Ramesh C. Tekumalla
Intel Corporation
2501 NW 229 Ave.
Hillsboro, OR 97124

Abstract |

Recent research has characterized a class of faults, called
primitive faults, that must be tested to insure timing correct-
ness of digital circuits. Experimental results have shown
that a large|fraction of primitive faults usually have only
non-robust tests. In this paper, we propose a method of im-
proving robust coverage of primitive faults using.test point
insertion. An important feature of the proposed method is
that instead of considering primitive faults explicitly, single
faults are analyzed to determine whether they can be mem-
bers of robustly testable primitive faults. If not, test points
are speciﬁecii to make any primitive fault containing such
Jaults robustly testable. Results of experiments to determine
the effectiveness of the proposed method show significant
improvements in fault coverage.

1 Introduction

Correct operation of a circuit at the intended speed requires
that the delay of no path exceeds the value determined by
the clock penod This is usually verified by delay testing,
using the path delay fault model [1). In this model, it is
assumed that the presence of a delay fault increases the total
delay along|the path.

Recent research in path delay fault testing has focused
on various topics like test classification (robust and non-
robust), fau'it classification (redundant, robust-dependent,
functionally| sensitizable) and synthesis of delay-testable
combinatiopal circuits [2, 3,4, 5,6,7, 8,9)]. A testfora
path delay fault may depend on delays on other paths in the
circuit under test. A test that detects a fault independent of
delays in other paths is called a robust test [2]. A test that
cannot be invalidated by any fault if certain other faults are
proven to be not present is called a validatable non-robust
(VNR) test [6]. A hazard-free test is one that does not pro-
duce any pulses or glitches on the tested path. In this paper,
we will be concerned with hazard-free robust tests.

Robust or VNR tests may not exist for all paths in a circuit.
Since the coverage of path delay faults by robust or VNR

Paper 11.1
260

Robust Testability of Primitive Faults using Test Points

Prem R. Menon
Dept. of Elec. & Comp. Eng.

University of Massachusetts
Ambherst, MA 01003

tests is usually quite low, several techniques have been pro-
posed for improving such coverage. Synthesis techniques
for complete robust testability [8, 9] and VNR testability
[6] entail considerable area overhead. Test point insertion
[10, 11] has been proposed as a means of improving testa-
bility, but the area overhead for making all single paths
testable may still be high. It may not be necessary to test
all paths in the circuit to guarantee correct operation [3, 4].
Lam et al. [4] have defined a class of faults, called robust-
dependent (RD) faults, that need not be tested if all remain-
ing faults are tested robustly. Chen and Cheng [3] have de-

fined functional sensitizability to identify faults that need

not be tested at all.” .

A necessary and sufficient set of faults that must be tested
to guarantee timing correctness of any combinational cir-
cuit is defined in [12]. These faults, called primitive faults,
may include multiple path delay faults. Several methods
of identifying primitive faults and generating tests for them
have been proposed [13, 14, 15, 16]. Experimental results

indicate low robust test coverage of primitive faults [16],

and no methods are currently. available for generating VNR
tests for primitive faults. Synthesis techniques for circuits in
which all faults have robust or VNR tests (called delay ver-
ifiable circuits [12]) also suffer from large area overhead,
and are applicable only to relatively small circuits. Design-
for-Testability (DFT) techniques are therefore essential to
guarantee that timing correctness of the circuit can be veri-
fied by testing. A test-point insertion technique to limit the
size of primitive faulits to size two, was proposed in [17].
Non-robust tests for all primitive faults are also obtained
during test-point insertion, but robust tests may not exist for
all primitive faults.

The goal of this paper is to develop a method of test-point
insertion to improve robust testability of primitive faults.
Our approach uses sensitizing cubes to identify single path
delay faults that may be contained in robustly testable prim-
itive faults. These faults need not be considered for test
point insertion. Each of the remaining single faults is an-
alyzed to determine whether its membership in a primitive
fault will make the latter only non-robustly testable. This
analysis also provides information for adding test points to

ITC INTERNATIONAL TEST CONFERENCE

0-7803-5753-1/99 $10.00 ©1999 IEEE

make any primitive fault containing the single fault, robustly
testable. The time-consuming process of primitive fault test
generation is avoided in the proposed method.

The paper is organized as follows. Section 2 discusses basic
definitions and the concept of sensitizability of paths. The
proposed methods for identifying single faults that prevent
robust testability of primitive faults and inserting test points
are presented in Section 3. Experimental results and con-
clusions are given in Sections 4 and 5, respectively.

2 Sensitizability of paths

We shall review some basic definitions related to path delay
fault testing in combinational circuits.

Definition 1: A path m between an input and output
of - a circuit consists of a sequence of gates and leads,
90500591,y 9is Liy ooy ln—1, gn, Where g; and I; are gates
(nodes) and leads, respectively. go and g, are the source
and destination of the path, respectively (usually an input
and an output of the circuit). For convenience, we shall rep-
resent paths by sequences of gates only.)
The controlling value (cv) of a gate determines the output
value of a gate independent of the other input values. The
output of a gate with the complement of the controlling
value, called the non-controlling value (ncv), on an input
will depend on other input values.

Definition 2: A multiparh II consists of a set of single paths

{m1, m, ...t} to the same destination. Every on-path in--
put of every gate G on m; € II is an on-path input of II. All .

other inputs of G are side-inputs of II.

Definition 3: A multipath delay fault (MPDF) on 11 is the
situation in which the delay on every m; € II exceeds the
clock. period for the specified direction of transition (rising
or-falling) at the destination.

We shall use lower case Greek letters (with subscripts, when
necessary) to denote single paths, and upper case Greek let-
ters to denote multipaths. The direction of transition is al-
ways that at the destination of the path. Unless otherwise
specified, path and fault will refer to multipath and MPDF
respectively.

Conditions for non-robust and robust tests defined for sin-
gle path delay faults [2] also apply to multiple path delay
faults. A non-robust test for a rising (falling) transition on a
path II sets every side-input of II to a final non-controlling
value. In a robust test, side-inputs must be at stable non-
controlling values when on-path inputs have transitions to
final controlling values. . :

The proposed method of test point insertion uses the con-
cept of sensitizing cubes introduced in [16]. A cube is de-
fined as a subset of the set of all input literals. A cube can
be represented by the values assigned to-a subset of inputs,
or as a product of the corresponding literals. Thus, a cube
corresponds to a.set of input vectors, each of which corre-
sponds to a vertex of the cube.

Definition 4[3]: A single path 7 is functionally sensi-
tized by a cube ¢ if it sets every side-input of 7 to a
non-controlling value when the on-path input has a non-
controlling value. When the on-path input(s) is (are)
controlling, the side inputs may be unspecified or non-
controlling.

Definition 5: A path II is static sensitized by a vector v if it
produces a non-controlling value on every side-input of II.

Definition 6[18]: An assignment of values to a minimal
set of input literals to functionally sensitize a single path
is called a sensitizing cube. A path II is associated with a
sensitizing cube ¢ if (1) it sets every side-input to the non-
controlling value when the on-path input is non-controlling
and (2) no side input has a controlling value when the on-
path inputs are controlling. A sensitizing cube that produces
a 1(0) at the destination of a path is referred to as its sensi-
tizing 1(0)-cube. '

Sensitizing cubes and paths associated with them can be de-
termined directly from their definitions. We shall now out-
line a more efficient method presented in [18]. Sensitizing
cubes are determined by tracing back from the destination
along each single path and assigning signal values to gates
on the path to functionally sensitize it. If a controlling value
is necessary to produce the specified gate output, the con-
trolling value is assigned to the on-path input of the selected
single path. If non-controlling values are required, all gate
inputs are assigned the non-controlling value. The process
is repeated until primary inputs are reached. All assigned
line values are then justified, making only necessary assign-
ments, and all implications determined. A conflict-free as-
signment of input variables obtained in this manner corre-
sponds to a sensitizing cube. The path(s) associated with a
sensitizing cube can be determined by tracing back from the
output. This method is illustrated in Example 1.

Example 1: Fig. 1(a) shows a minimal input assignment
for functionally sensitizing the single path d35f. This cor-
responds to the sensitizing cube ad which is associated with
the path a0135f also. Figs. 1(b), (c) and (d) show how the
remaining sensitizing 1-cubes of the circuit can be derived.
Note that the same sensitizing cube may be generated by
functionally sensitizing different paths. 0

From the definition of sensitizing cubes, it follows that a
sensitizing cube of a multipath IT functionally sensitizes ev-
ery single path w; € II. It has been shown in [18] that any
vertex in a sensitizing cube of a multipath II static sensitize
some multipath ¥ D TII.

Definition 7[12]: A fault on d& multipath IT in a combina-
tional circuit is primitive ff (1) I is static sensitizable, and
(2) no proper subset of II is static sensitizable.

The following section discusses the method for identify-
ing single faults that cannot be contained in any robustly
testable primitive fault, and determining test points to make
primitive faults containing them robustly testable.

Paper 11.1
261

3 Analysis of single faults

There are three main steps in the proposed method: (1)
reducing the number of single faults to be considered, by
identifying those that will not be contained in any primitive
fault; (2) idellltifying faults that may be contained in robust
testable primitive faults, and excluding them; (3) analyzing
the remaining faults to identify test points needed.

@

Figure 1. Sensitii‘_l’ng cube identification.

When there [is no ambiguity, we may refer to a fault by the
name of the|single or multiple path that is faulty. The direc-
tion of transition and the polarity of sensitizing cubes will
not be explicitly mentionied in statements that apply to both
rising and falling transitions. Thus, when a rising transition
(atthe destirllation) faultis considered,' sensitizing cubes will
refer to sensitizing 1-cubes, unless stated otherwise. A fault
7 (IT) will refer to a rising transition fault on the single (mul-
tiple) path 7 (IT). o .

: 'Paper11. .
262

Lemma 1: Consider a pair of faults f; and f2 onm; and 7.
Let Q1 and Q- be the sets of sensitizing cubes that function-
ally sensitize m; and 7o respectively. The fault fo will not
be part of a primitive fault if

1HQ12Q

(2) Every g € Q2 'is associated with a multipath containing
both 71 and 79; and :

(3) every sensitizing cube ¢ € @2 associated with a mul-
tipath II can be modified to derive an input condition that
sensitizes IT ~ {w2} and produces the non-controlling value
on 72 when the on-path input on IT — {2} is controlling.
Proof: If conditions (1) and (2) are satisfied, f is always
sensitizable with f; but is not known if f; is sensitizable
either by itself or only as a multiple fault that does not in-
clude fo. Consider a sensitizing cube ¢ that functionally
sensitizes m; and me. Let G be a gate at which m; and w9

. intersect. If m; and 7o have non-controlling values at G,

they are not sensitizable together and either may be part of
a primitive fault. Let my and 72 have controlling values at
G, on application of q. Let I be an assignment of values to
a set of inputs that produces a non-controlling value on 7y
at G. If it doés not conflict with any assignment in g, then
g1 is a sensitizing cube for I - 72. Any vertex ing [} I
static sensitizes a multipath that does not contain 7. If the
above situation is true for every sensitizing cube of w3, by
Definition 7, II cannot be primitive. Therefore, 7o cannot
be part of any primitive fault. - m]

. Definition 8: The set of faults obtained after eliminating all

single faults that are not part of any primitive fault, is called
the set of collapsed faults. o
If the same set of sensitizing cubes functionally sensitize
faults f; and f2, Lemma 1 should still be used to determine
which one can be eliminated. :

Lemma 2: If a fault on a multipath II is robustly testable,
then every single path 7; € IT'is functionally sensitizable to
both 1 and O at its destination.

Proof: Let < V1, V> > be a robust test for the rising tran-
sition fault on a multipath II. Then, < V7, V5 > must cre-
ate an appropriate transition at the start of every 7 € II.
Since V; static sensitizes IT to 1 at its destination, it must
also functionally sensitize every = € II to.1. To show that
V4 functionally sensitizes 7 to 0, consider gate Gy with con-
trolling value on 7 when V5 is applied. This input must have
the non-controlling value when V; is applied. Since the
transition on 7 is to a final controlling value and < V3, V5 >
is a robust test, every side-input of II at G; must have the
non-controlling value in both V; and V5. Let G5 be a gate
with the non-controlling value on 7 when V4 is applied. V3
must produce the controlling value at the same input of G'5.
Since the transition on 7 at G is to a final non-controlling
value, V; may produce either. 0 or 1 at side inputs of IT at
G2. Hence, V; functionally sensitizes 7 to O at its destina-
tion. ' .0
Paths that are functionally sensitizable to both 0 and 1 must

be analyzed further to determine whether primitive faults
containing them are robustly testable.

Definition 9: A single fault 7 is a non-robust component if
no primitive fault containing is robustly testable. A single
fault is called a robust component if it is not a-non-robust
component.

By the above definition, a primitive fault that is only non-
robustly testable must contain at least one non-robust com-
ponent, while a robustly testable primitive fault cannot con-
tain any non-robust components.

Procedure Component_Type(r)

Determine whether 7 is a robust or non-robust componem
Qo, Q1: sets of sensitizing cubes that functionally sensitize
m to O0'and 1, respectively

< Wi, Vs >: vector-pair

Return values: robust, non-robust

M={}
for every ¢ € (3
Set V3 to values specified in g1 ;
for every qo € Qo
Set V; to values specified in qp ; -
Set inputs that are not specified in V5 but are -
specified in V7, to the values in V; ;
Obtain a test < V4, Vo > for a multifault m; ;
ifmj ¢M _/mjgmi,MzMUmi;
ifijM ij Dm;,M:M—mj 5
if every m; € M has a robust test :
return robust
else
return non-robust

Figure 2. Determining component type.
Procedure Component_Type, shown in Fig. 2, determines
whether a rising transition fault 7 is a robust or a non-robust
component. It attempts to find a robust test < Vi,V >,
where V) and V5 are vertices in sensitizing 0- and 1-cubes,
respectively, that functionally sensitize the path. Tests
(which may be robust or non-robust) are obtained for all
paths, using every possible combination of sensitizing 0-
and 1-cubes. The set M of testable faults is ensured to not
contain faults larger than any other fault in the set. If every
fault in M is robustly testable, the faultwr.is classified as a
robust component. Otherwise; it is a non-robust component.
The roles of the two sensitizing cubes is reversed for falling
transition faults.

‘Procedure Component_Type may not class1fy all faults cor-
rectly. . It assumes that all sensitizing cubes are needed for

", testing a circuit.. Since a multipath may. have more than

one sensitizing cube, and not.all of which may be needed
to obtain a test, some robust components may be classified
non-robust. A similar error may be produced when a prim-

itive fault consists of a robust and a non-robust component.
When the robust component is analyzed, the procedure may
return non-robust, due to the non-robust component. Since
all faults containing non-robust components are analyzed
further for test point insertion, this inaccuracy will not af-
fect the testability of the modified circuit, but may result in
some unnecessary analysis.

Procedure Component_Type may some times incorrectly

tclassify a fault as a robust component, as shown in Exam-

ple 2. This may result in certain non-robust components
not to be analyzed for test point insertion. Experimental
results given in Section 4 show that very few non-robust
components are incorrectly identified, and a large number
of functionally sensitizable single faults are excluded from
consideration for test point insertion. We conjecture that

" such errors occur only in redundant circuits.

.
=D

Figure 3. A circuit illustrating Example 2.

Example 2: Consider the circuit in Fig. 3. It has one sensi-
tizing 1-cube @b and three sensitizing O-cubes a, a-b and @b.
The cube @b is a sensitizing 1-cube for the path a13f and it
has two sensitizing O-cubes a and a -b. Using the above sen-
sitizing cubes in Procedure Component Type for testing
the falling transition fault on al3f, it can be seen that the
maltiple falling transition fault on {a13f,a23f} is tested
robustly. However, the procedure does not obtain the non-
robust test < 00,10 > for the single falling transition fault
on a13f. Hence, the falling transition fault on a13f is in-
correctly classified as a robust component O
Lemma 3: Let I be a primitive fault static sensitized bya
common vertex of a set () of sensitizing cubes. Iy is only
non-robustly testable if there exists a single path 7 such that
any q € (1) produces the non-controlling value on a side
input I, of a gate when the on-path input is controlling; and
(2) there is a partial path 7, from the source of 7 to I, that
is static sensitized by gq.

Proof: The final vector of any test for IT must be contained
in ¢ to static sensitize II. Since 7, is static sensitized and
ls = ncv, any test will produce an ncv — cv transition on
an on-path input of 7 and a cv — ncv transition on a side
input. Therefore, the test is non-robust. O
As mentioned earlier, a multipath may have more than one
sensitizing cube. As a result, the above lemma must be ap-
plied for all sets of sensitizing cubes in which a test may be
contained. However, the lemma cannot be applied directly
to determine whether a particular fault is a non-robust com-

Paper 11.1
263

ponent, because primitive faults are not known. We there-
fore propose two approximate methods for the purpose.

Method 1: Let @; denote the set of sensitizing cubes of a
multipath II;! Let Q1,@2,...., @ be sensitizing cubes that
functionally sensitize a single path 7. A fault on 7 is a non-
robust component if for some Q;,1 < i < k, every sensitiz-
ing cube g €|Q; produces the controlling value the on-path
input of a gate G, the non-controlling value on a side-input
l; of G and sensitizes a partial path from the source of 7 to

8

This method assumes that any cube from the set of sensitiz-
ing cubes of lsome multipath containing 7 may be used in
static sensitizing any primitive fault containing 7. All non-
robust components may not be identified because in some
cases, only common vertices of specific cubes may static
sensitize a primitive fault. However, we expect it to produce
useful testability enhancement, without considerable hard-
ware overhead. '

Method 2: Treat a fault as a non-robust component if the
conditions in|Lemma 3 are satisfied by any sensitizing cube
that functionally sensitizes it. This method can be expected
to result in better fault coverage, but using more test points
than Method|l. - C o ‘

Using either of the above approximations, test point inser-
tion proceeds as follows: Let a sensitizing cube g for 7 pro-
duce a cv on the on-path.input of G and a nev on-a side input
l; of G, and let I, be sensitive to the value at the source of .
Depending on the value at which [, must be held constant,
an AND or an OR gate G’ with two inputs, is added to the
original circuit.-One of the inputs is [, and the other input
is the test point. The output of the new gate is connected to
1, (side-input of G)) in the original circuit. If G is an AND

' ‘Figure 4. Identifying non-robustly testable faults and test points.

or NAND (O
* with the test

Example 3:

cubes and one sensitizing 0-cube. They are listed below,

along with th

Paper 11.1
264

R or NOR) gate, then G’ is an OR (AND) gate
nput-held at a stable 1 (0).value.

The circuit of Fig. 4 has four sensitizing 1-

e paths as‘sdciated_\yith' them:

DESpa

Sensitizing 1-cube Associated paths
a a256f,al356f
ab -a256 f, (a1356 f,b1356 f)
ac . a256f, (a1356f,c356 f)
C cA6f
Sensitizing 0-cube Associated paths
ac © a256f,c46f

Single paths and sensitizing cubes that functionally sensi-
tize them are as follows:

Single path Sensitizing cubes Destination value

a256 f a, ab, ac

1

al356f a,ab 1
b1356 f ab - 1
c356 f ac 1
c46 f [1
a256 f ac 0
A6 f : ac 0

Faults on paths a1356 f, b1356 f and ¢356 f each have only
sensitizing 1-cubes. By Lemma 2, they are non-robust com-
ponents. The remaining paths are functionally sensitizable
in both directions, and must be analyzed further to deter-
mine whether they may ‘be contained in robustly testable
primitive paths. Applying Procedure Component_Type to
path a256f, we see that robust tests can be obtained with
each of its three sensitizing 1-cubes. For example, using the
0-cube ac-and 1-cube @, we obtain a test < 1z1,0z1 >.
Similarly, primitive faults containing path c46f are ro-
bustly testable for the rising transition. Paths a1356f and
b1356 f do not satisfy the conditions of Lemma 3. Apply-
ing Lemma 3 to path ¢356f, we see thata = 0,c = 1
produces the controlling value on the on-path input of gate
6, and the side input is sensitive to the value at ¢. There-
fore, any primitive fault containing this path will be only
non-robustly testable for the rising transition. To make the
primitive faults testable, we add a two-input AND gate G
between gates 4 and 6. The inputs of G’ are the output of
gate 4 and a test point, and its output is connected to gate 6.

The test point input of ¢’ must be held at stable 0 to make

the primitive fault involving ¢356 f robustly testable.

It can be verified that the rising transition faults on the single
paths @256 f and c46f are primitive. The single faults are
robustly testable without the need for adding any test points
to make them robustly testable. o

ProcedurevTest_Points()

Obtain functionally sensitizable paths ;
Collapse the functionally sensitizable paths ;
forp=0,1 .
for every 7 with sensitizing p-cube
if 7 has sensitizing a p-cube
if Component._type(m) == non-robust
R=RUn~;"
else . o
R=RUr;
for everym € R
Assign test points using Method 1 or 2 ;

) Figure 5. Test point identificatibn.

The test point -identification algorithm is presented in

Fig. 5. Lemma 1 is used to determine the collapsed
faults. The set R is determined after applying Procedure
Component_Type on the collapsed faults. Lemma 3 is
used to determine test points using the approaches discussed
in Methods 1 and 2.

The above method identifies a set of test points for each non-
robust component. However, only a subset of test points
need be set to specific values to make a particular primitive
fault robustly testable. We shall explain how test generation
after test point insertion can be done using the test point site
information. The set of test points are identified by checking
for the conditions specified in lemma 3 for different sensitiz-
ing cubes. A set of test points identified on paths sensitized
by a cube can be associated with that cube. Since primi-
tive faults are identified by essential and certain common
vertices of the sensitizing cubes [16], we can identify the
set of sensitizing cubes S containing each vertex that iden-
tifies a primitive fault. The set oftest points identified for
each sensitizing cube in S is sufficient to make the primitive
fault identified by the vertex, robustly testable. Note that if
a primitive fault is robustly testable without requiring any
test points, the set of test points for S will be empty, since
none of the sensitizing cubes in S will satisfy the conditions
in Lemma 3.

4 Experimental Results

The proposed method has been implemented and applied to
combinational versions of ISCAS’89 and MCNC’91 bench-
mark circuits. The method presented in [18] was used to de-

" rive sensitizing cubes treating each output separately. Paths

that do not have at least one sensitizing cube (either 0 or 1)
are ignored because they cannot affect circuit operation.
Test points are obtained using the method shown in Fig. 5. -
Both Method 1 and Method 2 were used for identifying test
points for non-robust components. The test points thus ob-
tained are used to-determine how many non-robust tests for
primitive faults [16] become robust, if they are used.

Table 1 gives particulars of paths in the circuits used in our
experiments. The number of physical paths and functionally
sensitizable logical paths in each circuit in column 1 are

. given in columns 2 and 3 respectively. Column 4 gives the

number of collapsed faults obtained using Lemma 1. The
number of robust and non-robust components are given in
columns 5 and 6, respectively.

Fault coverage statistics using test points identified by Pro-
cedure T'est_Points, are given in Table 2. Column 2 gives
the number of test points obtained using Lemma 3 and
Method 1. The corresponding robust fault coverage of prim-
itive faults and run time are given in columns 3 and 4 respec-
tively. Columns 5-8 give the corresponding numbers when
Method 2 was used. The last two columns of the table give
the robust coverage of primitive faults in the original circuit
and the run time for performing it. These were taken from
[16]. The run times are on an IBM RS6000 server.

The results show that 100% robust coverage of primitive
faults was obtained for most circuits by test point insertion
using Method 2. The use of Method 1 resulted somewhat
lower coverage, but fewer test points were used. In all cases,
both methods led to some improvement in fault coverage,
the best improvement being in s1423 (4.35% to 100% with
Method 2). In almost all cases, the run time was consider-
ably less than the test generation time for the original cir-
cuit. The presence of test points should reduce the amount
of search involved during test generation. Therefore, the to-
tal run time for test point information and test generation
should be less than the time required for the unmodified cir-
cuit.

5 Conclusion

We have presented the first method for making non-robustly
testable primitive faults in a combinational circuit robustly
testable. The method is based on the analysis of single faults
which may make primitive faults containing it only non-
robustly testable. The number of faults to be analyzed for
test point insertion is reduced by first eliminating faults that
cannot be contained in any primitive fault and those that do
not prevent robust testability.

Paper 11.1
265

EXperimentall results show improvement in fault coverage in
all cases, achieving 100% coverage in most of them. Two
methods of identifying test points were proposed, one that

inserts fewer,
than the othe;
test points is
method is co
primitive fau
the modified

test points and obtains smaller improvements

r. Thus, a trade-off between fault coverage and

possible. The execution time of the proposed
nsiderably smaller than the time required for
It identification. A test generation program for
circuit can be expected to be much faster than

one for the original circuit, because of the availability of test

point inform
ing form higt
The propose
ber of ways.
type was sho

ation and the reduction in backtracking result-
er testability.

d method can be further improved in a num-
The procedure for determining component

wn to incorrectly label some non-robust com-

ponents as robust components and excludes them from fur-

ther analysis
to be found.

This results in some necessary test points not

sult in better

A method of identifying such cases will re-
coverage. The two methods of identifying test

points are approximate methods, one selecting too few test
points, and tl:le other too many. A better method of identi-
fying non-robust components will result in inserting closer
to the optimal number of test points. A method that does

Paper 11.1
266

Circuit | # Physical # Functionally # Faults
Paths Sensitizable Faults | Collapsed Robust component NR-component
5298 236 390 356 - 341 15
s344 299 440 380 245 135
$349 303 441 376 240 136
$382 400 501 476 450 26
. 5386 207 394 392 391 !
s400 435 507 454 425 29
sd44 451 691 629 588 41
s510 371 546 495 426 69
8526 416 678 637 612 25
s641 1695 2414 1701 1483 218
s713 2615 3041 1214 855 359
820 521 842 782 736 46
832 533 - 848 770 736 34
838 1714 2575 2545 2509 36
s1196 2243 2956 2401 2125 276
$1238 2564 3363 2538 2257 281
s1423 20324 22361 15688 10110 5578
51488 1408 1835 1704 1326 378
51494 1055 1463 1354 994 360
planet 2018 2299 2197 1311 886
sl 1239 1350 1317 637 680
scf 3559 4579 4364 3656 708
styr 995 1312 1203 758 445
Table 1. Test point insertion statistics for ISCAS’89 and MCNC’91 benchmark circuits.

optimal test point insertion within specified bounds on cov-
erage or number of test points can be developed. Finally,
test point insertion and test generation can be combined to
produce an efficient system.

References

[1] G.L. Smith, “Model for delay faults based upon
paths”, Proc. Intl Test Conf., pp. 342-349, Nov. 1985.

[2] CJ. Lin and S.M. Reddy, “On delay fault testing in
logic circuits”, JEEE Trans. on CAD, pp. 694-703,
Sept. 1987.

[3] K.-T. Cheng and H.C. Chen, “Delay testing for non-
robust untestable circuits”, Proc. Intl Test Conf., pp.
954-961, Oct. 1993.

[4] WK. Lam, A. Saldanha, R.K. Brayton and A.L.
Sangiovanni-Vincentelli, “Delay fault coverage and
performance tradeoffs” Proc. Design Automation
Conf., pp. 446-452, June 1993.

(5]

(6]

Circuit Method 1 Method 2 Original -

Test Points Coverage Time | #TestPoints Coverage Time | coverage Time
$298 9 98.87 0.68 9 98.87 0.96 97.71 | 16.04
s344 4 82.02 0.71 36 100 0.94 80.83 86.81
s349 4 81.59 0.66 39 100 0.96 80.54 82.01
s382 4 94.91 0.63 16 100 0.86 93.75 48.66
s386 6 93.77 0.31 9 95.16 0.46 91.01 35.61
s400 5 92.20 0.69 13 100 0.93 90.80 34.23
s444 18 93.26 0.99 18 93.26 1.44 88.50 94.42
s510 6 87.27 0.93 36 100 1.26 85.71 123.31
$526 12 100 . 145 12 100 2.10 87.35 89.46
$641 13 85.27 32.63 34 100 44.33 82.94 412.61
s713 15 59.89 37.24 32 61.37 57.09 58.59 1050.74
s820 20 100 1.45 20 100 2.86 85.94 438.16
s832 - 21 100 1.53 21 100 2.83 73.96 534.77
838 7 99.45 6.09 16 100 9.02 98.98 492.28
s1196 40 78.97 24.54 91 100 31.13 65.20 1572.98
51238 48 . 98.43 35.13 88 100 46.52 95.92 945.75
$1423 74 72.31 1065.72 241 - 100 1633.54 435 2012.96
51488 68 81.18 5.83 132 100 8.39 80.07 1521.19
s1494 22 89.87 2.10 117 100 4.90 85.47 1562.80
planet 110 76.79 4.72 227 100 7.90 67.26 921.67
sl 59 69.20 1.45 187 100 2.97 59.98 682.52
scf 160 6235 | 23.85 160 62.35 36.06 56.52 1683.13
styr 46 83.10 1.66 168 100 3.76 70.36 1701.68

Table 2. Fault coverage statistics for ISCAS’89 and MCNC’91 benchmark circuits.

S. Devadas and K. Keutzer, “Synthesis of robust
delay-fault-testable circuits:practice”, IEEE Trans. on
CAD, vol.11, no.3, pp. 277-300, Mar. 1992.

S. Devadas and K. Keutzer, “Validatable nonrobust

" delay-fault-testable circuits via logic synthesis”, IEEE

(7

(8]

9]

(10]

Trans. on CAD, vol.11, pp. 1559-1573, Dec. 1992.

C. Lin, S.M. Reddy and S. Patil, “An automatic
test pattern generator for the detection of path delay
faults”, Proc. Intl Conf. on Computer Aided Design,
pp. 284-287, Nov. 1987.

A. K. Pramanick and S.M. Reddy, “On the design of
path delay fault testable combinational circuits”, Proc.
Intl Symposium on Fault Tolerant Computing, pp. 374-
381, June .1990.

K.Roy, K. De, J.A. Abraham and S. Lusky, “Synthesis
of delay fault testable combinational logic”, Proc. Intl
Conf. on Computer Aided Design, pp. 418-421, Nov.
1989. :

1. Pomeranz and S.M. Reddy, “Design-for-Testability
for path delay faults in large combinational circuits us-

[11]

[12]

[13]

(14

[15]

ing test-points”, Proc. Design Automation Conf., pp.
358-364, June 1994.

P. Uppaluri, U. Sparmann and 1. Pomeranz, “On min-
imizing the number of test points needed to achieve
complete robust path delay fault testability”, Proc.
VLSI Test Symposium, pp. 288-295, May 1996.

W. Ke and P.R. Menon, “Synthesis of delay-verifiable
combinational circuits”, IEEE Trans. Computers., vol.
44, pp. 213-222, Feb. 1995.

M. Sivaraman and A. J. Strojwas, “Primitive path de-
lay fault identification”, Proc. 10** Intl Conf. on VLSI
Design, pp. 95-100, Jan. 1997. .

A. Kistic, K.-T. Cheng and S.T. Chakradhar, “Primi-
tive delay faults: Identification, testing and design for
testability,” IEEE Trans. CAD, vol. 18, pp.669-684,
June 1999.

A. Kirstic, K.-T. Cheng and S.T. Chakradhar, “Identi-
fication and test generation for primitive faults”, Proc.
Intl Test Conf., pp. 423-432, Oct. 1996.

Paper 11.1
267

[16] R. Teku

malla and PR. Menon, “Test generation for

primitive path delay faults in combinational circuits”,

Proc. In

| Conf. on Computer Azded Design, pp. 636-

641, Nov. 1997.

[17) A. Krstic,

S.T. Chakradhar and K.-T. Cheng, “Design

for pr1m|1t1ve delay fault testability”, Proc. Intl Test
Conf., pp 436-445, Nov. 1997.

[18] R. Tekumalla and P.R. Menon, “On primitive fault test
generation in non-scan sequential circuits”, Proc. Intl .
Conf. on Computer Aided Design, pp. 275-282, Nov.

1998.

Paper 11.1
268

