Des macroblock. 05.06.98, Programmable Logic Laboratory. Http://www.pld.ttu.ee/

DES MACROBLOCK

1. Overview

The DES macroblock implements the Data Encryption Standard
first described in FIPS publication 46, 15 January 1977. The same
standard is aso known under ANSI X3.92. The block operatesin
Electronic CodeBook (ECB) mode. It accepts 64 bits of input and
56 bits of key, returning 64 bits of output. Both enciphering and
deciphering functions are supported. The key and data are written
to and read from block using 8 bit bus.

2. Architecture

The DES agorithm is implemented sequentialy with SSBOXES
optimized to gates. The block is synchronous and expects block 10
operationsto berelated to clock signal.

3. DES Block input/output ports

3.1 Inputs
 Datainput bus DATAIN 8
» Asynchronous reset ASYN RES 1
» Clock, active positivefront CLK 1
» DESfunction select ENCRYPT 1
* Read FIFOS RD _PULS 1
» Write FIFOS WR_PULS 1
» DES block select CS DES 1
» Key or Data FIFO select D_SEL 1
3.2 Outputs
» Data output bus DATAOUT 8
» DES block ready DES RDY 1

Des macroblock. 05.06.98, Programmable Logic Laboratory. Http://www.pld.ttu.ee/

4. Block operating descriptions

d sel

. dat
\ > DATAFIFO 64 bits | [-o220UL
datain

—==—> DMUX A

\ 1

> DATAFLOW
asyn res | A
ck | MAIN | _
d puls.| cONTROL H P KEYFIFO 56 bits
wr puls| FSM \ des_rdy
cs des_ | {
- KEY
encrypt | SCHEDULER

4.0 Before using the block reset line should be held high for at least one
clock cycletoinitialise internal data and control structures

4.1 Write datato block
4.2.1 Select DATA FIFO with dsd=1or
KEY FIFO dsad=0

4.2.2 Put 8 bits of datato block input, LSB first
4.2.3 Select write to FIFO with setting WR_PULS=0

4.2.4 After at least one clock cycle set WR_PULS=1. If slow device needs
to extend this time then block will wait for WR_PULS to become
inactive, writing data to internal FIFO with each rising clock edge during
WR_PULS=0.

4.2.5 Repeat 4.2.2to 4.2.4 for remaining bytes

4.3 Read data from block

4.3.1 Select DATA FIFOwith d sel =1

4.3.2 Y ou can now read out the lowest bytes from DES BLOCK

4.3.3 Increment read pointer with setting RD_PULS=0 . The same holds
place with read pulse width as with write pulse.

4.3.4 Set RD_PULS=1 and repeat steps 4.3.2 to 4.3.3 to read out al bytes

Des macroblock. 05.06.98, Programmable Logic Laboratory. Http://www.pld.ttu.ee/

4.4 DES functions (encryption / decryption)
4.4.1 Fill DATA FIFO asdescribed earlier.
4.4.2 1f you want to use DES encryption function set ENCRYPT = 1

decryption function set ENCRYPT = 0O

4.4.3 1f you write to KEY FIFO then the last byte written into block will

initiate selected DES function.

4.4.1 After 31 Clock cycles DES RDY should go to active state and you

can read out the results from DATA FIFO as described earlier.

Notes.

High active DES_CS signal enables all block functions.
Both RD_PULS and WR_PULS signals are checked for being inactive before coming
out from IO/DES cycles. This ensures that slower devices can properly communicate
with block. The block will insert WAIT cycles if control signals are held active for
more than required, what is one clock cycle.
1O operation takes 2 clock cyclesfor byte 10
DES functions take 31 cycles for DES encrypt or decrypt
Input signals (d_sel, encrypt) are not latched and should not change state during
operation cycle.
The expected gate count should not exceed 4,5K gates. The results with mapping to 2
input NOR, Inverter and D type flip-flop gave the following figures. 129 DFF, 2768
NOR2, 1678 INV
The speed depends on target technology. The design has S-Boxes in different
hierarchy, for the speed of conversion cycle depends solely on these delays. If
required, S-Boxes could be flattened to produce faster circuits. Asit is now the slowest
S-BOX has 7 gate delays.
To use the block for 3DES implementations you should use it 3 times with the
following schedule:

1.1 Fill the DATA FIFO

1.2 Select the encrypt mode

1.3 Fill the KEY FIFO with first key. Thiswill run DES 1.

1.4 wait for DES _RDY to become active (31 cycles)

1.5 select the decrypt mode

1.6 Fill the KEY FIFO with second key. This will run DES 2.

1.7 Wait for DES _RDY to become active (31 cycles)

1.8 select the encrypt mode

1.9 Fill the KEY FIFO with third key. Thiswill run DES 3.

1.10 Wait for DES_RDY to become active (31 cycles)

1.11 read out DATA FIFO

Des macroblock. 05.06.98, Programmable Logic Laboratory. Http://www.pld.ttu.ee/

5. DESMACROBLOCK validation

5.1 General

DES block is verified using testbench file. It exercises the block with
test vectors for DES Electronic Code Book (ECB) implementation, taken
from: "Validating the Correctness of Hardware Implementations of the
NBS Data Encryption Standard" , NBS Special Publication 500-20, 1980.
The vectors will test
* |nitial Permutation and Expansion
 |Inverse Permutation and Expansion
» Key Permutation
* Right-shiftsin Decryption
» Data permutation
« S-Boxes
The test vectors arein file des.test. This original test vector file contains

entries like the following:
encr ypt
#
0101010101010101 95F8A5E5DD31D900 8000000000000000

Here the first entry is the key, the second the plaintext ant the third the
expected result. The function selector encrypt, decrypt show DES
function type. The key is in standard format, where low bits of each key
byte represent data for parity check.

First this file is edited to gather al decryptions together. The resulting file
des.test_decrypt_0to56 encrypt_the rest contains first 57 decryptions and
the remaining encryptions. All the comments are stripped off. The resulting

file contains only data and thefirst lineis:
8001010101010101 95A8D72813DAA94D 0000000000000000

This data has to be converted for use with DES block what has 8 bits 10
bus. For that purposes use PERL script FORMAT_DESD what creates file

DATA.in for testbench. The start of DATA.inis(\n is enter as usually):
00\ nO0O\ NOO\ NnOO\ NOO\ NOO\ N80

4D\ nA9\ nDA\ n13\ n28\ nD7\ nA8\ n95

00\ nO0O\ NOO\ NnOO\ NOO\ NOO\ NnOO\ NOO

The plaintext and ciphertext are the same, the key has parity data thrown
away. They arein file LSB first.

Des macroblock. 05.06.98, Programmable Logic Laboratory. Http://www.pld.ttu.ee/

5.2 TESTBENCH isin file DESTEST.vhd

e the libraries used

library |EEE;

use | EEE.std | ogic _1164. all
use | EEE.std | ogic _nisc.all
use |EEE. std logic arith.all;
use | EEE. std_l ogic_textio.all;
use std.textio.all;

entity TESTER is

test bench, no io

end TESTER,

architecture AA of TESTER is

e DES bl ock conponent
conmponent DESBLOCK

port (ASYN RES: in std_I ogi c; -- ASYNC RESET
CLK: in std_I ogi c; -- CLOCK, +edge
ENCRYPT: in std_I ogi c; -- ENCRYPT=1, DECRYPT=0
RD PULS: in std_I ogi c; -- read fifo=0
WR PULS: in std_I ogi c; -- wite fifo
CS DES: in std_I ogi c; -- chip select
D SEL: in std_I ogi c; -- 1=data, O=key
DATAIN: in std_l ogi c_vector(7 dowmnto 0); -- data in
DES RDY: out std_I ogi c; -- DES READY
DATACQUT: out std_l ogi c_vector (7 downto 0) -- data out
)
end conponent;
si gnal DATAIN: std_logic_vector(7 downto 0); -- data to des block
si gnal DATAQUT: std_l ogic_vector(7 downto 0); -- data from des bl ock
si gnal RD PULS: std_lI ogic; -- fifo read pulse
si gnal WR_PULS: std_Il ogic; -- fifo wite pul se
si gnal CS _DES: std_l ogic; -- des bl ock sel ect
si gnal ENCRYPT: std_I ogic; -- nmode 0 - decrypt, 1-
encrypt
si gnal CLOCK: std_l ogic; -- clock input to system
si gnal D SEL: std_l ogic; -- DATA/ KEY FI FO sel ect
si gnal RESET: std_I ogi c; -- mai n ASYNC reset
si gnal DES RDY: std_lI ogic; -- Bl ock ready

FILE IO tenp vari abl es

si gnal FILE IO std_l ogic;

si gnal DATAEN: std_I ogi c;

-- TI M NG CONSTANTS

CONSTANT CLKCY: tinme := 50 NS;
CONSTANT HOLD DELAY: tinme := 3 NS;
hol d

begi n

DUT: DESBLOCK port map

ASYN_RES
CLK
ENCRYPT
RD_PULS
WR_PULS
CS_DES
D_SEL
DATAI N
DES_RDY
DATAQUT

=>
=>
=>
=>
=>
=>
=>
=>
=>
=>

RESET,
CLOCK,
ENCRYPT,
RD_PULS,
WR_PULS,
CS_DES,
D_SEL,
DATAI N,
DES_RDY,
DATAQUT

rising front active
FILE 1O direction

CLOCK CYCLE LENGTH
CLOCK Propagation + lib

Des macroblock. 05.06.98, Programmable Logic Laboratory. Http://www.pld.ttu.ee/

e This process interacts with disk file. The byte is read upon rising
edge of FILE 1O fromfile DATA.in
FI LEI O. process
file OUTWR text is out "DATA out"
file INRD text is IN "DATA in";
variable ILINE, OLINE 1line;
vari abl e DAT_TWMP_I N, DAT_TMP_QUT: std_l ogic_vector(7 downto 0);
begi n
wait until FILE_|IO EVENT and FILE_ | O=" 1
-- Reading fromfile
i f (DATAEN=" O’ and
RESET=" 1’ and
(not endfile(lNRD))) then
readl i ne(1 NRD, | LI NE)
hread(| LI NE, DAT_TMP_IN);
DATAI N<=DAT_TMP_I N

end if;

-- Witing to file

i f (DATAEN=" 1 and
RESET=" 1’) then

DAT_TMP_QOUT: =DATAQUT;
hwrite(OLI NE, DAT_TMP_QUT);
writeline(OQUTVWR, OLI NE) ;
end if;

end process;

e Clock creation

-- Main system cl ock
KELL: process

begi n

wai t for CLKCY/2

if(RESET = '0’) then
CLOCK<=" 0’

el se

CLOCK<= not CLOCK

end if;

end process;

-- Test stimuli process

e This process exercises the DES bl ock

TEST: process

-- read the testdata fromfile to conpare

vari abl e FILEDATA: std_l ogic_vector(63 downto 0);
-- des cycle data output

vari abl e CHECKDATA: std_l ogic_vector(63 downto 0);
-- error

vari abl e VI GA: std_| ogic;

-- conversions counter

vari abl e COUNTER: integer range 0 to 1000

begi n

e Initiate control for File IO

FILEIO<="'0"; -- file lOw Il take place on rising edge of this signal
DATAEN <= '0'; -- file IOdirection, here only read
« Reset the DES bl ock

RESET<=' 0’ ; -- mai n asynchronous reset

RD PULS<="1'"; -- read pulse

WR PULS<="1"; -- wite pul se

CS DES<='0’; -- select des, active hi

D SEL<="1"; -- begin with data fifo sel ect
VIGA: ="' 0 ; -- no error to begin with

COUNTER: =0; -- conversion counter

wait for CLKCY; -- reset delay

Des macroblock. 05.06.98, Programmable Logic Laboratory. Http://www.pld.ttu.ee/

e Start with the main test |oop

RESET<='1";

while (MIGA="0") loop -- all entries fromfile until error
-- last entry generates error by itself

e Test cycle Initialisation
-- In test table first entries are decrypt, then encrypt
i f(COUNTER>57) then ENCRYPT<='1";

el se ENCRYPT<='0’;

end if;

CS DES<="1"; -- select block

FILE 10<="0"; -- file IO on positive front

RD PULS<='1"; -- FIFO read pulse

WR PULS<="1"; -- FIFOwite pul se

D SEL<="1"; -- DATA fifo select

wait until CLOCK EVENT and CLOCK='1'; -- to sync

wai t for HOLD _DELAY; -- to prevent signals from
-- changing at the sane tine
-- as clock

e Start with DATA input

for 1 in1to 8 |loop

FILE IO<="1"; -- get the data fromfile

wait until CLOCK EVENT and CLOCK='1’;
wait for HOLD DELAY;

WR PULS<='0’;

wait until CLOCK EVENT and CLOCK='1’;
wait for HOLD DELAY;

WR PULS<="1";

FILE IO<="0";

wait until CLOCK EVENT and CLOCK='1’;
wait for HOLD DELAY;

end | oop;

D SEL<='0’; -- set input to keys
e« Then input keys

for I inl1lto 7 loop

FILE IO<="1"; -- get it fromfile

wait until CLOCK EVENT and CLOCK='1";
wait for HOLD DELAY,;

VWR PULS<='0’';

wait until CLOCK EVENT and CLOCK='1";
wait for HOLD DELAY;

WR PULS<="1";

FILE I1O<="0";

wait until CLOCK EVENT and CLOCK='1";
wait for HOLD DELAY;

end | oop;

e The last wite has initiated conversion cycle, wait for block to
finish
wait until DES RDY' EVENT and DES_RDY = '1';

e Prepare to read in the conparison data fromfile
CS DES<='0"; -- disabl e des bl ock;

wait until CLOCK EVENT and CLOCK='1';

wait for HOLD DELAY;

Des macroblock. 05.06.98, Programmable Logic Laboratory. Http://www.pld.ttu.ee/

for 1 in0Oto 7 |Iloop

WR PULS<='0’; -- to test CS DES functionality
RD PULS<='1"; -- the sane

FILE IO<="1

wait until CLCEK EVENT and CLOCK='1';
wait for HOLD DELAY;

RD PULS<='0"; -- it too
WR PULS<="1"; -- this also
FILE | O<="0";

FI LEDATA(((1+1)*8)-1 downto |*8):=DATAIN;
wait until CLOCK EVENT and CLOCK='1";

wait for HOLD DELAY;

end | oop;

 now read out the data from DES bl ock

-- INITI ALI ZE for DATA readout

WR_PULS<="1";

RD PULS<="1";

CS DES<="1";

D SEL<="1";

-- READ QUT 8 DATA BYTES
for 1 inOto 7 Iloop

wait until CLOCK EVENT and CLOCK='1’;

wait for HOLD DELAY;

RD PULS<='0’"; -- pul se aadress

wait until CLOCK EVENT and CLOCK='1’;

wait for HOLD DELAY;

RD PULS<='1’";

CHECKDATA(((1+1)*8)-1 downto | *8): =DATAQUT;
end | oop;

e« and conpare it with testdata fromfile

i f (CHECKDATA=FI LEDATA) then

COUNTER: =COUNTER + 1;

el si f (COUNTER < 290) then

assert FALSE report "ERROR in COWARE" severity ERROR;
el se

assert FALSE report "END OF FILE, ALL OK" severity ERROR;
end if;

end | oop;

end process;

end AA;

configuration TB of TESTER i s

for AA

for DUT: DESBLOCK use entity WORK. DESBLOCK(VER2 1);
end for;

end for;

end TB;

For any additional comments contact
Juri Poldre

jp@ld.ttu. ee

PHONE/ FAX +372-6202253

