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Abstract

A testability analysis technique for Built-In Self-Test (BIST)
at the system level is presented. While based on previous ap-
proaches, the model has several significant new features, in-
cluding an iterative technique for modeling indirect feedback
and an extension to the circular BIST methodology. Addi-
tionally, a new preprocessing transformation enables the cor-
rect modeling of word-level correlation. Examples validate
the model, and demonstrate its applicability to test point in-
sertion.

1 Introduction

The goal of this research is to develop a new method for BIST
analysis at the register transfer level (RTL). RTL circuits con-
sist of interconnections of registers, functional units (ALUs),
multiplexers and buses. The analysis is done via testability
metrics that measure the controllability and observability of
individual registers. A new metric for observability, trans-
parency, is introduced in this paper.

The motivation for this work lies in BIST insertion. Both
conventional BIST [AKS93] and the newer circular BIST and
circular self-test path technique [PiKK92, Stro88, POLB88]
are well-suited for automatic circuit insertion at the RTL. Tra-
ditionally, each ALU in a circuit is made directly testable by
placing test registers to generate test patterns at the ALU’s
inputs, and test registers to compact the responses at the
ALU’s output. However, it may not be necessary to add this
many test registers [ChPa91]. For example, suppose that the
input registers to the ALU are not directly controllable, but
that they still generate patterns that are random enough to
effectively test the ALU; in this case, there is no need to re-
place the normal system registers.with more expensive, slower
test registers. Thus, in selecting test registers, cost and speed
may be traded off against test effectiveness. The testability
metrics described in this paper can be used to evaluate vari-
ous BIST configurations for a given RTL structure, and thus
provide a mechanism for the cost / test effectiveness tradeoff.

The Markov model used here to compute the testability
metrics is more general than previous models by Chuang
and Gupta [ChGu89] and Kim, Ha, and Tront [KiHT88]. A
preprocessing transformation is used to remove reconvergent
fanout from RTL circuits, allowing the effects of word-level
correlation on test quality to be accurately modeled. An it-
erative technique is developed so that the model can handle
circuits with indirect feedback, i.e., circuits in which a regis-

This work was supported by Semiconductor Research
Corporation (SRC) Contract 93-DJ-527 and an SRC Edu-
cation Alliance Graduate Fellowship.

ter feeds back into itself via one or more intermediate regis-
ters. Also, the model is extended to include the circular BIST
methodology as well as conventional BIST.

2 Testability Metrics

This section defines metrics for the controliability and observ-
ability of registers in (RTL) circuits. We use two metrics for
evaluating the controllability of registers. Both are based on
the underlying state probability distributions for the registers
in the circuit. The current state of the register is the value
being stored in the register. Let X’s state probability distri-
bution be denoted by a row vector Fx; the i*" elemert of the
vector, px,i, is the probability that register X is in state i,
fori=0,1,2, ... 2% —1, where |X]| is the bit width of
the register. The first metric, randomness, is based on the
entropy Ix of the register [ChPa91, ThADb89]:
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Randomness ranges from a value of 0 for registers whose state
is constant, to a value of 1 for registers that generate uni-
formly distributed pseudorandom patterns. The second met-
ric, ezpected state coverage for a register X, is the fraction of
all 2/X! possible states that are expected to be generated or
covered during a testing session of a given length N [PiKK92}]:
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Expected state coverage ranges from ’TIRT for a register that
always generates the same test pattern to 1 for a register that
generates an exhaustive set of test patterns. We will use a
Markov Chain model to compute the underlying state prob-
ability distribution vectors, and then derive the randomness
and expected state coverage values from the vectors.

Faults in a circuit manifest themselves as state errors in
the registers; we say that a state error occurs at register X if
under fault-free conditions, the register has some state 1, but
in the presence of some fault, the register has another state
i', where ¢ # 1'. We define our measure of observability, the
transparency MT(X) of a register X, as the probability that
an arbitrary state error in register X can be propagated to
an observable point. Thus, transparency ranges from 0 for a
register that is impossible to observe even indirectly to 1 for
a register that is directly observable.

As a tool for evaluating transparency, we define a state-
based transparency vector tx for each register X, where the
i*" element of the vector, ¢ X,i, is the transparency of register

162

1063-6404/95 $4.00 © 1995 IEEE



X given that the fault-free state of the register is i. We write
the transparency of register X as a dot product of this vector
with the state probability distribution:

MT(X)=ix-17x. (3)

The state-based transparency vectors can be computed in
bottom-up fashion, starting with the observable points, and
moving register by register towards the controllable points.
Each observable point has perfect transparency, and there-
fore has ¥ = [1 1 1...1]. We move up one register in the
circuit by separating the transparency of a register X into
two components: the probability of propagating a state error
through a single arithmetic logic unit (ALU) to the next reg-
ister Z in the circuit; and the probability of propagating the

state error from that next register Z to an observable point.

The first component is an indication of the sensitivity of the
ALU to changes in values at the input port driven by register
X, and the second component is an indication of the trans-
parency of register Z. Both components depend on the state
of the register Y that drives the other input port of the ALU.

We measure the sensitivity of the ALU in terms of a sen-
sitivity matriz S®, where @ is the function performed by the
ALU. The matrix element sgj is the probability that a state
error at the lefthand input of the ALU, from i to ', will cause
a state error in the output of the ALU, given that the right-
hand input of the ALU has value j. Thus, s?;j is the prob-
ability that { ® j is not equal to ¢’ ® j. For many functions,
the sensitivity matrix can be found analytically; for exam-
ple, for addition, all elements of the matrix are equal to one.
For other functions, a Monte Carlo simulation can be done
to evaluate the matrix. Once the sensitivity matrix is known,
the state-based transparency vector at the input register X
of the ALU can be written as:

21Y1 P1Lg Y
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The two sums in this equation are the two components of
transparency.

3 A Model for BIST Analysis

This section develops a Markov model to compute analytical
values for the state probability distribution of each register in
an RTL circuit; the testability metrics are computed from the
probability distributions using the formulas of the previous
section.

3.1 Partitioning a circuit for analysis

A circuit with even a moderate number of registers has an
unmanageably large number of system states. As a result,
we must partition the circuit into smaller pieces, and do a
probabilistic analysis of the partitions. Each circuit partition
contains the information necessary to analyze a single regis-
ter. The rules for partitioning are simple: create one partition
for each register of the circuit, where the register serves as the
output register of the partition. The partition consists of the
register, any combinational logic that drives the register, plus
the registers that serve as inputs to that combinational logic.
The partitions overlap in the sense that the output register
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register 3

| register2 | | register 5 |
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(b) The circuit partitioned.
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Figure 1: An example of partitioning for analysis. '

of one partition may also be an input register to other parti-
tions. The partition for a register is unique. Figure 1 shows
a simple RTL circuit and its partitions. Note that partition-
ing does not remove feedback loops from the circuit. Direct
feedback becomes feedback within a partition, as is the case
with register 3 of this example, and is resolved by the Markov
model. Indirect feedback loops manifest themselves as inter-
dependency among the partitions; for this example, the par-
titions for registers 4 and 5 are interdependent, since register
5 is an input to the partition for register 4, and vice versa.
Thus, analysis of register 4 requires knowledge of register 5's
probability distribution, and vice versa. Indirect feedback is
resolved by assigning all registers arbitrary initial probabil-
ity distributions, and using an iterative process to repeatedly
analyze registers until the probability distributions converge.

In Section 4, we will see that when this simple partition-
ing scheme is applied directly to circuits with reconvergent
fanout, the Markov model is unable to accurately account for
word-level correlation. Section 4 will present a circuit trans-
formation to be used on circuits with reconvergent fanout
before partitioning.

3.2 Analyzing a single register

The purpose of analyzing a single register is to find the reg-
ister’s state probability distribution §. The steps for finding
P are briefly described here.

Step 1. Find Q, a matrix that describes the register’s state
transitions when BIST is disabled. The matrix Q has ele-
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ments
gi; = Pr {next state is j | current state is 1} . (5)

The register’s next state is written in terms of the part of
the circuit contained within the register’s partition. The
state transition matrix @ depends on the functionality of
the partition’s combinational logic, the probability distribu-
tions of the partition’s input registers, and whether there
is direct feedback within the partition. When direct feed-
back is not present, the equation for gi; is reduced to ¢i; =
Pr {next state is 5}, and all rows of Q are identical.

Step 2. Modify Q to compute C, a matrix that describes
the register’s state transitions when BIST is enabled. The
elements of C are defined by:

cij = Pr { next state is j | current state is ¢}, (6)

keeping in mind that the BIST is enabled. How C is computed
depends on the BIST methodology used. If the register is a
left-shifted circular BIST test register, the next state is a
bitwise XOR of what the next state would be if BIST were
disabled and a shifted version of the register’s current state,
where a bit from the preceding register on the circular self-
test path is shifted into the vacated bit position. Let p denote
the probability that this shifted-in bit is a 1; ¢ can be derived
from the probability distribution for the preceding register.
Each element of C can be expressed in terms of @ and g by
the following:

Cij = 0¢;,;@SHL(i,1) + (1 = 0) ¢ josHL(:,0) (7
if the register is left-shifted,*'! and
¢ij = 04i,j@SHR(i1) + (1 — ) 4 j@SHR(:0) (8)

if the register is right-shifted.

For the TPGRs and MISRs used in conventional BIST, the
idea is the same; each element of C can be expressed in terms
of Q by:

Cij = i, j@SHL(, /(1)) 9
where f(1) is the modulo-2 sum of the values at the feedback
taps when the register is in state .

Step 3. Use C to compute J, a row vector describing the
steady-state probability distribution over the register’s state
space. Finding § involves solving the equation § = pC; 7
is the left eigenvector of C corresponding to eigenvalue 1.
We know that such an eigenvector exists and is non-trivial
because C is a Markov matrix [Stra88].

Example results in Section 5 will show how the Markov
model is used to analyze the effectiveness of an RTL circuit
with BIST. We now turn to a transformation that can be used
to process the circuits before applying the Markov model,
making the model applicable to a wider variety of circuits by
enabling it to accurately handle word-level correlation.

*® denotes a bitwise XOR.
'SHL(s,b) and SHR (i,b) denote left and right bit shifts,

respectively, of the binary representation for i, with the bit b
shifted into the newly vacated bit.

[register 1] [Tregister2]  [register 3 |

[register 4]

| register 5

(a) An RTL circuit with reconvergent fanout.

t
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(b) The circuit transformed.
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(c) A partitioning of the transformed circuit.

Figure 2: A simple transformation example.

4 A Transformation Technique

The probabilistic analysis described in this paper can be sim-
plified by assuming that there is no correlation among the
input registers of a partition, i.e., that one input register’s
state is independent of every other input register’s state. In
practice, word-level correlation occurs frequently, and is a di-
rect result of fanout in the circuit structure. For example,
consider the circuit of Figure 2(a). When a direct partition-
ing of the circuit is used, information about registers 4 and
5 is used to analyze register 6. The states of these two reg-
isters are heavily correlated; both are functions of the state
of register 2 at the previous clock. Any probabilistic analy-
sis operating directly on the original circuit should take this
correlation into account.

In this work, a transformation that turns a general RTL cir-
cuit into a functionally equivalent RTL circuit with no recon-
vergent fanout is used prior to the BIST analysis. The trans-
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formation serves to subsume the reconvergent fanout within
the combinational logic, where it can be taken into account
more easily; Figure 2(b) shows how, for our example, the re-
convergence is subsumed within combinational logic block C’.
Part (c) of the figure shows the partitions for the transformed
example; since the inputs to each partition are independent,
subsequent probabilistic analysis may ignore correlation.

The algorithm for finding the partition for a register starts
with the direct partition described in Section 3.1. It then
enlarges the partition until all correlation among the input
registers of the partition is eliminated. Whether two registers
are correlated is determined by tracing through the circuitry
driving the registers, looking for a common source register at
a common sequential distance. For example, when finding the
proper partition for register 6 of Figure 2(a), the algorithm
starts by expressing the state of register 6 as a function of
the states of registers 4 and 5. Since registers 4 and 5 have a
common source, the partition is expanded around registers 4
and 5, so that register 6’s state is written as a function of the
states of registers 1, 2, and 3.

5 Examples and Results

In this section, the proposed model is used to analyze sev-
eral example circuits. These examples validate the model by
showing that the analytical predictions are close to actual re-
sults obtained by simulation, and show how the metrics can
be used to compare different BIST configurations in terms of
test quality. Analytical predictions are from the model; actual
values are obtained from a computer program that simulates
the functioning of an RTL circuit in test mode, computing
the registers’ states at each time step.

Layout area and critical delay figures given in this section
are derived in the COMPASS Design Automation Tool. Criti-
cal delay reflects the speed at which the circuit can be clocked.
Fault coverage curves are from AT&T’s GENTEST fault sim-
ulator, and include only those faults within the ALUs. Tra-
ditionally, the signature is obtained by observing one element
of the circular self-test path for a limited number of clocks at
the end of the test session. Since we found this difficult to im-
plement in GENTEST, we observed the element throughout
the entire test session. As a result, our experiments neglect
some of the probability of aliasing during circuit response
compaction.

5.1 A cascade

The first example, shown in Figure 5.2(a), is a four bit wide
cascade of adders and multipliers. Testability metrics, both
from analysis and simulation, are shown in Figure 5.2(b) for
two different circular self-test path choices. Version I of the
circuit has minimal circular self-test path, that is, only the
primary input and primary output registers are included in
the path. For this version of the circuit, registers 9 through
12 have low transparency, and registers 13 and 14 have low
randomness. In order to boost these low values, we choose to
insert additional BIST registers in place of registers 9 through
12 in version II of the circuit. Figure 5.2(b) shows that version
II has improved randomness and transparency values. The
table also shows good agreement between the analytical values
predicted by our Markov model and actual values derived
from simulation.

For the circular BIST methodologies, the insertion of a test
register boosts both controllability and observability; that is
why our primary inputs have high transparency. Note also
that replacing registers 9 and 10 with test registers was suf-
ficient to bring the randomness of register 13 up from a low
value of .6389 to the more reasonable value of .9295. Fig-
ure 5.2(c), which shows fault coverage curves for the two cir-
cuit variations, shows that the version II is significantly more
testable than version I.

5.2 A low pass filter

Our second example, shown in Figure 3, is adapted from a low
pass filter in [COOS93]). The datapath is nine bits wide, using
fixed point numbers with two bits after the binary point. The
25% and 75% ALUs multiply their single inputs by .25 and
.75, respectively.

Version I of the circuit has a minimal circular self-test path.
Because this circuit has chained ALUs, we calculate metrics
not only at the registers, but also at points a and 5. For this
example, transparency values are trivially very high, becaunse
addition is highly sensitive to changes in an input, but the
randomness of point b is quite low because the multiplication
by 1/4 clears the two most significant bits. In order to im-
prove the randomness at b, we insert a test register that is
transparent in normal mode. Version II of the circuit inserts
a full nine bit test register at point b. For this example only
two of the nine bits actually have low entropy, so we can save
area by using a test register of only two bits; we do this in
version III. Fault coverage for all versions of the circuit are
shown in Figure 3(c).

5.3 An elliptical wave filter

Our final example is derived from a fifth order elliptical wave
filter{[PaKn89). First, a four bit wide version of the wave fil-
ter was synthesized using the high level synthesis system of
[HPCN92]. Next, since our test effort focuses on the ALUs,
the assumption that multiplexer control would be held con-
stant during testing was made, and so a single path through
each multiplexer was chosen. In effect, this allowed the re-
moval of all multiplexers and some registers not used for test-
ing from the circuit; the resulting circuit is shown in Figure
5.3(a). Next, a minimal circular self-test path was added.
Testability metrics are shown in the table of Figure 5.3(b). In
this case, the randomness and transparency values are quite
high, and we elect not to insert additional test features. A
fault coverage curve for the circuit is shown in Figure 5.3(c).

The overall execution time for analyzing a circuit is domi-
nated by the time taken for the Markov analysis. The anal-
ysis process is iterative in nature, and the time per iteration
grows at most linearly with the number of registers. An exact
complexity analysis of the overall process has not been done
because determining the number of iterations needed is diffi-
cult; however, in our experience, most circuits require only a
few iterations. The time required to analyze a single register
grows exponentially with the size of the register, since each
possible register state is examined. The overall execution time
is reasonably fast for the four and nine bit wide registers used
here; our slowest example required six seconds of real (“wall
clock”) time on a SUN SPARC IPC workstation. However,
the analysis is slow for larger 16 or 32 bit registers. It is
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REGI-8 ] REG9 | REGI0 | REG11 | REGI2 | REG13 [ REG14 | REGI5
WR Analysis 1 .9205 | .9295 | .9295 1 .6389 | .7915 1
Simul. .9999 .9298 .9296 .9295 .9996 .6400 1912 L9997
ESC Analysis .9981 9756 9756 9756 .9981 7525 .8875 .9981
(in 96 clks) Simul. 1 9375 9375 1 1 L7500 1 1
MT Analysis 1 7 i .867 7 1 1 1
Version I
MR Analysis 1 1 1 1 1 .9295 .9295 1
Simul. .9997 9998 .9998 L9997 9998 9331 9256 .9998
ESC Analysis .9981 .9981 .9981 .9981 9981 9756 9756 .9981
(in 96 clks) Simul. 1 1 1 1 1 1 1 1
MT Analysis 1 1 1 1 1 1 1 1
Version I1
(b)
Figure 3: The cascade example: (a) RTL structure; (b) testability metrics; (c) area, performance and fault coverage results,
Circuit Area Crit. Delay
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REGI1 | REG2 a b 1 1418x741 18.14
MR Ana. 1 1 9444 | 7718 i 1674x897.5 18.18
Sim. .9860 L9870 | .9351 | .7750 IIT ™ [ 1306x905.5 18.48
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Figure 4: The low pass filter example: (a) RTL structure; (b) testability metrics; and (c) area, performance and fault coverage

results.
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ESC (in | Ana. | .9981 .9981 .9756 .9981 .9756 .9981 .9981 .9981 .9981 .9981
96 clks) Sim. 1 1 1 1 1 1 1 1 1 1
MT Ana. 1 .8667 1 1 1 1 1 .9333 1 1
(b)

Figure 5: An example derived from an elliptical wave filter: (a) RTL structure; (b) testability metrics; (c) area, performance,

and fault coverage results.

hoped that further research will speed up the analysis. Even
as it stands now, the model provides insight into test quality,
and thus is useful in validating faster heuristics; our research
is exploring heuristics to compute the randomness and trans-
parency metrics directly, without reliance on the underlying
vectors and matrices.

6 Conclusions

A method for the analysis of conventional and circular BIST
at the system level was presented. The method makes use of
testability metrics for the controllability and observability of
registers of a circuit, and provides a means of measuring the
effect of a test insertion decision® on test quality. In addition,
a transformation technique, used to process the circuit be-
fore applying the method, was presented; this transformation
technique strengthens the analysis by allowing accurate mod-
eling of the effects of word-level correlation within the circuit.
A number of examples were presented comparing analytical
results to actual results obtained from simulation, showing
that the proposed method is valid.
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