’1’; -- FIFO write pulse
D_SEL<=’1’; -- DATA fifo select
wait until CLOCK’EVENT and CLOCK=’1’; -- to sync
wait for HOLD_DELAY; -- to prevent signals from

 -- changing at the same time
 -- as clock

• Start with DATA input
for I in 1 to 8 loop
FILE_IO<=’1’; -- get the data from file
wait until CLOCK’EVENT and CLOCK=’1’;
wait for HOLD_DELAY;
WR_PULS<=’0’;
wait until CLOCK’EVENT and CLOCK=’1’;
wait for HOLD_DELAY;
WR_PULS<=’1’;
FILE_IO<=’0’;
wait until CLOCK’EVENT and CLOCK=’1’;
wait for HOLD_DELAY;
end loop;

D_SEL<=’0’; -- set input to keys

• Then input keys
for I in 1 to 7 loop
FILE_IO<=’1’; -- get it from file
wait until CLOCK’EVENT and CLOCK=’1’;
wait for HOLD_DELAY;
WR_PULS<=’0’;
wait until CLOCK’EVENT and CLOCK=’1’;
wait for HOLD_DELAY;
WR_PULS<=’1’;
FILE_IO<=’0’;
wait until CLOCK’EVENT and CLOCK=’1’;
wait for HOLD_DELAY;
 end loop;

• The last write has initiated conversion cycle, wait for block to
finish

wait until DES_RDY’EVENT and DES_RDY = ’1’;

• Prepare to read in the comparison data from file
CS_DES<=’0’; -- disable des block;
wait until CLOCK’EVENT and CLOCK=’1’;
wait for HOLD_DELAY;

Des macroblock. 05.06.98, Programmable Logic Laboratory. Http://www.pld.ttu.ee/

8

for I in 0 to 7 loop
WR_PULS<=’0’; -- to test CS_DES functionality
RD_PULS<=’1’; -- the same
FILE_IO<=’1’;
wait until CLOCK’EVENT and CLOCK=’1’;
wait for HOLD_DELAY;
RD_PULS<=’0’; -- it too
WR_PULS<=’1’; -- this also
FILE_IO<=’0’;
FILEDATA(((I+1)*8)-1 downto I*8):=DATAIN;
wait until CLOCK’EVENT and CLOCK=’1’;
wait for HOLD_DELAY;
end loop;
• now read out the data from DES block
-- INITIALIZE for DATA readout
WR_PULS<=’1’;
RD_PULS<=’1’;
CS_DES<=’1’;
D_SEL<=’1’;
-- READ OUT 8 DATA BYTES
for I in 0 to 7 loop
wait until CLOCK’EVENT and CLOCK=’1’;
wait for HOLD_DELAY;
RD_PULS<=’0’; -- pulse aadress
wait until CLOCK’EVENT and CLOCK=’1’;
wait for HOLD_DELAY;
RD_PULS<=’1’;
CHECKDATA(((I+1)*8)-1 downto I*8):=DATAOUT;
end loop;

• and compare it with testdata from file
if(CHECKDATA=FILEDATA) then
COUNTER:=COUNTER + 1;
elsif(COUNTER < 290) then
assert FALSE report "ERROR in COMPARE" severity ERROR;
else
assert FALSE report "END OF FILE, ALL OK" severity ERROR;
end if;
end loop;
end process;
end AA;

configuration TB of TESTER is
for AA
for DUT:DESBLOCK use entity WORK.DESBLOCK(VER2_1);
end for;
end for;
end TB;

For any additional comments contact
Juri Poldre
jp@pld.ttu.ee
PHONE/FAX +372-6202253

