
Bilateral German-Estonian project (2004-2006)

Title: Functional Built-in Self-Test in Digital Systems
Principal investigator: prof. R.Ubar
Partners: FhG Institute of Integrated Circuits, Dresden and University Stuttgart
Investigators: E.Ivask, J.Raik

Integration Test Software into e-Learning Environment MOSCITO
Abstract: The project was mainly focussed on a cooperative joint high- and low-level design
flow with automated test generation for developing complex digital systems. The substantial
R & D goals have been addressed to achieve high testability and high quality testing by
efficient test generation and fault simulation.

The features of this project are:

• Internet based partners’ competence and tool integration

• contributions to hierarchical tools for test generation and fault simulation.

The most important R & D activities and results were supplied by TTU (Tallinn), IIS/EAS
(Dresden) and other partners LIU (Linköping) and TUD (Darmstadt):

• A new hierarchical automated test pattern generator (ATPG) has been developed at
TTU for generating deterministic tests for highly sequential complex circuits and
systems.

• Two interfaces (VHDL-DD converter and EDIF-SSBDD converter) have been
developed at TTU in cooperation with LIU for integrating the hierarchical ATPG and
other test oriented tools developed at TTU into commercial design environments (e.g.
Synopsys, Mentor Graphic).

• The tools for test generation and fault simulation developed at TTU, and the
converters have been integrated into the MOSCITO environment developed at
IIS/EAS for Internet based cooperative R&D work. The coordination of these
activities and critical analysis of methodologies for Internet based cooperation was
carried out by TUD.

• Including new test oriented operations into a commercial standard design environment
helps to operatively increase the testability of designs and by that to obtain a higher
quality of products.

• A demonstrator has been developed and experimented which includes three different
Internet based design-and-test-work-flows as a result of cooperation between four
partners where the flows differing in their functionalities can be chosen.

• The scientific mission of joining partners’ competence aimed at exploiting synergy
resulting in improved design quality and reduced time-to-market has been achieved.

Publications and papers

[1] G.Elst, K-H.Diener, E.Ivask, J.Raik, R.Ubar. FPGA Design Flow with Automated Test

Generation. Proc. of German 11th Workshop on Test Technology and Reliability of
Circuits and Systems. Potsdam, 1999, pp. 120-123. (Joint paper of EAS/IIS and TTU)

[2] K.-H. Diener, G.Elst, E.Ivask, G.Jervan, Z.Peng, J.Raik, R.Ubar. Digital Design Flow
with Test Activities. VILAB User Forum, Smolenice, April 8, 2000, 11p

[3] K.-H.Diener, G.Elst, E.Gramatova, W.Kuzmicz, Z.Peng, R.Ubar. Virtual Laboratory for
Research in Dependable Microelectronics. 7th Baltic Electronics Conference, Tallinn,
October 8-11, 2000, pp.217-220. (Joint paper of EAS/IIS, IIN, WUT, LIU and TTU)

[4] A.Schneider, P.Schneider, E.Gramatova, E.Ivask. Internet-basierter Systementwurf mit
MOSCITO. In “Entwurf Integrierter Schaltungen”, 10. E.I.S. Workshop, Dresden, April
3-5, 2001, pp. 295-296. (Joint paper of EAS/IIS, IIN, and TTU)

[5] E.Ivask, R.Ubar, J.Raik, A.Schneider. Internet Based Test Generation and Fault
Simulation. Design and Diagnostics of Electronic Circuits and Systems – DDECS‘2001,
Györ, Hungary, April 18-20, 2001 (accepted paper).

[6] A.Schneider, E.Ivask, P.Mikloš, J.Raik, K.H.Diener, R.Ubar, T.Cibáková,
E.Gramatová. Internet-based Collaborative Test Generation with MOSCITO. IEEE
Proc. of Design Automation and Test in Europe – DATE’02. Paris, March 4-8, 2002,
pp. 221-226.

[7] A.Schneider, K.-H.Diener, E.Ivask, R.Ubar, E.Gramatova, T.Hollstein, W.Pleskacz,
W.Kuzmicz, Z.Peng. Integrated Design and Test Generation Under Internet Based
Environment MOSCITO. EUROMICRO Conference, September 3-6, 2002, pp. 187-
194.

[8] A.Schneider, K.-H.Diener, E.Ivask, R.Ubar, E.Gramatova, M.Fisherova, W.Pleskacz,
W.Kuzmicz. Defect-Oriented Test Generation and Fault Simulation in the
Environment of MOSCITO. Proceedings, BEC-2002, Tallinn, October 6-9, 2002,
pp.303-306.

[9] A.Schneider, K.-H.Diener, G.Elst, E.Ivask, J.Raik, R.Ubar. Internet-Based Testability-
Driven Test Generation in the Virtual Environment MOSCITO. Proc. IFIP Conference
on IP Based SOC Design, Grenoble, France, October 30-31, 2002, pp.357-362.

[10] A.Schneider, K.-H.Diener, G.Elst, R.Ubar, E.Ivask, J.Raik. Integration of Digital
Test Tools to the Internet-Based Environment MOSCITO. Proc. of 7th World
Multiconference on Systemics, Cybernetics and Informatics – SCI 2003. Orlando,
USA, July 27-30, 2003, pp.136-141.

Detailed scientific results

Partners’ VILAB tool integration based on the MOSCITO system

1 General concept of MOSCITO
Based on the MOSCITO sytem the integration of partners’ VILAB tools via Internet is
performed. The MOSCITO system, developed and maintained in IIS/EAS Dresden is settled
down to an Internet based (TCP/IP sockets) distributed computing conception.
Basically, the MOSCITO system offers a Client-Server concept. There is one Master Server,
several Slave servers and arbitrary number of clients. The requested service is provided by
Slave servers. That is because so-called Agents were attached to each Slave server. These
Agents encapsulate service providing work tools (program executables). An Agent can be
seen as an intelligent wrapper around another stand-alone program (written earlier by third
party). An Agent is capable to communicate with Servers. At any time, it is possible to add
and remove Agents, respectively. All Slave servers are registered at the Master Server, so all
Agents (i.e. available services) are also registered at the Master server. Users access first the
Master server and will get a list of services provided. After selecting a service (Agent)
wanted, the user is automatically re-directed to Slave server, and after that the work with the
service providing tool can start.

Features for VILAB tool integration based on the MOSCITO system have been improved
considerably in cooperation. So the MOSCITO system has got means for cooperating
different CAD tools via Internet. A single control panel (graphical user interface) can be used
for tool (services) selection, controlling the execution flow and displaying the
(graphical/textual) results. Executing tools via Internet has many advantages. The software
that is running in the application server does not have to be installed on client's computer.
Client and application software can run on different operating systems. The software can be
installed to or accessed from different computers around the net. User benefits immideatly
from software tools updates.

2 Tool integration
Several design and test tools can be linked together into one automatic chain-type workflow.
At the present, the lenght of the workflow is fixed. Generally, the user selects a workflow size
what is suitable for him. An Example flow for test generation tasks is given in figure 1:
Workflow of test tasks.
For each tool belonging to the workflow an Java-based wrapper program, the so-called
Agent has to be made available. Corresponding links between the modules have to be
created using the communication possibilities provided by MOSCITO. This type of

configuration is open and flexible, allowing each Agent to be executed in a different
computer.

3 Solving the Firewall tunnelling

At first, MOSCITO was intended for using in a local network and not across firewall
protected systems. Therefore, it randomly used the non-restricted communication ports above

 Fig .2 Work flows integrated to the MOSCITO
i t

Behavioral level

VHDL description

High-level

RTL VHDL
description

High-level DD
model

Test patterns exchange interfaceFunctional test

Logic
synthesis

Gate-level
EDIF

EDIF-SSBDD
converter

SSBDD model

High-level
VHDL description

Turbo Tester

1 2

5

Hierarchical
ATPG

7 8

4 VHDL-DD
converter

EDIF-ISCAS
converter(TTU)

6

 Synthesis

ISCASnetlist

ISCAS
benchmarks

University
software

9

Schematic
entry

3

Commercial
or in-house

CAD software

MOSCITO
USER

1024. It is known that many other network applications also use these so-called free port
numbers. There is no harm in internal network generally, but there will be big security
problem when such programs are directly exposed to internet. The reason is that some of them
are are known to be vulnerable, i.e. they can be misused to attack the host computer they are
running on. Tolerating one of such vulnerable programs will compromise the host computer
and also finally the entire network. Consequently, in a restrictive firewall protected system
there are only few ports left open for incoming internet connections (like port 80 for http web

Fig .3 Communication between firewall protected MOSCITO subsystems:
 connections are allowed only between dedicated communication ports

Fig. 4 Communication between client and agents via proxy

server). In the case of restrictive firewall MOSCITO would simply not work, because firewall
blocks all the communication.
Previously, the MOSCITO communication strategy required that all the ports above 1024
were configured as open for incoming Internet connections. In order to comply with firewall
requirements, the major MOSCITO communication scheme was modified. Now, the
MOSCITO communication requires opening only one dedicated port in the firewall. That was

 Slave
 Server intranet

 Firewall

Internet

 Slave
 Server

intranet

 Firewall Client
 GUI

intranet

 Firewall

intranet

 Master
 Server

 Firewall

Agent Agent

Agent Agent

Client
GUI

intranet

Firewall

Proxy

intranet

Firewall

Proxy

AgentAgent

 Slave
 Server

achieved by implementing additional communication layer (so called proxy) between
MOSCITO clients and servers. Proxy redirects traffic from several sources to several
destinations through single firewall port. Proxy is a piece of software written in Java, reusing
partially existing MOSCITO program code.

4 Implementation of the test Agents
There exists straightforward way to integrate a tool into MOSCITO environment. For each
Test Tool involved in the work flow there will be one Agent, i.e., for each Test Tool one Java
based wrapper is implemented. Control over the tool is performed via the Agent, which
executes the program with different parameters.

a) Controlling the Test Flow
There are two levels of automation in controlling the Test Flow:
• Controlling the Test flow is in the user’s hands. This is very flexible and convenient for

users who prefer having control over the work flow. The tools are selected and executed
one after another "manually", not in "batch" mode (automatically).

• Automatic Test flow application. First, the user selects a workflow of appropriate size

according to his needs. Then, the user fills the slots of the workflow with tools (Agents).
The execution of the workflow is carried out automatically by the MOSCITO core. No any
user intervention is needed in between. If necessary, the user can pause, resume or
stop the workflow.

b) Communication between tools (Agents)
All test tools read/write go into separate (temporary ‘system') folder. During the automatic
flow control, the MOSCITO system passes the output of one Agent to another Agent.
While the user is executing single tools he still has the access to results. The user can simply
save the result files into folders on his own local computer. If using the automatic flow
control, the user can save all the intermediate and final results after the flow is finished.

c) Description of parameters for Test Tools
There is a generic way for how to describe command line parameters for any work tool. Input
parameters are described in a XML based configuration file (MML- MOSCITO Markup
Language). For each tool (Agent) one MML configuration file exists.

5 Example work flow with MOSCITO
Let us have three remote computers in separate places:
 1) One for the MOSCITO Master server (e.g. in Dresden)
 2) The second for the MOSCITO Slave server (e.g. in Tallinn)

3) user’s computer with MOSCITO Client software (Graphical User Interface (GUI))
We assume that the MOSCITO Master Server is running and on the second computer the
MOSCITO Slave server is running. On the second computer we can start for example
different Test Agents like the simulation Agent or test vectors generation Agent. As a result,
these Agents are automatically registered in the MOSCITO Slave Server. All Slave Servers
in turn are registered in the Master Server. Consequently, all Agents can be found via the
Master Server. In order to reduce a load on single computer, we can distribute different Test
Agents between different computers.

Now, the system is ready to serve the end user on the third remote computer. When the user
starts now the MOSCITO Client then it will automatically connect to the MOSCITO Master
Server and will receive a list of registered Agents from it. That way, the user can now see
and use all the available Test Agents. After a particular testing Agent is selected, a form with
required parameters is prompted. These parameters, specified by the user, are forwarded to
the MOSCITO Slave server where the parameters are passed to the Test Agent (testing
tool). The results of the test tools (e.g. test coverage %, file of test vectors) are first returned
to the MOSCITO Slave server which in turn sends them directly back to the user's MOSCITO
I/O console.

Now, for example, the user can proceed with selecting another Test Agent depending on his
needs, or he can exit the GUI. The Master Server and Slave Server(s) continue their work.
For administration purposes, it is possible also remove agents, shut down slave and master
servers.

The most important achievments

This project has been addressed to the cooperative development of a novel full design and
test generation system with combined high-level synthesis. The most important outcomes
are:

• A new hierarchical automated test pattern generator (ATPG) has been developed at
TTU for generating deterministic tests for highly sequential complex circuits and
systems.

• Two interfaces (VHDL-DD converter and EDIF-SSBDD converter) have been
developed at TTU in cooperation with LIU for integrating the hierarchical ATPG and
other test oriented tools developed at TTU into commercial design environments (e.g.
Synopsys, Mentor Graphic).

• The tools for test generation and fault simulation developed at TTU, and the
converters have been integrated into the MOSCITO environment developed at
IIS/EAS for Internet based cooperative R&D work. The coordination of these
activities and critical analysis of methodologies for Internet based cooperation was
carried out by TUD.

• A demonstrator has been developed and experimented which includes three different
Internet based design-and-test-work-flows as a result of cooperation between four
partners where the flows differing in their functionalities can be chosen depending on
the design type and quality demands.

Demonstrator for Design Flow with Automated Test Generation

To demonstrate an Internet-based integrated design and test flow where different tools can
run in geographically different places using the MOSCITO virtual environment a Subproject
specific demonstrator was defined, agreed and implemented. Now, the necessary
implementation activities are going on. Depending on the design problem and designer’s
expertise three different design flows may be pursued [6]:

• design with hierarchical and deterministic test generation

• design with low-level simulation-based test generator

• design with user defined functional tests.

The MOSCITO system allows to use the tools involved in the design and test flow over
Internet from different geographical places (see Figure 2: Virtual Design and Test
Environment)

Test experiments were carried out with
the design Rotating detection
developed at EAS/IIS. The function of
the design is as follows: Given a
rotating disc marked with a white and a
black sector. The problem is to identify
the sense of rotation. Two sensors
should make this. A LED for each
direction, respectively, should indicate
the clockwise rotation and the counter
clockwise rotation. If the rotation speed
falls below a minimum rev, a LED gives
out the signal Stopping. When the
rotary speed exceeds a definite rev,
one LED for each direction signalises
“fast rotation”.
If the maximum rev will be exceeded,
additionally, a LED for Max displays
that case.

 MOSCITO system

Dresden
(IIS/EAS)

MOSCITO
USER

Tallinn
(TTU)

• Hierarchical ATPG
• Fault simulator
• Simul. based ATPG
• VHDL-DD conv.
• EDIF-SSBDD conv.

Linköping
(LIU)

• High-level
synthesis

Figure 2: Virtual Design and Test Environment

