

COPERNICUS JEP 9624 FUTEG
Functional Test Generation and Diagnosis

(1994-97)

Final Report

Contents

1. Introduction

2. The Model Used in Test Generation and Fault Simulation Experiments

 2.1. Description of digital systems by alternative graphs
 2.2. Synthesis of alternative graphs
 2.3. Fault model used in experiments
 2.4. General fault notation for alternative graphs

3. Test Generation and Fault Simulation Approach Used in Experiments

 3.1. Test generation for the data path of digital systems
 3.2. Test generation for the control path of digital systems
 3.3. General structure of the automated test pattern generator

4. Experimental Results

 4.1. Low-level test generation experiments
 4.2. Test generation experiments with control units
 4.3. Test synthesis for digital systems with global feedbacks
 4.4. Test generation for RISC architectures
 4.5. Fault simulation experiments with BIST architectures

5. References

Technical report FUTEG - 2/1997 CP93: 9624

 2

1. Introduction

Test generation for digital systems encompasses three activities:
 - selecting a description method,
 - developing a fault model and
 - generating tests to detect the faults covered by the fault model.

The efficiency of test generation (quality, speed) is highly depending on the description
method and fault models which have been chosen. As the complexity of digital systems
continues to increase, the gate level test generation methods have become obsolete. Promising
approaches are high-level and hierarchical methods which use behavioral, functional or multi-
level descriptions of systems. However, the drawback lies in the need of different languages
and models for different levels.

High-level test generation is based on the fact that high-level modules are treated as
primitives [1-4]. In [5], these modules are still flattened till gate level during test generation,
which may be considered as a drawback of the method. In [5-7], only combinational
primitives are considered. The system partitioning into the data and control path is presented
in [1,2,4,8], and interactions between them are taken into account during test generation. In
high-level test synthesis, two different methods are distinguished: test generation using
symbolic simulation [9] and test generation using path sensitisation technique [1, 3, 4, 8]. The
first one generates a test by comparing the results of a symbolic simulation of a fault-free and
faulty models and leads to analysis of symbolic expressions, which can be difficult for
complex descriptions.

In hierarchical testing, top-down and bottom-up strategies are known. In the bottom-up
approach, pre-calculated tests for system components (modules) generated on low-level will
be later assembled at a higher abstraction level. Such algorithms typically ignore the
incompleteness problem: constraints imposed by other modules and/or the network structure
may prevent all test vectors from being assembled. Top-down approach has been proposed to
solve this problem by deriving environmental constraints for low-level solutions. However,
such techniques are of little use where the system is still under development in a bottom-up
fashion, or where “canned” parts have to be applied.

For high-level and hierarchical test generation, different functional fault models have been
introduced. In the case of microprocessors, individual functional fault models and

Technical report FUTEG - 2/1997 CP93: 9624

 3

corresponding test strategies have been developed for different function classes like register
decoding, instruction decoding, control, data storage, data transfer, data manipulation etc.
[10]. The main disadvantage of this approach is that only microprocessors are handled and
the results obtained cannot be extended to cover the general digital systems test problem.
When using register transfer languages (RTL-approach), a formal definition of a RTL
statement is defined and nine categories of functional faults for components of RTL
statements are identified [11]. Some attempts to develop special functional fault models for
different data-flow network units like decoders, multiplexers, memories, PLAs etc. are
described in [12]. In the last period, a lot of attention has been devoted for generating tests
directly from descriptions in high level languages [13,14]. All the listed approaches lead to
using different mathematics and procedures for each fault model. The diversity of fault types
makes it difficult to develop uniform test generation algorithms with possibility to treat all
faults by standard procedures as in the case of stuck-at faults at the gate-level approach. Test
synthesis based on a lot of different types of fault models will be more complicated compared
to the case when only one generic fault model is used.

In the approach developed in framework of the FUTEG project, a method for describing
digital systems and for modeling faults based on alternative graphs (AG) [15] is used. AGs
serve as a basis for a general theory of test design for mixed-level representations of systems,
similarly as we have the Boolean algebra for the plain logical level. The fault model defined
on AGs represents a generalization of the classical gate-level stuck-at fault model - the latter
was defined for literals in Boolean expressions whereas the former is defined for nodes in
AGs.

Logical level AGs [15] represent the topology of gate-level circuits, and therefore, unlike
analogous BDDs [16], they directly support test generation for gate-level structural faults
without representing these faults explicitly. Moreover, AGs and BDDs are based on the same
binary graph ideology, hence, the same theoretical basis can be used for mixing symbolic and
topological techniques. This can simplify further developments and improvements of the
method. On the other hand, AGs support uniform approach to test design at different system
levels, whereas BDDs support only the Boolean level.

In the project, a method was implemented for jointly describing structural properties,
functions, and faults of digital systems by decision diagrams. The new fault model covers a
large class of faults including the register transfer level (RTL) functional fault class [17,18]
and topological fault classes like stuck-at, delay and bridging faults. The joint information
about structure and functions presented in AGs helps to create uniform procedures for
generating local test patterns for components, as well as for generating I- or F-paths [19,20]
through the network. The method supports both, high-level (behavioral) and hierarchical (or
mixed-level) test generation schemes. Differently from known approaches, control and data
parts are handled in the uniform way. The model provides an efficient theoretical basis to
combine high-level approaches to test generation with BDD-based symbolic and topological
techniques on low-level. Experimental results are provided in this report for demonstrating
the efficiency of using decision diagrams in test generation.

Technical report FUTEG - 2/1997 CP93: 9624

 4

2. The Model Used in Test Generation and Fault Simulation Experiments

2.1. Description of digital systems by alternative graphs

Alternative graph (AG) in general case is defined as a non-cyclic directed graph whose nodes
are labelled by variables. There can be different finite sets of values the variables can take. In
special cases, variables can also be substituted by constants or by algebraic expressions. The
graph has only one starting node (root). The number of terminal nodes, i.e. nodes for which
successor nodes are missing, is not limited. For each value from a set of predefined possible
values of a non-terminal node variable (or expression), there exists one and only one output
branch from the node. Different branches of the same node may lead into the same successor
node.

Consider a situation where all node variables are fixed to some value. By these values, for
each non-terminal node a certain output branch will be chosen which enters into its
corresponding successor node. Let us call such connections between nodes activated
branches under the given values. Succeeding each other, activated branches form in turn
activated paths. For each combination of values for all node variables there exists always a
corresponding activated path from the starting node to some terminal node. Let us call this
path the main activated path. Now, for each combination of values for all node variables there
exists one and only one value which is equal to the value of the variable (or expression) at the
terminal node of the main activated path. This relationship describes a mapping from a
Cartesian product of the sets of values for variables in all nodes to the joint set of values for
variables in the terminal ones. Therefore, by AGs it is possible to represent arbitrary digital
functions Y = F(x), where Y is the variable whose value will be calculated on the AG and x is
the vector of all variables which belong to the labels of the nodes in the AG.

2.1.1. Alternative graphs and gate-level combinational circuits

An AG that represents a Boolean function (binary decision diagram [16]) is a directed
noncyclic graph with single root node, where all nonterminal nodes are labelled by (inverted
or not inverted) Boolean variables (arguments of the function) and have always exactly two
successor-nodes whereas all terminal nodes are labelled by constants 0 or 1. For all
nonterminal nodes, an one-to-one correspondence exists between the values of the label
variable of the node and the successors of the node. This correspondence is determined by the
Boolean function inherent to the graph.
Unlike the traditional BDDs [16], structural structural AGs (SAG) reported in [15] support
structural representation of gate-level networks in terms of signal paths. By superposition
procedure described in [15], we create SAGs where one-to-one correspondence exists
between graph nodes and signal paths in tree-like subciruits represented by SAGs. We can
consider a digital circuit as a network of tree-like subcircuits, each of them represented by an
equivalent parenthesis form (EPF). Consequently, a digital circuit can be represented by a
system of SAGs.Using SAGs, it is possible to ascend from the gate-level descriptions of

Technical report FUTEG - 2/1997 CP93: 9624

 5

circuits to higher level descriptions without loosing accuracy of representing gate-level signal
paths.

Denote the literal which labels a node m in a SAG by x(m). We say that a value of the node
variable activates the node output branch. According to the value of x(m), one of two output
branches of m will be activated. A path in a SAG is called activated if all the branches that
form this path are activated. The SAG is called activated to the value 0 (or 1) if there exists an
activated path which includes both the root node and the terminal node labelled by the
constant 0 (or 1). A SAG Gy with nodes labelled by literals x1, x2, ..., xn, represents an EPF y
= f(X) = f(x1, x2, ..., xn), if for each pattern of X, the SAG will be activated to the value which
is equal to y.

Fig.1. Combinational circuit and structural BDD

As an example, Fig.1. shows a representation of a combinational circuit by a SAG which
corresponds to the EPF

y = (x1 x21 + ¬x22 x31) (x32 x51 + ¬x4 x61) + x52¬x62.

For simplicity, values of variables on branches are omitted (by convention, the right-hand
branch corresponds to 1 and the lower-hand branch to 0). Also, terminal nodes with constants
0 and 1 are omitted (leaving the graph to the right corresponds to y = 1, and down - to y = 0).
The graph contains 10 nodes, and each of them represents a signal path in a circuit (and a
literal in the EPF). The literals in EPF and the related node variables in the graph correspond
to input branches of the circuit in Fig.1.

&

1

&

&
&

1

1
&

&

1

&

x1

x2

x3

x4

x5

x6 y

X21

X22

X31

2

X32

2
X51

X61

X62

X52

X1 X21 X32

2

X51

X4X22 X31

2

X61

X52 X62

y

Technical report FUTEG - 2/1997 CP93: 9624

 6

2.1.2. Alternative graphs and finite state machines

There are two ways of representing finite state machines (FSM): 1) structural way - by a
circuit which can be decomposed into combinational and memory parts, and 2) functional
way - by state transition diagrams (STD).

In the first case, there is no principal difference in using AGs for representing FSMs
compared to the case of combinational circuits. The output and transition functions of the
FSM are Boolean and therefore can be represented by AGs for Boolean functions (or similar
BDDs [15]). For the second case, we use integer variables for representing inputs, outputs and
internal states of the FSM. A FSM is represented by AGs for describing, correspondingly, the
transition and output behaviors of the machine. By introducing complex variables and
representing the FSM by a single complex function q.y = f(q',x), where state variable q and
output variable y are concatenated, we can represent a FSM by a single AG. As an example,
in Fig.1 two representations of a FSM by a STD and by an AG are depicted. AG represents
the complex behavior function of the FSM q.y = F(q', Res, xl, x2) where q.y is the
concatenation of the integer state variable q (with possible values 1,2,3,4,5,6 for representing
states) and the binary output variable y. The input of the FSM is structured and represented by
three Boolean variables Res, xl and x2. By q' we denote the previous state variable. Terminal
nodes of the AG are labelled by complex (concatenated) constants which represent the new
state of the FSM and the value of the output variable y at the new state. To be able formally to
model the faulty behavior of the FSM, we have to specify in AGs if possible also the behavior
of FSM at illegal states denoted by q = *. In the example in Fig.2, for illegal states, it has been
assumed that y = 0.

Two extreme cases can be considered in representing FSMs by AGs:

1) the case of abstract FSM, where we have only three abstract variables for representing the
input, output and internal states of the automata and, correspondingly, two AGs for
representing the transition and output functions, and,

2) the case where the input, output and internal states of the FSM are binary coded and we can
represent it by a set of Boolean output and transition functions. Mixed cases can be placed
between these two extremes. By introducing complex variables (e.g. microinstruction words
consisting of fields), and representing the FSM by a single complex function q.y = f(q',x),
where state variable q and output variable y are concatenated, we can represent a FSM by a
single AG.

Technical report FUTEG - 2/1997 CP93: 9624

 7

1/0

3/0

5/0

6/1

4/1

2/1

x1 x1

x2 x2

x1

x1

Res Res q’ x1

3.0

x2 4.1

5.0

6.1
x1

1.0

*.0

q.y
1

1 1

2

3

4
5

6

*

3 4
2.1

5

6

8

9

10

12

11

13

7

1.0
2

0

0

0

1

1

1

Fig.2 FSM representations by a STD and a functional level AG.

As an example, in Fig.2 two representations of a FSM by a state transition diagram and by an
alternative graph are depicted. The AG represents the complex behavior function of the FSM
q.y = F(q', Res, xl, x2) where q.y is the concatenation of the integer state variable q (with
possible values 1,2,3,4,5,6 for representing states) and the binary output variable y. Input of
the FSM is structured and represented by three Boolean variables Res, xl and x2. By q' we
denote the previous state variable. Terminal nodes of the AG are labelled by complex
(concatenated) constants which represent the new state of the FSM and the value of the output
variable y at the new state. To be able formally to model the faulty behavior of the FSM, we
have to specify in AGs also the behavior of the FSM at illegal states, denoted by q = *. In the
example, for illegal states it has been assumed that y = 0.

The are two properties of AGs that essentially differ them from STD-s which, however, may
be not noticed at a glance on the example:

-similarity in representation with Boolean AGs (BDDs) that allows to generalize
methods developed for the logical level as well to the higher functional (state transition) level;

-in AGs, only one model in the form of graphs is used whereas STDs consist in two
models - graphs for representing transitions between states and Boolean expressions to
determine the branching conditions.

2.1.3. Alternative graphs and register transfer level data-paths

When using AGs to describe complex digital systems, we have, at the first step, to represent
the system by a suitable set of interconnected components (combinational or sequential ones).
At the second step, we have to describe these components by their corresponding functions
which can be represented by AGs.

Technical report FUTEG - 2/1997 CP93: 9624

 8

+ R3

R2

∗F R1

A

B
C

Y

y2

A
y3

y1 s

Fig.3. Register transfer level representation of a data-path

An example of representing a RTL description of a data-path in Fig.3 of a digital system by
AGs is depicted in Fig.4., whereas the functions of components of the data-path are described
in Table 1. The model consists of graphs GR2, GC, GR1 and GR3 for representing,
correspondingly, the functions of the register R2, multiplier C and of two sub-networks R1 and
R3 surrounded by dotted lines

In this example, y1, y2, and y3 serve as control inputs, A and B are data inputs, R1, R2, and R3
serve as data register variables (by apostrophe the previous state is denoted), C is the output
variable of the multiplier and input variable for the adder, and Y is the primary output of the
datapath. In nonterminal nodes, only control variables are used as labels. Terminal nodes are
labelled by data transfer or data manipulation expressions. Each node in the model has a
strong relation to the structure of the datapath: nonterminal nodes represent the control logic

y3 #0 y

A

2R’y1

R’1

F(B,R’3)

A∗R’1

#0

#0

Y,R3 R2
0 0

1 1

0

2
2

0

3

R1

C
1

2

0

C+R’2

R’3 R’2

Fig. 4 AG-model for the datapath in Fig.1.

Technical report FUTEG - 2/1997 CP93: 9624

 9

in modules (subnetworks), the nodes labelled by data variables represent buses, and the nodes
labelled by expressions represent data manipulation logic. In such a way, to generate a test for
a given node means to create a test for a related structural part of the module or subnetwork.

Table 1

y1 R1 Funktion y2 R2 Funktion y3 Y, R3 Funktion C Funktion
0 #0 Reset 0 #0 Reset 0 #0 Reset A+ R’2 Multiplier
1 R’1 Hold 1 R’2 Hold 1 R’3 Hold
2 F(B, R’3) Special 2 A Load 2 C+ R’2 Adder
 3 2R’2 Shift

2.2. Synthesis of alternative graphs

Consider a digital system S = (F, N) as a set of components (or subnetworks) F represented by
functions y = f(x) and a network N connecting these components. The system is represented
by a set of variables Z = {IN, OUT, INT, REG} defined by relationships of component
functions f∈F. Here IN, OUT, INT and REG represent correspondingly the sets of primary
input, primary output, internal bus and system state (register) variables. The set of
components can be devided into control part FC and datapath FD, F = FC ∪ FD. Hence, we can
distinguish in Z also control and data variables.

A set of AG-s GS ={Gy} represent a digital system S = (F,N) if for each function y=f(x) in F
there exists a graph Gy = (M,Γ,x). The set GS ={Gy} is called AG-model for the system S.

Note, in the AG-model we do not have the network N explicitly given. In the AG-model we
suppose that two variables connected through the network N have the same name. In other
words, the set {Gy} of the AG-model represents a set of graphs connected by variables.

To generate AGs for components of the datapath, at first, the decision diagram for the control
logic of the component should be created. If the binary level will be implemented in the AG-
model, the methods for creating structural AGs [Uba 96b] can be used. In that case, each node
in the graph will represent a signal path in the gate-level control logic. Hence, the structure of
the control circuit will be represented in terms of signal paths in the model. If the RT-level
graphs are to be created, we will consider higher level (integer) variables which represent
control fields of instructions, microinstructions or control buses. By using the control
variables, a decision diagram will be built up with one or more decision nodes in each path of
the graph, and, in general, with more than two output edges from each decision node. To each
decision node in the model, a multiplexer or decoder as the structural part of the module
corresponds. After creation of the decision part of the AG, all the paths in the model will be
terminated with nodes labelled by corresponding expressions for data transfer or data
manipulation. In such a way, all the graphs in Fig.2 are synthesized.

As to the control part of the system, we generate a joint AG for the output and the next-state
behaviour for each finite state machine (FSM). As labels for the decision nodes, input and

Technical report FUTEG - 2/1997 CP93: 9624

 10

previous state variables of the FSM are used. Each pattern for these variables prescribes a
path through the decision tree which should be terminated by a node labelled by expression
(or constant) to define the next state and the output behaviour of the FSM. In Fig.5 and in
Table 2, a FSM for controlling the data path in Fig.1 is depicted. As the result of cooperation
of the control and data parts, multiplication of A and B is performed. To represent the FSM,
an AG is created for the vector function: q,y1,y2,y3 = f(q’,R’2=0). The predicate R’2=0 is used
here to represent a flag variable for reporting the state of the datapath. We have two decision
nodes in the graph for analysing the previous state q’ of the FSM and the flag R’2=0. The
terminal nodes are labelled by constants (the values of the vector variable q,y1,y2,y3).

Fig. 6 Superposition of AGs for the data part

Table 2
q’ x q y1 y2 y3 Activities in the

datapth
0 1 1 1 0 y3:R3 := 0
1 2 2 2 1 y1:R1 := B, y2:R2 := A
2 R’2=0 0 1 1 2 y3:R3 := A∗B
2 R’2≠0 2 1 2 1 y2:R2 := A

q’ #1110

R’2=0

qy1y2y3
0

1

0

#2221
1

2

0
#0112

#2121

Fig. 5. AG-model for the control part

y3 #0

S

Y,R3
0

1

0

2

0

R’3

C+R’2S

a)

y3 #0Y,R3
0

1

0

2

0

R’3b)

C+R’2

Technical report FUTEG - 2/1997 CP93: 9624

 11

If the components of the system are represented by AGs, different manipulations with graphs
are possible. For the compression of the model, the graph superposition procedure proposed
in [15] for gate-level strucural graph synthesis can be generalized for the RT-level case. Since
control signals are usually either primary inputs for the data-path or inputs from the control
part, no superposition for nonterminal nodes is needed. The control part will be represented
separately, and should not be mixed in the model with datapath. On the other hand, terminal
nodes which represent data buses can be replaced by a graph which describes the component
whose output is connected to the bus. Since the bus variable will disappear from the model,
the fault collapsing event will take place as a side effect of superposition. In this way, both the
complexity of the model as well the complexity of the fault set to be attacked will be reduced.
An example of creating the AG for the subnetwork R3 of Fig.3 (surrounded by dotted lines) is
shown in Fig.6. The register with reset, hold and load functions and the adder connected to
the register via an internal bus S is represented in a compressed model by a single AG.

Fault propagation modes are sometimes explicitly represented in the functional description of
the component. For example, in Fig.6a the fault propagation mode for the register is explicitly
given in the graph GY,R3. To propagate a fault from the input S to the output Y, the condition
y3 = 2 should be fulfilled, which activates the full path in GY,R3. On the other hand, e.g. the
adder in Fig.6b is represented only by expression C+R’2 and not by explicit fault propagation
modes. In general, fault propagation modes are a subset of all the component functions, which
is not always explicitly highlighted in the functional description. This subset is usually given
in the form of tables as an additional information, where all possible conditions to build up
transparency paths (I- or F-paths) are listed. All the conditions to build up transparency paths
for a given output can be represented as a decision diagram, and hence, they can be merged
with the AG-model to give a uniform representation to all of the important diagnostic
information – to functions, structural details, faults and fault propagation modes of the
component.

2.3. Fault model used in experiments

2.3.1. Faulty node as the basic fault model for AGs

Depending on different classes of digital systems (or different levels of representation) we can
classify different types of AGs with nodes having different interpretations in relation to the
structure of the system. The possibility of representing faults in AGs depends directly on
these relationships. At the Boolean level, all nodes in structural AGs (SAG) are labelled by
Boolean variables, whereas each node represents a signal path in the gate-level circuit. At the
RT-level, the nodes in AGs are labelled by high-level variables like control fields in
instructions (or microinstructions), data words or by data manipulation expressions. Different
fault models defined at different system levels are replaced on AGs by the uniform fault
model of a node.

Definition 1.
The fault model for AGs is defined as the following faulty behaviour of a node m labelled
with a variable x(m) which can have values from a finite set V(m):

Technical report FUTEG - 2/1997 CP93: 9624

 12

 1) the output edge of the node m is always activated to x(m) = i (notation: x(m)/∅⇒ I);
 2) the output edge of the node for x(m) = i is broken (notation: x(m)/ i ⇒∅);
 3) instead of the given output edge of the node for x(m) = i, another edge or a set of edges
for values x(m) ∈ Vj(m) ⊂ V(m) are activated (notation: z(m)/ i ⇒ Vj(m)).

RTL statement: K: (T,C) RD < --- F (RS1, RS2, ... Rsm), --- > N

In fact, this fault model leads to exhaustive test of the functionality of the node. Depending on
the abstraction level, the complexity of the fault model can be higher or lower. Each path in
an AG describes the system behavior in a specific mode of operation. The faults having effect
on the behavior are related to nodes along the given path. A fault will cause an erroneos
change in the path activated by a test. The physical meaning of faults associated with node
ouputs depends on the relationship between the node and the circuit. Depending on the
adequacy of representing the system structure by AG-s, this fault model can cover a wide
class of structural and functional faults of digital circuits and systems. In general, the fault
model defined on AGs can be regarded as a generalization of the classical stuck-at fault
model - the latter being defined for Boolean variables, the former - for AG nodes.

Consider some well-known low- and high-level fault models in terms of the AG notation.
Since the nodes in binary AGs represent signal paths in a gate-level circuit, the two possible
faults of the AG-node represent all the stuck-at faults along the corresponding signal path.
The RTL statement faults like label, timing (or logical) condition, register (or function)
decoding and control faults [18] are covered by faults of nonterminal nodes in AGs, labelled
by corresponding label, condition, decoding or control variables. The data storage, transfer
and manipulation faults [18] are covered by faults at terminal nodes labelled by corresponding
data variables or data manipulation expressions. The different fault classes introduced in [17]
for microprocessors are covered in the similar way by a single fault model of a node in AGs.

In Fig.7, the fault model of AGs for a general RTL statement is illustrated. A subgraph GRD
represents a decisions chain for the data manipulation mode F(R) of a component RD in the
data part, and the graph GKNEW represents a decisions chain for the control part of a system to

K

K T C #N

T C F(R)
RD

KNEW

Label (decoding)
faults

Timing faults

Register or function
decoding faults

Data transfer, storage
or manipulation faults

Control (decoding) faults

Control (storage)
faults

AG - model
Data part:

Control part:

Fig.7. RTL faults in the AG-model

Technical report FUTEG - 2/1997 CP93: 9624

 13

assign the new state KNEW = N. The following notation is used: K – label of the RTL
statement (state variable of the system), T - timing condition (state variable for a FSM of the
control part), C - logical condition (flag in the datapath, RD - destination register, RSi - source
register, F(R) - operation (microperation) with the content of R, N - reference to the next
statement (to the next state of the system).

Traditionally [17,18], for each component of a RTL-statement a fault model by enumerating
the fault lists (lists of possible deviations for values of the component) is created. In the case
of AGs, only a single general fault model of a node is used. The fault list is given implicitly,
i.e. each fault can be derived from the AG-model directly if needed. The set of possible faulty
deviations for a node variable z(m) is defined by V(m).

2.3.2. Representing faults in finite state machines

Different fault models for different representation levels of FSMs can be replaced on AGs by
this uniform node fault model. The physical meaning of faults associated with a particular
node depends on the “structural meaning” [15] of the node.

From above it follows that the fault model defined on AGs can be regarded as a generalization
of the classical gate-level stuck-at fault model for more higher level representations of digital
systems. As the nodes with Boolean labels represent only a special class of nodes in AGs, the
logical level stuck-at fault model represents also only a special class of faults in AGs. In the
following we consider how the different fault classes in finite state machines can be
represented uniformly using alternative graphs.

2.3.2.1. Fault classes for finite state machines. Any irredundant structural fault in the
implementation of the FSM will cause some changes in its STD. One or multiple transitions
will be corrupted. So, a test sequence that detects all multiple transition faults will detect all
irredundant permanent physical defects. However, the analysis of multiple transition faults is
too complex, therefore usually a single transition fault will be considered. In the following,
we try to find relationships between structural and functional level faults, to analyse how
different single structural fault types affect the behavior of the FSM, are they manifesting
himself as single or multiple transition faults, and how test sequences can be generated for
them.

The faults of the FSM circuitry can be divided into the following fault classes: 1) single
transition faults (class a) - faults that effect on a single transition condition only; 2) input
faults (class b) - faults that effect on the input of the FSM; 3) state faults (class c) - faults that
effect on the state of the FSM.

We shall show in, the following that a single fault in a FSM, represented by an iterative array
of identical combinational circuits, can manifest himself in a test sequence in different ways:
as a single fault both in each time frame and, under special restrictions, also in the whole
array (transition faults), or as a multiple fault both in each time frame and in the whole array
(input and state faults). From the different complexity of faults, it follows that the faults are to
be processed during test generation by different strategies, e.g. to be processed at different

Technical report FUTEG - 2/1997 CP93: 9624

 14

FSM representation levels. Using AGs, it will be possible to process the faults at different
FSM levels by uniform algorithms.

2.3.2.2. Representing transition faults on gate-level AGs. The class of transition faults (not
to mix up with functional faults related to branches in STDs, as used in [4]) is related
exclusively to the circuitry which calculates the transition condition effect, provided that all
condition signals are fault free. These faults are difficult to define at the functional level
because of the implementation dependency. Assume that all the next state circuits for
different flip-flops are disjoint. If it is not the case, the faults in joint parts of the logic shared
for different flip-flops should be handled in the same way as the input and state faults. It is
easy to notice that in the assumed case the transition faults influence always on a single
transition condition only and therefore, they cannot mask themselves as long the same
transition will not repeated. It means that as long not yet tested loops are not containing in test
sequences, the faults of type (a) manifest himself as single faults in the whole iterative array
related to the test sequence. This property gives the possibility to carry out the test synthesis
on different levels without crossing the level borders if backtracking is needed. Particularly,
the fault activization procedure will be carried out on the gate level where these faults are
specified, whereas the signal justification (state initialization) and the fault propagation
procedures can be carried out on the functional STD level. Transition faults can be concisely
represented in structural AGs of the next- state logic.

2.3.2.3.. Representing transition faults on signal-path-level AGs. Generation of a
compressed structural AG-model for a given gate-level digital circuit is based on the
superposition of AGs [15]). AGs for logical gates are assumed to be given as a source library.
Starting from the gate-level AG-description and using iteratively graph superposition, we can
produce a more concise higher level representation of the circuit. As a result of this
procedure, we create structural AGs (SAG) which have the following property [15]: each
node in a SAG represents a signal path in the corresponding gate-level circuit. To avoid
repeating in the AG-model same subgraphs, it is recommendable to create separate AGs for
tree-like subcircuits. In this case, the number of all nodes in the set of AGs will be equal to
the number of paths in all tree-like subnetworks of the circuit, and one to one correspondence
will exist between paths in these subnetworks and nodes in AGs. Hence, using the concept of
SAGs, it is possible to rise from the gate-level descriptions of digital circuits to higher level
structural descriptions without of loosing accuracy of representing gate-level stuck-at faults.
The task of simulating structural stuck-at-faults in a given path of a circuit can be substituted
by the task of simulating faults at a node in the corresponding SAG.

Technical report FUTEG - 2/1997 CP93: 9624

 15

1

&
1

&

&

1

&
1

&

&

1

2
3

4

6
78

9

10 11

13

D3

T1 T2 T3

T3 x1T2

T1 T2

x2

T2 T3

T3

x1
1312

10

11

98

7

D3
1 2 3

4 5 6

T1

T2
T3

x1

x2

Fig.8. Representing a gate-level structure by a structural AG

An example of a SAG for a combinational circuit is depicted in Fig.8. The nodes of AG are
labelled by input variables of the circuit. For simplicity, the values of variables on branches
are omitted (by convention, the right-hand branch corresponds to 1 and the lower-hand branch
to 0). Also, terminal nodes with constants 0 and 1 are omitted (leaving the AG to the right
corresponds to y=1, and down to y=0). To each node in the AG, a path in the circuit
corresponds (the correspondence is shown by numbers). For example, a node 8 (bold circle)
in the AG represents the bold path from the input branch 8 up to the output of the circuit. The
node variables are inverted if the number of invertors in the corresponding path is odd. The
set of stuck-at-1 faults along this path in the circuit is represented in the AG by only one
representative fault T2,/1 (T2 stuck-at-l, i.e. the branch from the node 8 constantly activated to
the right direction). The activated paths in the AG (shown by bold arrows) represent the
situation when the fault T2/1 is activated (the test pattern 0011x (Tl,T2,T3, xl,x2), where x
denotes an arbitrary value).

2.3.2.4. Representing input and state faults of FSMs in functional level AGs. Input faults
(b) in FSMs are related to the input lines of the FSM and, in general case, they affect upon
more than one transition conditions during the test sequence. Hence, a single structural fault
manifests himself as a multiple fault in the iterative array representation of a FSM, which
results in difficulties of test generation at the structural level. From the other point of view,
input faults are easily to be specified, activated and propagated at the functional level. Hence,
in test generation for input faults of the FSM, the functional FSM representation in the form
of STD is more preferred than the complex gate level model.

State faults (c) in FSMs are related to the memory flip-flops and, at the functional level, they
could be related also to the state decoder, if the latter is a part of the next-state logic or if it is
used for implementing output functions. For flip-flops, the stuck-at-0 (1) fault model can be
used. For the state decoder, at the functional level, a more general functional fault model is
used: stuck-at-0 (1) on outputs and faults "instead of given output another output or a set of
outputs is active". The state faults (flip-flop faults) affect upon more than one transition
conditions and represent also the multiple fault case for the iterative combinational array

Technical report FUTEG - 2/1997 CP93: 9624

 16

model. Hence, to simplify the test generation, it is recommendable to define and process these
faults only at the functional level FSM representation in the form of STD.

For representing the input (b) and state (c) faults in FSMs, alternative graphs will be used,
which represent directly the state transition diagram of the FSM (see example in Fig.1). If
decoders are used in a FSM for decoding input and/or internal states, then in the AG model,
nodes with integer variables will represent these decoders. The functional faults of a decoder
(stuck-at-0 (1), "instead of the given output another output is active") are represented by
analogical faults at the corresponding node in the AG (compare to the fault model for nodes
of AGs in Section 3.1). The structural bit-level stuck-at faults of functional integer variables
are not difficult to insert if the tests for them are generated.

From above, it follows that for efficient test generation, a multi-level approach is advisable,
where different faults will be at different levels processed. Traditionally for different levels,
different languages, fault models and test generation algorithms are used. Introducing AGs as
a model for FSMs allows to remove this drawback.

2.3.2.5. General fault notation for AGs.

To generalize the fault model introduced by Definition 5 for the cases where not the all
information concerning realistic defects is inherent in the AG-model (e.g. topology dependent
bridging and crosstalk faults), define the following general fault notation:

Definition 2.
A fault r in the AG-model Gy = (M,Γ,x) is a quadruple: r = (Gy,m,C,A) where
 - G is the graph where the fault is defined,
 - m is the node affected by the fault,
 - C is a condition needed for activating the fault (an assignment of a subset of
variables xC ⊂ x),
 - A is the action of the fault, i.e. the list of faulty activated output edges of the node m
(the list of active values of x(m)).

The parameters Gy and m of r determine the coordinates of the fault location in the AG-
model. The nodes in AGs are closely related to the structure of the system (components,
signal paths), hence, we can easily establish the physical meaning of faults at given nodes.
The parameter A shows what happens in the model if the fault will take place. Knowing the A
we can both, simulate the faulty behavior of the system, and generate tests to distinguish the
normal behavior from the faulty one.

The parameter C determines the expected behavior of the node - the value of the variable (or
function) at a node. In general, we can distinguish two parts in C: the implicitly given part
which can be formally generated from the AG-model during test generation, and the explicitly
described part as a list of additional conditions needed for activating the given fault. In some
cases (for stuck-at faults), the fault is defined only by the implicit part. In other cases (e.g. for
bridging, crosstalking or functional faults), the explicit part should be added as an additional
condition for activating the fault. The parameter C allows to adjust the basic abstract fault

Technical report FUTEG - 2/1997 CP93: 9624

 17

model defined for nodes of AGs (Definition 1) to represent different real fault cases. Through
the parameter C, hierarchical approach can be implemented in the form of the functional fault
model. An individual test pattern (local test) for a module, calculated at a lower level of
hierarchy, can be interpreted as the value of C (a condition for activating a functional fault of
the module) when assembling high-level tests.

In Fig.9 and Fig.10, correspondingly, a digital system and its corresponding AG-model are
depicted, which represent the following function:

Here, I – serves as an instruction variable, xi represent flags (Boolean conditions), and Fk
denote the functions performed in the Complex Functional Block. For the faults in Fig.9 and
Fig.10, in the following comments, the notation of Definition 2 is used:

1. Stuck-at fault at a line x2: (Y, 6, x2 = 1, 0). For this class of faults, it is not needed to give
the list of faults explicitly. This list can be generated automatically from the AG.

2. Bridging fault between leads x3 and x4: (Y, 4, {x3=1, x4=0}, 0), or (Y, 5, {x3=0, x4=1}, 0).
The condition C (the values of x3 and x4) is needed for activating the faulty connection
between the two leads while observing the signal value on one of the leads. In this example,
the positive coding of signals is supposed. The list of conditions for realistic bridging faults
should be added to the AG model.

3. Functional fault in the decoder (instead of the active output 1, another additional output 0
is also active): (Y, 1, I = 1,{0,1}). The fault can be caused, for example, by a bridge or
crosstalk between the leads 0 and 1 at the output of the decoder. This type of fault has been
introduced as a functional fault for decoders as high-level primitives in [12]. In the case of
microprocessors, a similar class of functional faults has been introduced for functions like
instruction decoding, source or destination registers decoding in [17] .

4. Functional fault in the subblock F2(R1, R2) where R1 and R2 are the arguments (source
registers) for the function F2: (Y, 12, {R1 = r1, R2 = r2}, F2(R1, R2)). The condition {R1 = r1,
R2 = r2}, where r1 and r2 denote the contents of R1 and R2, represents a local test pattern for

F1

F2
F3
F4

F5
F6

F7
F8

Complex
Functional

Block

x1x2 x3x4 I

Y

D/M

D/M

D/M

Multiplexer

Bridging fault
between x3 and x4

Functional fault in F2

Stuck-at fault x2 ≡ 0
Decoding faults at x4 and I

Decoder

Fig.9. Digital system and fault examples

Y = F1, if I = 0, else
 F2, if (I=1) & x1 & x2, else
 F3, if (I=1) & x1 & ¬x2, else
 F4, if (I=1) & ¬x1, else
 F5, if (I=2) & x3 , else
 F6, if (I=2) & ¬x3, else
 F7, if (I=3) & x4 , else
 F8, if (I=3) & ¬x4, else
 not defined.

Technical report FUTEG - 2/1997 CP93: 9624

 18

individually testing the function F2 (the local tests can be taken from the test library, or can be
generated for F2 at a lower abstraction level).

3. Test Generation and Fault Simulation Approach Used in Experiments

3.1. Test generation for the data path of digital systems

In the following, the test generation algorithm described in [15] will be, specified in relation
to the technology implemented in the control logic.

Consider a single-graph AG-model Gy which represents a function y = f(x). Denote by
l(m0,m) an activated path from the initial node m0 to a node m, and by l(mi,mT,i) – an activated
path from the node mi (successor of m for the value z(m)=i) to a terminal node mT,i. The two
activated paths together with the assignment z(m)=i make up a full activated path which
produces the value of function y=z(mT,i). Consider now two fault types (Gy,m,i,j) and
(Gy,m,i,{i,j}). The fault type (Gy,m,i,j) covers faults where the node variable under test will
change its value (this corresponds to the case of stuck-at gate-level faults). The fault type
(Gy,m,i,{i,j}) corresponds to the functional fault class introduced in [12,17], where two or
more decoder outputs or instructions can be simultaneously activated. This fault class is
difficult to describe by traditional methods, because the same variable should take
simultaneously several values. In the AG-model, at least in the step of fault activation, this
problem can be overcome: we simply declare several output edges of the same node active.
However, the problem still holds when considering how to calculate the value of the function
by graph. Suppose, the fault activates simultaneously two full paths with terminal nodes mT,i
and mT,j. Formally it means, the function should take simultaneously two values: y = (mT,i)
and y = (mT,j) which is impossible. However, knowing the technology of how the controlled
functions are implemented, this case can be represented either by ANDing or ORing both
functions.

Y
I

0
F1

x1

x2

F2

F3

F4

F5

F6

x3

x4

F7

F8

1

2

3

1

1

1

0

0

0

0

Decoding
faults

I: 1 -> 0
x4: 0 -> 1 Functional

fault in F2

Bridging
fault between

x3 and x4

Stuck-at fault
x2 ≡ 0

1 2

3

4

5

6

7

8

9

10

11

12

13

Fig.10. Representing faults in the AG-model

Technical report FUTEG - 2/1997 CP93: 9624

 19

Theorem 1.
A test pattern detects the fault (Gy,m,i,j), if the following conditions are fulfilled:
• the paths l(m0,m), l(mi,mT,i) and l(mj,mT,j) are activated, where mT,i ≠ mT,j, and
• one of the two equations for each data bit is satisfied:

 ¬z(mT,i) ∧ z(mT,j) = 1, (1)
 z(mT,i) ∧ ¬z(mT,j) = 1. (2)

Proof. In accordance to Definition 6, we have z(m) = i. Hence, from the first condition, it
follows that a full path from m0 to mT,i is activated, and y = z(mT,i) if the fault is missing. In
case of the fault, we have z(m) = j, and in accordance to the first condition, another full path
will be activated up to mT,j, where y = z(mT,j) is valid. Hence, in accordance to the second
condition of the theorem, the value of y will be different for each data bit in the fault-free and
faulty cases.

Theorem 2.
A test pattern detects the fault (Gy,m,i,{i,j}), if the following conditions are satisfied:
• the paths l(m0,m), l(mi,mT,i) and l(mj,mT,j) are activated, where mT,i ≠ mT,j, and
• one of the two equations, depending on the technology, for each data bit is fulfilled:

 a) for the OR-technology: ¬z(mT,i) ∧ z(mT,j) = 1, (3)
 b) for the AND-technology: z(mT,i) ∧ ¬z(mT,j) = 1. (4)

Proof. From the first condition, it follows that a full path from m0 to mT,i is activated, and y =
z(mT,i) if the fault is missing. In case of the fault, we will have z(m) = j, and in accordance to
the first condition, another full path will be activated up to mT,j, where y = z(mT,j) is valid. To
force the output functions differ for the fault-free and faulty cases, we should fulfill the
conditions:
 a) for the OR-technology: z(mT,i) ⊗ (z(mT,i) ∨ z(mT,j)) = ¬z(mT,i) ∧ z(mT,j) = 1,
 b) for the AND-technology: z(mT,i) ⊗ (z(mT,i) ∧ z(mT,j)) = z(mT,i) ∧ ¬z(mT,j) = 1.

Hence, in accordance to the second condition of the theorem, the value of y will be different in
the fault-free and faulty cases.

If we don’t know what is the techology implemented in controlling the fuctions, both of the
conditions (3) and (4) in Theorem 2 should be fulfilled. If we no exactly the technology
implemented, we can use for both fault types (Gy,m,i,j) and (Gy,m,i,{i,j}) the same single
condition.

From Theorem 2, a straightforward algorithm follows for generating tests of nonterminal
nodes. For all values of i∈V(m), the Theorem 2 should be applied for all values of j∈V(m)\i.
When generating a test for a given i, as large subset V’(m) ⊆ V(m)\i as possible should be
taken to test simultaneously the faults (Gy,m,i,V’(m)). If the solution for solving equations (1-

Technical report FUTEG - 2/1997 CP93: 9624

20

4) can not be found for all bits by a single set of operands, the test pattern can be repeated for
several sets of operands to quarantee the solution for all bits. For terminal nodes, the test
generation algorithm will be the same as formulated in [15].

As an example, consider the AG in Fig.10. For testing the fault (GY,1,1,{2,3,4}), we have to
activate four paths from all the successors of the node 1 up to terminal nodes. In Fig.9 these
paths are shown by bold arrows. For I=0, no additional path activation is needed because the
successor of the node 1 is himself a terminal node. As the result we obtain a partial test
pattern: T = 11110 (I, x1, x2, x3, x4). To find operands for the case of OR-technology we have
to solve the equation ¬F2(k) ∧ F1(k) ∧ F5(k) ∧ F8(k) = 1 for each bit k.

3.2. Test generation for the control path of digital systems

3.2.1. Test generation for FSMs by pipelining partial test sequences.

The test sequence for a single fault consists of three subsequences: initialization sequence,
activation sequence and fault propagation sequence. The initialization sequence brings the
FSM from current state to the state needed for activation the fault, the activation sequence
contains only one input pattern needed additionally for activation the fault and the fault
propagation sequence is the state-pair differentiating sequence that differentiates the good
destination state from faulty ones and, thus, propagates the fault effect to the output. From the
Section 3, it follows that all these subsequences can be carried out at the functional level,
except only the fault activation stage for transition faults in the current time frame, which has
to be processed at the structural level. However, for transition faults, after they are activated at
the lower structural level, the results can be easily transformed as well into the functional level
by specifying the internal and input states needed for fault activation.

Test sequences for different faults will be automatically pipelined (overlapped) if we organize
the test procedure by moving along paths in the STD rather than by generating tests for
different faults separately (Fig.11). The necessary but not sufficient condition to create a test is
traversing a set of paths that contains all branches in the STD. If not all faults are yet tested by
this sequence, we have to find a set of branches needed for activating the remaining faults, and
to traverse a new set of paths that contain all these branches. This procedure has to be repeated
until all the faults in FSM will have a test sequence.

Fig.11. Pipelining test sequences for different faults

Faults to be detected:

Initialization

Initialization

Initialization

Activation

Activation

Activation

Propagation

Propagation

Propagation

Fault t-1 Fault t Fault t+1

For fault t+1

For fault t

For fault t-1

Faults detected: Fault t-1 Fault t Fault t+1

Technical report FUTEG - 2/1997 CP93: 9624

21

In this procedure described, at each current step we have the following information: 1)the
current state q' reached by traversing the STD, and 2) the list Q'(q') = {qk'(F)} of faulty states
qk' for faults f ∈ F activated, but not yet detected, and propagated up to this step (for all qk' :
y(qk') = y(q') is valid); the faults f are needed to be indicated at the related faulty state only if
they manifest himself as multiple faults.

Fig.12. Test generation for the current time frame (current state of the FSM)

The operations to be carried out at the current step of the test generation procedure are the
following (see also Fig.12):

- at the structural level
1) the current state q is decoded into state signals of flip-flops Ti;
2) fault activation is carried out and input pattern is generated for not yet tested structural
faults, or the test pattern is analysed for faults detected, if it is already available;
3) the results are transformed into the functional level
- input pattern is transformed into input state;
- for each detected fault, a faulty next state is calculated and included into Q;

- at the functional level,
1) fault activation is carried out and input pattern (input state) is generated for not yet tested
functional faults, or the test pattern is analysed for faults detected, if it is already available);
2) for each detected fault, a faulty next state is calculated and included into Q;
3) the next state q for the current q' is calculated;
4) for all current faulty states qk' ∈ Q', faulty next states are calculated and included into the
list Q;

 Next state
at the faultCurrent state Next stateFunctional

 faults

State signals Faulty
state signals

Structural
 faults

Fault activation

Structural level

Functional level

State initialization

State initialization
 Fault
detection
 analysis

 Faults to be
 propageted

 Faults detected

 Faults to be
 propageted

 Faults to be tested

Technical report FUTEG - 2/1997 CP93: 9624

22

5) for all faulty next states qk ∈ Q', the following analysis is carried out:
- if y(qk) ≠ y(q) then the faults related to qk, are detected;
 qk is excluded from the list Q;
- if y(qk) = y(q) then the faults related to qk, are not detected and they are propagated into
 the next time frame.

Fault activation (or test pattern analysis) at both, structural and functional levels are carried out
by uniform procedures using corresponding structural or functional alternative graphs. Also
next state calculation and fault detectability analysis are carried out on AGs which represent
STDs.

3.2.2. Test generation for FSMs using AGs.

Fault activation and test pattern generation on AGs are based on path activization procedures.
Fault analysis is based on path traversing procedures. In path activation on AGs, we have a
goal-node and we have to find the values of node-variables, so that a path from the root-node
up to the goal-node is activated. In path traversing on AGs, the values of node-variables are
given, and we have to move along a path determined by these values and find a goal-node.

Consider, at first, AGs labelled only by Boolean variables and introduce the following
notations:

l(m) - activated path from the root node up to the node m;
l(m, =1) (or l(m, =0)) - activated path from the node m up to the terminal node labelled by the
constant l (or 0);
ml (or m0) - successor of the node m for the value z(m)=1 (or z(m)=0).

To activate a fault (generate a test for a fault) z(m)/e (z(m) stuck-at-e), e ∈ {0,1} at a node m,
means to activate simultaneously two nonoverlapping paths: l(m).l(m¬e, =¬e) and l(me, =e) at
the value z(m) = ¬e. For example, in Fig.8, for testing a fault T2/1 at the node 8, we can
activate paths l(m).l(m0, =0) = (l, 7, 8). (11,12,13, =0), and l(m1, =1) = (9, =1), which gives
the test pattern 0011x (Tl,T2,T3,xl,x2). Activated paths in Fig.8 are depicted by bold arrows.

To analyse a test pattern for faults detected, means:
1) to find an activated by the pattern path l with a terminal node mT where z(mT) = e,
2) for all nodes mk ∈ l, find the value ek = z(mk

T) where mk
T is the terminal node of the path

l(mk
¬e, mk

T) activated by the same pattern;
3) for all nodes mk ∈ l, the given pattern detects the fault z(mk /¬e if ek ≠ e is valid.

As an example, in Fig.8, by the test pattern 0011x (T1, T2, T3, x1, x2), a path l =
(1,7,8,11,12,13) is activated. The condition (3) is valid only for nodes 8 and 13. So, by this
pattern, the faults T2/1 and ¬xl/1 are detected.

Technical report FUTEG - 2/1997 CP93: 9624

23

In the general case of AGs labelled by integer variables, test generation is based on the same
path activization principles. Denote by l(mi, mT,i) - activated path from the node mi up to a
terminal node mT,i (mi is the successor of the node m for the value z(m)=i).

To activate a fault (generate a test for a fault) z(m)/i -> j (z(m)=j instead of z(m)=i), means to
activate simultaneously nonoverlapping paths l(m) and l(mk,mT,k) where k = i, j, so that z(mT,i)
≠ z(mT,j).

For example, in Fig.2, to activate the fault q'/2 -> 5 to output y, two test patterns are possible:
2010 (q', Res, xl, x2) or 2001. Here, in terminal nodes, for comparison, only y is considered.
By the first pattern 2010, the following three paths for testing the node m = 3 (i = 2, j = 5) are
activated: l(3) = (1,3), l(7, =0) = (7, 9, =0) and l(11, =1) =l(11,10, =1). As an example of the
test pattern analysis, consider again a pattern 2010 that activates a path l = (1, 3, 7, 9) on the
AG in Fig.8 (shown by bold arrows). The condition (3) of the fault detection is valid only for
the node 7 and for the values l, and 4 of the variable q' in the node 3 (shown by bold circles).
Hence, the following faults are detected by this pattern: q'/2 -> l, q'/2 -> 4, x2/l.

3.2.3. Complexity of test generation.

Using the described multi-level approach, it is possible to reduce the complexity of test
generation and the complexity of discovering redundant faults nearly to the complexity of
solving the same tasks for combinational circuits. Test generation for transition faults in gate-
level next-state logic will be carried out, actually, in only a single time frame - a pattern will be
generated on structural AGs, which specifies a state needed for testing the given fault. If the
state is reachable, then the fault can be tested. On the contrary, if the state is not reachable, the
fault is redundant and not testable. The reachability of states can be determined on the
functional level, using AGs that correspond to STDs.

As an example, when trying to generate a test sequence for a fault ¬T3/1 at the node 3 in the
graph D3 in Fig.8, it is needed only to try to test this node in D3. Activating the path 1(3) =
(1,2,3), the only possible path to reach the node 3, it cames out that a state q = 7 (Tl=l,
T2=1,T3=1) is needed to test the given fault. On the other side, at the functional level, it is
easy to see that this state is not reachable. Hence, without trying to create any sequence longer
than l, it was possible to show that the fault ¬T3/1 is redundant and not testable.

3.3. General structure of the automated test pattern generator

Input data for our test generation system is a register-transfer level VHDL description of the
device. Such representations are provided by various high-level synthesis (HLS) tools where
behavioral descriptions are compiled into register-transfer level ones. Fig. 13 shows the place
of the test generation system in the design process.

Technical report FUTEG - 2/1997 CP93: 9624

24

Behavioral description
(VHDL)

High-level synthesis

RT-level description
(VHDL)

Logic-level synthesis
(SYNOPSYS)

Gate-level netlist
(EDIF)

AG-based
test generation

system

Fig. 13. The Test System and Design Process

The general structure of the test generation environment is presented in Fig.14. It consists of a
hierarchical datapath test generator, a control part test generator, and a high-level AG model
generator. From RT-level VHDL description, high-level AG generator generates high-level
AG model, which will be applied as an input for the datapath and control part test generators.

3.3.1. Control part test generator

The control part test generator works in the following way. Two types of faults will be
considered: the faults caused by defects in the next state logic of the control part (transition
faults), and the faults caused by defects in the control logic in the data part (output faults).
Because of these two types of faults, the ATPG consists also of two main parts working
together in the test generation system. The first of them, transition fault processor (TFP) begins
to work from the initial state and will traverse step by step all the transitions of the finite state
machine (FSM). In each step, the processor introduces all activated at the current transition
faults. Suppose, that N1 faulty machines and one fault-free machine were processed at the
current step. The TFP passes all necessary inputs to the second part of the ATPG – to the
output fault processor (OFP) for simulating the behavior of the data part for all the activated
N1+1 machines. The second task is to introduce now all the activated at this transition control
faults in the data part. Suppose, that M1 additional faulty machines were produced in the data
part at the current step. The OFP passes now all necessary inputs for all the N1+M1+1
machines back to the TFP for simulating the behavior of the control part. In the same time, the
OFP checks if some of faulty machines will produce different as expected output signals in the
data part. If a fault will be detected, the corresponding faulty machine will be removed from
the list of simulated machines. The described procedure will continue for the next transition.
Fault introducing continues till all not yet detected faults are considered. The procedure
continues till all the faults will be detected. More details of the control part test generator are
given in [21].

Technical report FUTEG - 2/1997 CP93: 9624

25

Behavioral descriptions
of FUs (VHDL)

Logic synthesis
(e.g. SYNOPSYS)

RTL description
of the design (VHDL)

High-level
AG generator

Gate-level netlist
(EDIF)

High-level
AG model

Low-level
AG generator

High-level
path activation

Global functional
constraints

Structural AG
model of a FU

Control part
test generator

Low-level constraint-driven
test generator

Fig. 14. The AG-Based Test Synthesis System

The datapath test generator has a hierarchical structure. The high-level part of the generator
performs symbolic path activation on RT-level. During the path activation, functional
constraints will be extracted which will be applied to the low-level part of the generator. The
low-level test generator handles justification and propagation constraints derived at the high
level. Additional tasks of the low-level ATPG are to generate gate-level tests for the functional
units (FU) and to assemble the final test of the datapath. In order to test the FUs, gate-level
models of the FUs must be synthesized. Current system uses Design Compiler by Synopsys
Inc. for the logic-level synthesis. As an input for logic-level synthesis are the RT-level VHDL
description and a VHDL library of FUs, containing generic bit-width behavioral descriptions
of the FUs.

Due to the fact that the low-level test generator operates with structural AG (SAG)
representations, low-level AG generator is required to generate SAG models from gate-level
netlists. The low-level AG generator creates SAG representations from EDIF 2.0.0 netlist
descriptions. EDIF is a technology-dependent design format and therefore, appropriate
technology libraries have to be included while performing EDIF to SAG conversions.

3.3.2. Data path test generator

The test generation process for data path takes place in the following way. Tests are generated
sequentially for each functional unit (FU). For each FU, justification and propagation
constraints are extracted at the high level and passed to the lower level test generator. During
constraints extraction for the target FU, for all non-target FUs, functional information is
applied to perform propagation and justification through the FUs at the functional level. Such
an information, in form of simplified behavior of the block is preliminarily extracted and
recorded in a special transparency library. This information will consist of a set of
input/output mappings (so called I-paths [19] and F-paths [20]).

Technical report FUTEG - 2/1997 CP93: 9624

26

The low-level test generation process consists of two stages. In the first stage, input values are
generated to satisfy the high-level conditional constraints. This task can be treated as a typical
constraint satisfaction problem (CSP) [22]. In the second stage, random values are generated
and simulated through propagation constraints to derive input patterns for structural level fault
simulation of the FU under test. High-level test generator calls the low-level generator
repeatedly in a loop. In general case a single activated path is not enough to reach 100 per cent
fault coverage for a functional unit, i.e. test set for a FU can consist of vectors generated
during different activated paths, and therefore, different calls to the low-level program. Record
has to be kept of the faults detected by previous low-level test generation runs. On each call
the low-level generator reads and writes the list of currently covered faults and keeps it in a
special file.

BEGIN

Select an untested FU

Call low-level generator with
the extracted constraints

'Success' returned?

FU is TESTED

'Partial success' returned?

Activate a test path for the FU

Untried paths exist?

FU is PARTIALLY TESTED FU is UNTESTABLE

Untried paths exist?

Backtrack

Yes

Yes
YesYes

No

NoNo

No

Fig. 15. Interaction between High-Level and Low-Level Generators

Untestable faults for a FU are determined in current approach by the following method.
Previous to starting test generation of the FU, deterministic gate-level test generator finds the
list of redundant faults in the FU. If some inputs of the FU are directly tied to constant signals,
it will be taken into account while determining the untestable faults. Fault efficiency is
considered to be 100 per cent if number of tested faults = total number of faults - number of
untestable faults. Due to possible high-level constraints, 100% fault efficiency may be
unreachable. When a path is activated, the high-level generator calls low-level test generator

Technical report FUTEG - 2/1997 CP93: 9624

27

and passes the extracted conditional and propagation constraints to the latter. If the low-level
generator satisfies all the path activation constraints and generates test vectors achieving 100%
fault efficiency for the FU, ‘success’ will be returned to the high-level generator. Current
functional unit will be considered to be tested and next untested FU will be chosen by the
high-level generator. In the case when the low-level generator can not solve the extracted
conditional constraints, or if the achieved fault coverage in current FU remains low or
unchanged, high level generator will be informed about it and it will try to activate an
alternative path for testing the FU. Fig. 15 shows the data flow of interaction between both
parts of the generator.

4. Experimental Results

4.1. Low-level test generation experiments

A CAD system Turbo Tester (TT) was developed for solving test design tasks at the gate-level
with random logic [23].TT is an easy-to-learn, easy-to-set-up and low-cost system. The
package has interfaces to commercially available VLSI design tools like Cadence, Synopsys,
Mentor Graphics, Viewlogic, Compass, OrCAD, ASYL+, Dixi-CAD [15] etc. It includes a
large set of tools as implementations of different methods of test synthesis and analysis.

Turbo Tester has a character-mode object-oriented user interface, which confirms with the
Common User Access (CUA) standard and runs under DOS operating system. The
environment can easily be executed in the MS Windows’ DOS box. It has following features:
Comprehensive on-line help, Full mouse support, Text editor, Extended video text modes,
Menus, including local pop-up menus, giving instant access to all important functions of the
Turbo Tester.

In TT, different methods for test pattern generation, fault simulation, multi-valued simulation,
test quality evaluation, fault detection probability calculation and testability analysis are
implemented. The fault classes considered include stuck-at faults and transition faults (delay
faults, stuck-opens). The tools for BIST simulation and quality analysis are also implemented.
Different structures for BILBO, circular self-test path and "store and generate" approaches can
be simulated, evaluated and compared. A short description of tools currently implemented in
TT is given in [23].

The component library consists of alternative graph representations (AG-models) for the
components of the circuits to be processed. The library is open and can be updated for new
components. From the netlist of the design, produced by schematic editor, the model generator
creates an AG-representation of the design. The design can be represented either at the gate-
level or at the macro-level. At the gate-level, to each gate of the network a single AG will
correspond. At the macro-level, a “compressed” structural model will be generated, where the
tree-like (fan-out free) subnetworks of the circuit are as macros considered. To each macro, a
single AG by superpositioning gate-level AGs will be created where one-to-one
correspondence between signal paths in the macro and nodes in the AG will be established. All

Technical report FUTEG - 2/1997 CP93: 9624

28

the tools implemented in TT use the AG-representation as the only information about the
circuit to be processed.

The number of faults to be processed at the macro level will be less than the number of faults
at the gate level (each macro-level fault represents, in general, a set of gate-level faults). The
fault collapsing at the macro level causes that the productivity of the test generation at the
macro level will increase compared to that of the gate-level. Comparison of test generation
efficiency for gate and macro-level approaches are given in Table 3. Because of the fault
collapsing test generation time decreases 2,6 to 5,1 times.

Table 3.

Circuit Time Number of Fault cover %
Name Level Number of

target faults (sec) patterns Gate-level Macro-level

c499 macro 1202 131 106 99,6 99,3
 gate 2194 662 109 99,5
c880 macro 994 46 112 98,6 98,6
 gate 1550 119 101 98,1
c1355 macro 1618 278 105 99,6 99,5
 gate 2194 953 107 99,5
c1908 macro 1732 219 169 99,0 98,5
 gate 2788 743 160 99,0

In Turbo Tester, static, dynamic and statistical test quality analysis tools are implemented. All
the tools have the target to estimate the fault coverage of the given set of test patterns. Static
two-valued fault-simulation can be carried out either by parallel critical path tracing or by
deductive fault analysis methods. In Table 4 the critical path tracing method is compared for
the gate level AG-model and for the compressed macro level AG-model. Simulation time in
ms per pattern is given for both models. Because of fault collapsing and decreasing of the
model complexity, simulation time decreases 2,6 to 9,1 times for the given set of benchmark
circuits.

Table 4
Circuit c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c6288 c7552

ms/pattern (Gate) 8,5 45,0 17,5 37,0 62,0 110 185 360 700 750
ms/pattern (Macro) 2,2 6,5 3,4 12,0 9,6 17 21 43 275 83
Time ratio (M/G) 3,9 6,9 5,2 3,1 6,5 6,5 8,8 8,4 2,6 9,1

4.3. Test experiments with control units

A multi-level test generation system CPTEST for testing control units of digital systems [21],
was implemented in C++ at the Tallinn Technical University. The system is considered as a
part of a hierarchical ATPG developed in the framework of the FUTEG project.[24-26]. The
finite state machines considered as examples for experimental research are those of MCNC
benchmarks for test synthesis. For our experiments, the gate-level implementations were

Technical report FUTEG - 2/1997 CP93: 9624

29

synthesized by Synopsys. No control was exercised on this tool, and binary state coding was
applied. Test generation results for 15 FSM’s in Table 5 are described in Table 6. For each
example in Table 5, the numbers of inputs (Inp), outputs (Out) and transitions (Tran) are
given. In Table 6, on the left side the length of test sequence (number of patterns) needed in
order to have traversed throughout all branches in STG each at least once (Test length), the
fault coverage achieved by traversing all branches (Coverage), and the time required for that
(Time) on a PC 486 66MHz are shown for each example.

Table 5. Characteristics of MCNC benchmark FSMs

On the right side of Table 6, the length of test sequences (Test length), the total number of
gate-level faults (Total faults) in FSM, the number of inserted (activated) faults (Ins faults), the
number of detected faults (Detected faults), the fault coverage achieved (Coverage), and the
time required (Time) are given. In the present version of CPTEST, for searching the target
state (when activating a target fault), and for searching the state where the activated fault can
be detected, the random path traversing technique is used. Also, in this version nonefficient
traversing cycles which do not increase the fault coverage are not excluded from the total test
sequence. A deterministic technique is currently under development which is expected to
increase the efficiency of the tool in reducing dramatically the test length, test generation time
and increasing the fault coverage.

FSM States Inp Out Tran

lion9 9 25 2 1
bbara 10 4 2 60
cse 16 7 7 91
sand 32 11 9 184
planet 48 7 19 115
vtiidec 5 11 32 77
mc 4 3 5 10
dk15 4 3 5 32
lion 4 2 1 11
tav 4 4 4 49
log 17 9 24 29
s27 6 4 1 34
beecount 7 3 4 28
bbsse 16 7 7 56
mul8x8* 8 4 13 21

* The circuit is not MCNC Benchmark

Technical report FUTEG - 2/1997 CP93: 9624

30

 Table 6. Test generation results for MCNC benchmarks

FSM Test
length

Total
faults

Ins.
faults

Detected
faults

Coverage,
%

Time,
min

lion9 37 112 112 112 100.00 0.00,45
bbara 144 202 194 193 95.54 0.03,18
cse 615 540 538 527 98.70 0.43,44
sand 767 1140 1119 1119 98.16 1.22,09
planet 900 1070 1058 1058 98.88 1.22,07
vtiidec 823 210 207 207 98.57 0.12,58
mc 14 74 74 74 100.00 0.00,14
dk15 67 92 92 85 92.39 0.01,10
lion 20 58 58 58 100.00 0.00,15
tav 14 34 34 34 100.00 0.00.09
log 399 378 367 367 97.09 0.40,70
s27 48 60 60 60 100.00 0.00,36
beecount 150 126 126 120 95.24 0.02,70
bbsse 867 456 451 438 96.05 0.47,12
mul8x8 313 94 94 93 98.94 0.01,76

The results of the experiments listed in Table 6 can be compared with published results
[27,28] of using different approaches and the same benchmarks described in Table 7. In our
approach, no modifications of gate-level circuits produced by Synopsys have been made to
improve the testability as, for example, in [27].

Table 7. Comparison with other ATPGs

 HITEC [27] STED [28] CHE90 [29]
FSM No. of

vec-
tors

Cover
%

Time, s
(Sparc2)

No. of
vec-
tors

Cover
%

Time, s
(on VAX
11/8800)

No. of
vec-
tors

Cover
%

Time, s
Sun
4/260

lion9 38 97,3 8.63 - - - - - -
bbara 96 82.0 89.33 - - - 241 100.0 2
cse 349 100.0 23.48 397 100.0 29.5 880 97.86 45
sand 52 45.2 1339.9 722 99.43 7.7min 809 97.74 202
planet 91 64.5 917.7 1046 100.0 5.8min 600 98.26 35
mc 38 100.0 0.37 - - - - - -
dk15 53 100.0 0.73 - - - 146 100.0 0.2
lion 47 100.0 0.45 - - - - - -
tav 26 100.0 0.27 - - - - - -
bbsse 255 100.0 18.38 - - - - - -
s27 40 100.0 0.27 - - - - - -
beec. 85 100.0 1.40 - - - - - -

4.3. Test synthesis for digital systems with global feedbacks

Experiments were carried out with the control part and datapath generators for benchmark
circuits with global feedbacks. In all the experiments, system models were used where both

Technical report FUTEG - 2/1997 CP93: 9624

31

datapath and control part were connected. All experiments were run on Sun Sparcstation 20
computer. As an input for the datapath test generator, a hierarchical model of a 16-bit
multiplier was chosen. Test generation results for four functional units (FU) in the circuit are
given in Table 8. By increasing the interaction limit between high- and low-level generators
three of the FUs were tested with 100 per cent efficiency. For one of the FUs, the transparent
paths could not be activated at the high level. Test generation times are not included because
at present file transfer is used for interaction between high and low level parts which
significantly reduces the speed.

Table 8 Data Part Test Generation Results

Interaction
limit

FUs Inter-
actions

Vectors Result Interaction
limit

Fus Inter-
actions

Vectors Result

 add1 1 7 Success add1 1 7 success

1 add2 1 0 Failure 1000 add2 1000 76 partial

 and1 1 3 Success and1 1 3 success

 sub1 1 0 Failure sub1 244 0 failure

 add1 1 7 Success add1 1 7 success

100 add2 100 0 Failure ∞ add2 1093 78 success

 and1 1 3 success and1 1 3 success

 sub1 100 0 failure sub1 244 0 failure

Table 9 Control Part Test Generation Results

Benchmark
circuits

Number of faults Coverage
 %

Test
vectors

Time s

s344 90 84.44 11 0.26
diffeq 104 91.35 16 0.46
gcd 142 93.66 40 0.80

The results of test generation for control parts (finite state machines) of three different digital
systems from FUTEG benchmarks list [30] (multiplier s344, differential equation solver
diffeq, and greatest common divisor gcd) are shown in Table 9. All the control faults were
tested through the data path loop. To increase the fault coverage, corresponding
improvements of the testability are needed.

4.4. Test generation for RISC architectures

With the goal to investigate the adequacy of the high-level fault model defined for AGs and to
investigate the possibility to reach high quality gate-level tests by using high-level
descriptions only, experiments were carried out with a restricted class of digital systems -
with FUTEG benchmarks based on a family of n-bit simplified RISC processors [30]. Only
arithmetical and logical operations were implemented and only combinational parts of RISC
processors were examined. The family of benchmarks consists of processors which vary in
the instruction set (processors with 4, 8 and 16 instructions) and in the bitwidth (4, 8, 16 and
32-bit processors). The benchmark family was created by describing the high level behavior
of processors in VHDL and by synthesizing the gate-level implementations with SYNOPSYS.
Then AG-models were synthesized both for higher (instruction) level and lower (gate) level

Technical report FUTEG - 2/1997 CP93: 9624

32

designs. Libraries of local tests for functional components were created by either a low-level
ATPG or manually for simple functions.

Table 10

IS BW ATPG Time
(s)

Patterns Optim.
patterns

Faults Detected
faults

Fault
coverage

(%)
4 4 HTPG 0,02 63 25 612 611 99,8
 Synopsys 0,21 30 25 596 595 99,8

4 8 HTPG 0,02 63 29 1168 1167 99,9
 Synopsys 0,49 45 33 1168 1167 99,9

4 16 HTPG 0,03 63 29 2240 2239 99,9
 Synopsys 1,16 63 36 2240 2239 99,9

4 32 HTPG 0,07 63 29 4404 4401 99,9
 Synopsys 3,74 77 45 4404 4401 99,9

8 4 HTPG 0,02 120 30 708 708 100
 Synopsys 0,19 45 25 708 708 100

8 8 HTPG 0,05 120 30 1320 1320 100
 Synopsys 0,50 52 31 1232 1232 100

8 16 HTPG 0,08 120 29 2540 2540 100
 Synopsys 1,25 61 41 2364 2364 100

8 32 HTPG 0,10 120 30 5018 5018 100
 Synopsys 4,26 75 50 4676 4676 100

16 4 HTPG 0,08 224 39 900 900 100
 Synopsys 0,29 46 32 855 855 100

16 8 HTPG 0,10 224 43 1612 1612 100
 Synopsys 0,75 64 42 1531 1531 100

16 16 HTPG 0,13 224 42 3016 3016 100
 Synopsys 1,86 73 48 2861 2861 100

16 32 HTPG 0,15 224 42 5908 5908 100
 Synopsys 5,57 84 59 5607 5607 100

The results of experiments carried through with 12 different processors from the benchmark
family are depicted in Table 10. Here, the columns have the following meaning: IS - number
of instructions of the benchmark processor, BW - bitwidth of the processor data word, ATPG
- type of the test generator (as reference for comparison, the SYNOPSYS gate-level ATPG
was used), processor time in seconds used for test generation, number of patterns generated
by ATPG, number of patterns after the optimization, total number of faults, number of faults
detected, and the fault coverage. The cost of local test generation for building blocks is not
included in the HTPG’s Time column, because the library tests were generated once for
multiple use in HTPG. For generating tests of building blocks by SYNOPSYS, we needed
time less than 10% of the SYNPOSYS test generation time for the whole circuit. This
overhead should be added to HTPG’s Time column for representing the total cost of mixed-
level ATPG.

The results of the experiments show the efficiency of both the high-level and hierarchical
mixed-level approaches compared to the gate-level approach. The efficiency rises when the
complexity (number of instructions and bitwidth) increases. In both structural and functional
test generation cases, only 1-3 redundant faults in the control part were found which remained
undetected.

Technical report FUTEG - 2/1997 CP93: 9624

33

4.5. Fault simulation experiments with BIST architectures

Built-in self-test (BIST) is the capability of a circuit to test itself. It is an alternative to
conventional test, which uses precalculated stimuli and response data stored in external
equipment. Most universal BIST techniques are based on the concept of using an LFSR
(Linear Feedback Shift Register) for random test pattern generation, and a MISR (Multiple-
Input Signature Register) for test response compaction, combined with scan path design
techniques like LSSD (Level Sensitive Scan Design). The representative examples (Fig.16) of
such techniques are STUMPS, LOCST, and the techniques based on using BILBO (Built-In
Logic Block Observer) modules, CSTP (Circular Self-Test Path) conception [31,32] or
universal scheme of “store-and-generate” [33].

Fig.16. BIST architectures: a) BILBO, b) CSTP, c) Store-and-generate.

A serious question arises as to the effectiveness of the pseudorandom patterns used in these
BIST architectures: designers will usually want quantitative proof of the effectiveness of such
schemes. To evaluate the quality of pseudorandom test patterns in BIST architectures frault
analysis tools and BIST simulators were developed as tools in the Turbo-Tester [23].

The BIST approach is represented here by applications for BILBO (Fig.16a.), CSTP
(Fig.16b.) and “store-and-genearate” scheme (Fig.16c.) emulation. In Fig.16, the following
notations are used: TG – test generator, CUT – circuit under test, SA – signature analyser.
Different BIST architectures can be simulated and self-test quality for these structures
evaluated. In TG and SA, Linear-Feedback-Shift-Registers (LFSR) are used, where the
characteristic polynomial (i.e. the structure) of the LFSR to be used is easy to be specified. It
is possible also to emulate the general "store-and-generate" approach by tools in [23]. The
whole test will be generated on the basis of a given set of test patterns (the prestored part of
the test). All the prestored patterns will serve as initial input test patterns for on-line test
generation by BILBO or CSTP (the generated part of the test).

TG CUT SA

a)

c)

TG / SA CUT

b)

CUT SA

TG
Counter Counter

Shift

LFSRROM

Technical report FUTEG - 2/1997 CP93: 9624

34

With the goal to investigate tradeoffs between hardware overhead and test quality early in the
design process, a simplified 8-bit processor with reduced instruction set with built-in self-test
circuitry was designed by CADENCE tools.

 Table 11

Method

Control part Data part

 Test quality Hardware
overhead

Test quality Hardware
overhead

 Fault
cover

Number
of vectors

 Fault
cover

Number
of vectors

BILBO 98.7% 967 36,7% 95,1% 937 15,3%

During experimental investigations different BIST structures were simulated by Turbo-Tester
(both BILBO and CSTP solutions) without actually designing them. The best solutions of
separate BISTs for control and data parts of the processor in terms of the highest fault
coverage are presented in Table 11. Very high hardware overhead of the BIST circuitry in
case of the control part can be explained by the low hardware amount in the next state logic.
Relatively low fault coverage reached in case of the data part can be explained by the high
amount of redundant faults in the circuit under test.

5. Conclusions

A uniform approach based on decision diagrams (AGs) has been proposed to combine
topological gate-level approaches, functional BDD-based techniques and high-level
behaviour-oriented methods in test generation for digital systems. A new method for jointly
describing the functionalities of components of a system network as well as the transparency
conditions for fault propagation through high-level components by decision diagrams is
proposed. A new advanced fault model for AGs and a new fault activation algorithm for
functional faults, specified in relation to the technology implemented, are introduced. The
method supports both, high-level (behavioral) and hierarchical (mixed-level) test generation
schemes.

Experiments made up to now with a set of benchmark circuits which cover internationally
known ISCAS’85 and MICN benchmark circuits for investigation gate-level algorithms, and
mixed level benchmark circuits developed in FUTEG project, showed the efficiency of higher
level AGs and the uniform fault model in generating high quality test patterns with very high
speed. The advantage of using topological fault simulation technique on compressed macro-
AG models compared to using gate-level topology is shown by experiments on ISCAS’85
benchmark circuits. The efficiency of algorithms developed for finite state machines are
compared to known algorithms on MICN benchmark circuits. The efficiency of mixed-level
test pattern generation was shown on FUTEG benchmarks which represented digital nsystems
with global feedbacks.

Technical report FUTEG - 2/1997 CP93: 9624

35

A dynamic combination of functional AGs (BDDs) and structural macro-AGs can contribute
for more efficient test generation or fault simulation in large digital circuits. For the new
promising trend of combining BDD-based symbolic techniques and traditional topological
algorithms, AG-s provide a uniform theoretical basis. To exploit this basis for further
investigations to increase the efficiency of ATPGs by combining mixed symbolic and
topological techniques with hierarchical approaches will be the goal of the future work.

6. References

[1] Anirudhan P.N., Menon P.R. Symbolic test generation for hierarchically
 modeled digital systems. IEEE 1989 International Test Conference, pp.461-469.
[2] Leenstra J., Spaanenburg L. Hierarchical test assembly for macro based VLSI design.
 IEEE 1990 International Test Conference, pp.520-529.
[3] Karam M., Leveugle R., Saucier G. Hierarchical test generation based on delayed
 propagation. IEEE 1991 International Test Conference, pp.739-747.
[4] Lee J., Patel J.H. Hierarchical test generation under intensive global functional
 constraints. Proc.29th ACM/IEEE Design Automation Conf., pp. 261-266, June 1992.
[5] Sarfert T.M., Markgraf R., Trischler E., Schulz M.H. Hierarchical test pattern
 generation based on high-level primitives. IEEE 1989 International Test Conference,
 Sept. 1989, pp.470-479.
[6] D. Bhattacharya and J.P. Hayes. A hierarchical test generation methodology for digital
 circuits. JETTA: Theory and Application, vol. 1, pp. 103-123, 1990.
[7] Kunda R.P., Abraham J.A., Rathi B.D. Speedup of test generation using high-level
 primitive. ACM/IEEE 27th Design Automation Conference, pp.580-586, June 1990.
[8] Santucci J.F., Courbis A-L., Giambiasi N., "Speed up of behavioral ATPG. using a
 heuristic criterion", 30th ACM/IEEE Design Automation Conference, pp. 92-96, 1993.
[9] Steensma, W. Geurts, F. Catthoor, H. De Man. Testability Analysis in High Level Data
 Path Synthesis. J. of Electronic Testing: Theory and Applications, 4, 1993. pp.43-56.
[10] Thatte S., Abraham J. Test generation for microprocessors. IEEE Trans. on Comp.,
 June, 1980, pp.429-441.
[11] Su S.Y.H., Lin T. Functional testing techniques for digital LSI/VLSI systems. 21st Des.
 Autom. Conf., 1984, pp. 517-528.
[12] Abraham J.A. Fault modeling in VLSI. VLSI testing. North-Holland 1986, pp.1-27.
[13] Ward P.C., Armstrong J.R. Behavioral fault simulation in VHDL. ACM/IEEE 27th Des.
 Autom. Conf., 1990, pp. 587-593.
[14] Giambiasi N. et. al. Test pattern generation for behavioral descriptions in VHDL. Proc.
 of the VHDL conference, Stockholm, 1991, pp. 228-234.
[15] Ubar R. Test Synthesis with alternative graphs. IEEE Design & Test of Computers.
 Spring 1996, pp.48-57.
[16] Akers S.B. Binary Decision Diagrams, IEEE Trans. on Comp., Vol.27,1978,
 pp.509-516.
[17] Thatte S.M., Abraham I.A.(1980). Test generation for microprocessors. IEEE Trans. on
 Computers, Vol.29, pp.429-441.
[18] Lin T., Su S.Y.H. VLSI functional test pattern generation - a design and
implementation. IEEE 1985 International Test conference, pp.922-929.

Technical report FUTEG - 2/1997 CP93: 9624

36

[19] Abadir M.S., Breuer M.A. A Knowledge-Based System for Designing Testable VLSI
 Chips. IEEE Design & Test, August 1985, pp.56-68.
[20] Freeman S.. Test Generation for Data Path Logic: The F-Path Method. IEEE J. of
 Solid-State Circuits, Vol.23, April 1988, pp.421-427.
[21] R.Ubar, M.Brik. Multi-Level Test Generation and Fault Diagnosis for Finite State
 Machines. Lecture Notes in Computer Science No 1150. Dependable Computing –
 EDCC-2. Springer-Verlag, pp. 264-281.
[22] K.Tilly. A Comparative Study of Automatic Test Pattern Generation and Constraint
 Satisfaction Methods. Technical Report, Ser. Electrical Engineering, Technical
 University of Budapest, June, 1994.
[23] G.Jervan, A.Markus, P.Paomets, J.Raik, R.Ubar. Teaching Test and Design for
 Testability with TURBO-TESTER Software. Proc. of the 3rd Workshop on Mixed
 Design of Integrated Circuits and Systems, Lodz, May 1996, pp. 589-594.
[24] Sallay B., Petri A., Tilly K., Pataricza A. High Level Test Pattern Generation for VHDL
 Circuits. IEEE European Test Workshop, Montpellier, France, June 12-14, 1996, pp.
 201-205.
[25] Gramatova E., Cibakova T., Bezakova J. Test Pattern Generation Algorithms on
 Functional/Behavioral Level. Tech. Report FUTEG-4/1995.
[26] Gulbins M., Straube B. Applying Behavioral Level Test Generation to High-Level
 Design Validation. The European Design & Test Conference, Paris, March 11-14, 1996,
 p. 613.
[27] Niermann T.M., Patel J.H. HITEC: A test generation package for sequential circuits.
 Proc. European Design Automation Conference,1991, pp.214-218.
[28] Ghosh A., Devadas S., Newton A.R. Test generation and verification for highly
 sequential circuits. IEEE Trans. on CAD, Vo1.10, No.S, May 1991.
[29] Cheng K.-T., Jou J.-Y. Functional test generation for FSMs. IEEE Int. Test Conference.
 1990, pp.162-168.
[30] Gulbins M., Pataricza A., Gramatova E., Seinauskas R., Marzouki M., Ubar R. FUTEG
 Benchmarks. Tech. Report FUTEG-1/1997.
[31] M. Abramovici, M.A.Breuer, A.D.Friedman. “Digital Systems Testing and Testable
 Design”. Computer Science Press, 1995.
[32] V.D. Agrawal, C.R.Kime, K.K.Saluja. A Tutorial on Built-In Self-Test: Part 2 –
 Applications. IEEE Design & Test of Computers, pp. 69-77, June 1993.
[33] V.K. Agarwal, Store and Generate Built-In-Testing Approach. IEEE Trans. on
 Computers, 1981, pp. 35-40.

