
A VLSI implementation of
RSA and IDEA encryption

engine.

 Ahto Buldas
e-mail: ahtbu@ioc.ee

phone: +372-5102-160
fax: +372-6202-253

Jüri Põldre
e-mail: jp@pld.ttu.ee

phone: +372-5103-168
fax: +372-6202-253

Abstract- Data communication uses RSA
for key exchange and IDEA for block
encryption. The presented design employs
both modular arithmetic and IDEA using
the same 96-bit ALU for calculations. The
one chip 1.0 µm 104 mm2 CMOS design
can also generate and hold keys for
asymmetric key exchange systems and has
internal self-test.

I. INTRODUCTION

Data encryption based on asymmetric key
exchange algorithms and symmetric block
encryption has been used in data
communications for many years. These
systems usually consist of general purpose
processor and some additional logic to
speed up modular calculations. As the key
generation for RSA [RSA78] is
complicated and time-consuming most
hardware implementations use externally
generated keys. This presents serious
security problem connected with the
possibility to access sensitive data. If the
key generation, inversion and the key
exchange field handling can be done in a
single tamper-proof device, there is no
need to enable user access to these
procedures. As these procedures can be
realised using a reasonable amount of

memory, it becomes feasible to realise
such a tamper-proof device in a single
integrated circuit. Such a realisation would
not only improve security but is also cost
effective.
Secure key exchange with RSA in a
reasonable time requires a lot of hardware
resources. Most of it is used for modular
arithmetic. Also this device should include
a hardware for a secure block cipher. The
calculations used by most block ciphers are
bit operations and table lookups which are
hard to share with integer arithmetic and
have to be realised by separate hardware.
One solution would be to use IDEA cipher
for block encryption. IDEA has 128-bit key
length. The encryption process consists of
8 rounds. The operations in one round
contain 16-bit modular additions and
multiplications which can be easily shared
with integer calculations used in RSA.
Also the key inversion algorithms for both
ciphers are similar. When using the same
ALU for both asymmetric key exchange
algorithms and block encryption, it is
possible to save silicon area.
The combination of RSA and IDEA has
also been used with success in freeware e-
mail encryption system PGP.
In the following pages a VLSI
implementation of the device discussed
above is presented starting with data path
description. The control part, self-test and
future directions are discussed.

II. DATA PATH

ALU is divided into 4 different units, each
24-bit wide. For IDEA calculations these
units can be configured as two 16 bit
multipliers. The calculations are carried
out using low-high algorithm
[LAI91],[LAI92]. Each 24 bit block can
calculate 8*16-bit multiplication. Using 2
such multipliers we can multiply 16*16
bits in one cycle.

A(7:0)

A(15:8)

B(15:0) C(15:0)

D(7:0)

D(15:8)

alu24.1

alu24.4

alu24.2

alu24.3

Fig. 1 ALU in IDEA multiply mode

The second cycle will be used for modular
reduction step of low-high algorithm.
During these steps lower parts of
calculations from alu24.1 and alu24.2 are
fed into CSA tree of alu blocks alu24.3
and alu24.4, avoiding carry propagation
delay [HEN90]. The rest of IDEA
calculations do not take much silicon area
and consist of some XORs and two 16-bit
adders. For more detailed description see
IDEA control below.
In long modular calculations mode the
ALU is configured as 8*96 bit multiplier
or 96-bit adder/negator with additional
carry logic.

carry logic
8

96

96

multiplier
adder

negator

Fig. 2 ALU in modular calculation mode

ALU
mux

mux
24

24

96

9696

ER (23:0)

RAM8
8*96

RAM128
128*96

8/6

FIG. 3 The structure of ALU datapath

This mode enables us to handle long
numbers 8 bits at a time. The datapath
consists of ALU, two RAM modules and
one 24-bit register ER (Fig.3). This small
register is used for multiply and modular
reduction as a source of multiplicand.
RAM modules can be used as two data
register groups of 1 and 16 registers. All
data registers are 768 bits wide.

III. ALU CONTROL
STRUCTURES

ALU control structures are shown on fig.
5. The processor has two levels of code.
Microcode is fixed and contains two types
of commands.
Index calculating commands. For that
purposes the INDEX_CALC state machine
has 4 internal 8-bit registers enabling to
address 6-bit entities inside the 768-bit
data registers as shown on Fig. 4.

96*(k ... k -1)

24*(l...l-1)

7 6...4 3...2 1...0

R(767...0)

R’(95...0)

R’’(23...0)

I(8...0)

6[8]*(j...j-1)

 Fig. 4. Index register layout

DATAPATH

ALU_SEQUENCER INDEX_CALC

COMMAND
FETCHER

HIGH_LEVEL
COMMANDS

CODE
ROM

MEMORY

Fig. 5. ALU control structure

 The index registers are used for loading
parts of 768-bit registers into 24-bit
register ER. Also it is possible to do logic
operations between immediate values,
index registers and ER.
Arithmetic commands operate on long data
registers. Typical commands of that type
are adding, subtracting, multiplying and
transfer of data registers. These are
executed in ALU_SEQUENCER in
parallel with index calculations.
To ease the programming job a level of
hierarchy is built upon microcode.
HIGH_LEVEL COMMANDS state
machine decodes these commands and
executes the necessary microcode program.
The microcode program memory contains
jump table at the start of code area. Each
time a high level command gets executed
the state machine checks the entry in this
table to find the appropriate microcode.
At the highest level it is possible to choose
between 32 external commands. These are
selected with setting logic levels on
circuits pads. The high level code has
similar table as microcode to decode all
external commands of the circuit.

IV. MODULAR MULTIPLY
ALGORITHM

Let us now look more closely at the
modular multiply step. Let A, B and C be
data registers and S be an index register.
First the operands are reduced so that for
A*B mod C the first step would be

A:=A mod C and B:=B mod C.

Then the larger of the arguments A and B
is loaded into RAM8 (Fig.3), after what the
higher 24 bits of second argument are
loaded into 24-bit register ER. Then we
multiply the higher 6 bits of the first
argument with the second argument, and
do the modular reduction step. For that we
use binary search algorithm to find out the
higher bits of constant m what we must
use in reduction step. Assuming A<B<C,

modular multiply consists of the following
steps:
1. RAM8 := B
2. C := -C
3. S := length of A in 24 bit fields
4. ER := A[S]
5. for I=1 to 4
6. CALL MODMUL
7. S:= S -1
8. if S ≠ 0 GOTO 4

MODMUL:
1. RAM8 := ER(higher 6 bits) * RAM8
2. Find the largest 7-bit m using binary

search so that C * m + RAM8 ≥ 0
3. Reduce RAM8 := RAM8 + C * m
4. Shift ER 6 bits
5. RETURN

The binary search algorithm starts with the
highest bit and then moves through all bits.
To speed up the calculations we use only
the higher 96-bit part of RAM8 for
compare. Only when C*m and RAM8 are
”almost equal” the full compare is used.
Fortunately, this happens very rarely (with
the probability 2-89) and can be safely
ignored in speed calculations. The number
N of cycles for multiplication can be
calculated as follows:

N = (R+ R + 1 + m) * R * L / m,000
 where:
N -- number of cycles for multiply,
m -- ALU multiplier length
R -- length of register in RAM fields
L -- length of one RAM field in bits.
In our case:
N := (8 + 8 + 7) * 8 * 96 / 6 := 23 * 8 * 16

:= 2944

using 25 MHz clock we get 8491 modular
multiplications per second.
The small register can also be used for
right shifting arguments in divide
operations and for bit operations.

V. I/O AND IDEA

The I/O control structure takes care of all
I/O and starts IDEA cipher process when
the circuit is in block encryption mode.
The circuit has two I/O modes. One is
active when command fetcher has been
stopped by the WAIT micro-command.
During this it is possible to read out all
internal registers. The other is active when
circuit is in I/O mode. I/O mode lets user
read out only last 2 data registers. This is
necessary to avoid the leak of secret
information from the circuit.
In IDEA mode the I/O starts with reading
and filling temporary input registers. After
the last word of 64 bits has been read the
IDEA transform starts and the temporary
registers are ready to accept new input
data. After IDEA has finished, it gives out
the IDIO_RDY signal and fills the output
registers, what can then be read out from
the circuit. All this is necessary, because
IDEA transform is rather fast. During 50
cycles of operating time it must be possible
to read in next 4 words and read out
previous ones. As one I/O operation takes
4 cycles, the total time for I/O is 4*4*2 =
32 cycles. The encryption speed will be 32
Mbit/s using 25 MHz clock.
The I/O control has at its final stage the
possibility to select between byte-parallel,
word-parallel and serial transfer mode.
The IDEA control system takes us through
the IDEA transform in 50 cycles. To see
how it is achieved let us first look at IDEA
cycle on Fig. 6. Here and after F4 stands
for Fermat’s 4th digit, namely 216+1. The
IDEA transform consists of 8 similar
rounds and output transform. One IDEA
round contains 6 multiply and 4 add
operations. It transforms 64 bit of input
data to 64 bit of output data using 96 bits
of key information. Output transform
contains only the upper 2 additions and
multiplications.

X X

+

+

+

+

+

+

++

K2

K1 K4

K3

A
2A

1

M
2

M
1

I1 I2 I3 I4

O1 O3 O4

X
1

X +
K5

M
3

A
3

X+

M
4A

4

K6

+ A XOR B

O2

+ A+B mod (F4-1) X A*B mod F4

Fig. 6 One IDEA round.

The time-consuming operation here is
modular multiply. Two16 bit additions at
beginning are cheap and can be done in
parallel with multiplications. XOR is also
no problem.
As it was pointed out before we use low-
high algorithm for modular multiplication.
This algorithm for C := A * B mod F4
consists of the following steps:

1. D := A * B,
 D.lo := D(15..0), D.hi :=D(31..16)
2. if(D.lo >= D.hi) C := D.lo - D.hi
 else C := D.lo - D.hi + F4

When describing IDEA datapath we noted
that ALU can be used for two 16-bit
multiplications in one cycle. So the first
step of the algorithm is quite easy. For
second step we use ALU units alu24.1 and
alu24.3 for the M1 and alu24.2 and alu24.4
for the M2 multiplication. They both work
alike so I will take a look only at the first
multiplication. Alu24.1 calculates D.lo-
D.hi, alu24.3 calculates D.lo-D.hi+F4. It is
possible to use them like this, because
ALU units are multipliers and consist of 8
argument CSA adder with CLA at the end.
For M3 and M4 multiplication we use all
units and calculate the multiplication in the

alu24.1 and alu24.3. Alu24.2 and alu24.4
will have at reduction stage the addition
argument added. Then we check the result
of alu24.1 and alu24.3 and select the result
from alu24.2 and alu24.4. That enables us
to run all multiplications in 2 clock cycles.
So for each IDEA cycle we have 2*3:=6
clock cycles. As the output transform
contains only the beginning of the cycle it
adds 2 clock cycles to the total time
leaving us with:

N = 2*3*8 + 2 = 50

clock cycles per IDEA transform.
Finally, the following table presents the
ALU datapath schedule in IDEA mode.
Here .lo and .hi represent the lower and
higher part of calculation. The M1 of next
cycle is selected from M1 and M1’
depending on the value of M1 according to
low-high algorithm. M2 is selected
similarly. M3 is selected from M3’ ’ and
M3’ ’ ’ depending on the value of M3. M4
is selected as M3.

Table 1. IDEA datapath schedule.

 The keys are selected from RAM128 with
the possibility to change between the
starting location externally before each
transform, thereby selecting between
encryption and decryption.

VI. SELF TEST

The circuit contains self-test system for
evaluating error condition and verifying
hardware. To accomplish it we use state
hashing of all FSMs. The bits are fed into 8
bit analysers running in parallel. After 255
states the registers are shifted into 32 bit
analyser and the readout of that analyser is
possible in test mode. Datapath can be
checked by running arithmetic test
program and IDEA transform. The state
hashing help us to verify that the desired
result was achieved in the correct way. By
making the source code available it is
possible by checking the state hashing to
verify that the hardware has not been
tampered with to include backdoor.

nr alu24.1 alu24.3 alu24.2 alu24.4
1 T1 := I1*K1 T2:=I1*K1 T3:=I4*K4 T4:=I4*K4
2 M1:=T1.lo-T1.hi M1’ :=T2.lo-T2.hi+F4 M2:=T3.lo-T3.hi M2’ :=T4.lo-T4.hi+F4
3 T1:=X1 * K5 T2:=X1 * K5 T3:=X1 * K5 T4:=X1 * K5
4 M3:=T1.lo-T1.hi M3’ :=T2.lo-T2.hi+F4 M3’ ’ :=T3.lo-T3.hi+X2 M3’ ’ ’ :=T4.lo-T4.hi+X2+F4
5 T1:=A3 * K5 T2:=A3 * K5 T3:=A3 * K5 T4:=A3 * K5
6 M4:=T1.lo-T1.hi M4’ :=T2.lo-T2.hi+F4 M4’ ’ :=T3.lo-T3.hi+M3 M4’ ’ ’ :=T4.lo-T4.hi+M3+F4

VII. FUTURE DIRECTIONS

This circuit has several deficiencies:

1. No internal code rom. This makes it
easy for the attacker to rewrite control
programs.

2. No internal cryptographically secure
random number generator. It has a
built-in PRNG for testing purposes

only. External random generator must
be used to run it in real applications.
But external generators can be
manipulated by the attacker.

3. The moduli length is too short- only
768 bits. For RSA to be secure it
should be at least 1024 bits. In the next
version we will double the moduli
length by adding second ALU unit.
This will also increase IDEA speed two
times. Also by running two ALUs in
parallel and using Chinese Remainder

theorem we can increase RSA
decryption speed by a factor of 4.

4. Datapath design is not the best.
Registers should be added to increase
the speed, also the layout information
should be extracted from VHDL files
to produce compact layout. This was
one important by-product of the
project. By using VHDL generate
statements and some control pragmas
the program extracts layout control
information from source file. This
information is then converted into
Cadence tile generator form to produce
layout for datapath.

5. The possibility to control clock
frequency with built-in PLL synthesiser
should be included to enable us run the
circuit at lower speeds what is crucial
for mobile equipment where high
encryption speeds must give a way to
low power consumption.

6. Some Message Authentication Code
calculation should be included to
internally test the integrity of
bypassing data.

7. The support for signed public key
database should be included.

8. The switch to faster technology should
increase clock speed and decrease area.

VIII.PROJECT DEVELOPMENT

The project started on year 1993 with the
financial and educational aid from Europe.
TEMPUS JEP4772 project with Prof.
Manfred Glesner from Germany,
Darmstadt, Prof. Bernard Courtois from
France, Grenoble and prof. Raimund Ubar
from Tallinn Technical University gave us
the tools for synthesis and mapping and the
know-how.
In the beginning we chose the architecture
and then wrote the circuit simulator on PC.
At that time Ahto Buldas held theoretical
seminars about cryptology in Institute of
Cybernetics. Using the PC simulator we
refined the code for calculations. At the
same time we started to write the

behavioural description of the circuit using
SYNOPSYS development software. Whole
development was carried out using VHDL
language. Finally we added the self-test
feature. The behavioural description is in
22 files with total size 509 KB. At the end
of 1996 the circuit was ready for prototype
run. The placement and routing was done
with CADENCE development system. The
prototype silicon run was financed by
Institute of Cybernetics and manufactured
via Europractice in ES2 1.0 µm
technology. We received the prototypes at
the beginning of March, 1997. Since then
we have developed the interface to PC
using 2 XILINX FPGAs and rewrote the
simulator to include the possibility to
download and test the code on real device.
As the result we have found these devices
comply with the expectations, with 3 out of
20 prototypes not functional due to
production faults. The calculated worst-
case speed was 20 MHz. As experiments
showed the real maximal operating speed
was 25 MHz.
Now we are developing the add-in card for
PC to carry out disk and network
encryption and are rewriting the simulator
to allow other people to experiment with
the circuit.

ACKNOWLEDGEMENTS

The authors are grateful to prof. Raimund
Ubar for the advises and patience,
European Union TEMPUS office and
EUROPRACTICE organisation for giving
us the opportunity and dr. Ülo Jaaksoo and
Institute of Cybernetics for financial
support.

REFERENCES

[HEN90] Hennessy,J.L., Patterson,D.A.,
“Computer architecture: a quantitative
approach,” Morgan Kaufman Publishers,
Inc., 1990.

[LAI91] Lai,X., Massey,J.L., “A proposal
for a new block encryption standard,”
Advances in Cryptology—
EUROCRYPT’90, 389—404, 1991.

[LAI92] Lai, X., “On the design and
security of block ciphers,” ETH Series in
Information Processing, J.L.Massey
(editor), vol. 1, Hartung-Gorre Verlag
Konstanz, Technische Hochshule (Zurich),
1992.

[RSA78] Rivest,R.L., Shamir,A.,
Adleman,L.M., “A method obtaining
digital signatures and public-key
cryptosystems,” Communications of the
ACM, v. 21, n.2, 120—126, Feb 1978.

