
Chapter 2

DEFECTS, FAULTS, FAULT MODELS

Abstract:

Key words:

1. CLASSIFICATION OF FAULTS

1.1 Defects, faults, errors

1.2 Stuck-at fault properties

One of the most important concerns when generating tests or simulating

faults in digital systems is the complexity – the huge number of faults we

have to work with. To overcome this problem we should reduce the total

number of faults to be processed in test generation. To do that we need to

know better different properties of faults such as detectability, redundancy,

equivalence, dominance, a.o. Each of these properties will help us to select

only essential faults and not consider other faults classified as nonessential.

Let y(x) be the logic function of a combinational circuit C, where x is an

input vector and y(x) denotes the mapping realized by C. The presence of a

fault f transforms C into a new faulty circuit Cf with a function yf(x). Each

input vector t can be regarded as a test, and a sequence of input vectors T =

(t1, t2,…, tn) is a test sequence. A test t detects a fault f if y(t)  yf(t).

2 Chapter 2

Fault redundancy. We call a fault f detectable if there exists a test t

that detects f ; otherwise, we call f undetectable.

A combinational circuit that contains an undetectable stuck-at-fault

(SAF) is said to be redundant, since such a circuit can always be simplified

by removing at least one gate or gate input.

For example, suppose that a s-a-1 fault on an input of an AND gate is

undetectable. This means that the function of the gate does not change in the

presence of the fault, and we can permanently place constant 1 on that input.

But, an n-input AND with a constant 1 value on one input is logically

equivalent to the (n-1)-input AND obtained by removing the gate input with

the constant signal. Similarly, if an AND input s-a-0 is undetectable, the

AND gate can be removed and replaced by a signal of logic 0 value. Other

simplification rules can be found in [1].

Redundant faults cause a real trouble in test generation. A test generation

is a procedure where a test should be searched among all possible input

patterns or sequences. For non-redundant faults we usually find the test

quickly by tracing only a small part of the search space. For redundant faults

we have to go through the whole huge space of possible patterns.

Hence, if we can exclude redundant faults from test generation we can

significantly increase the test generation speed.

Fault equivalence. Two faults f and g are called functionally equivalent

if yf(x)  yg(x).

A test t is said to distinguish between two faults f and g if yf(x)  yg(x);

such faults are distinguishable. There is no test that can distinguish between

two functionally equivalent faults.

The relation of functional equivalence partitions the set of all possible

faults into functional equivalence classes. For test generation it is sufficient

to consider only one representative fault from every equivalence class.

With any n-input gate we can associate 2(n + 1) single stuck faults. For a

NAND gate all the input s-a-0 faults and the output s-a-1 fault are

functionally equivalent. These equivalent faults can be represented by a

single fault in the test generation process. Hence, for test generation for an n-

input ŃAND gate (n1) we need to consider only n+2 single stuck faults.

This type of reduction of the set of faults based on equivalence relations

is called equivalent fault collapsing.
If, in addition to fault detection, the goal of testing is fault location as

well, we need to apply a test that not only detects the detectable faults but

also distinguishes among them as much as possible. A complete fault

location test distinguishes between every pair of distinguishable faults in a

circuit.

2. Defects, faults, fault models 3

A complete fault location test can diagnose a fault to within a functional

equivalence class. This is the maximal diagnostic resolution that can be

achieved.

Fault dominance. If the objective of a testing is limited to fault detection

only, then in addition to fault equivalence, another fault relation called fault

dominance can be used to reduce the number of faults that must be

considered.

Let Tg be the set of all test vectors that detect a fault g. A fault f

dominates the fault g if f and g are functionally equivalent under Tg.

If f dominates g , then any test t that detects g will also detect f.

Therefore, for fault detection it is unnecessary to consider the dominating

fault f , since by deriving a test for g we automatically obtain a test that

detects f as well.

Fault collapsing. The fault equivalence and fault dominance properties

can be used for minimizing the whole set of faults to be considered in test

generation and fault simulation.

Consider a 3-input NAND gate in Figure 2-1. Stuck-at-0 faults on inputs

A/0, B/0, C/0 and stuck-at-1 fault D/1 on the output form an equivalent class

of faults. On the other hand, the fault D/0 dominates faults A/1, B/1 and C/1.

Any of the faults in the equivalence class can be chosen as the representative

fault whereas all other faults can be excluded from consideration. Regarding

the dominance classes only the dominating fault D/0 can be excluded.

Figure 2-1. Fault collapsing for a NAND gate

Consider now a simple combinational circuit in Figure 2-2. In the case of

a circuit we can use the both rules of fault collapsing by combining them in

a proper way. For example, for the stuck-at-1 fault on the output we first

choose stuck-at-0 on the connection line between gates as the representative

fault, and then we collapse this fault by using the dominance rule. As the

result, we see that all the faults on the current path of the circuit are

collapsed except stuck-at-1 fault on the input. In a similar case for stuck-at-0

&
A
B
C

D&
A
B
C

D

A B C D Fault class

1 1 1 0 A/0, B/0, C/0, D/1 Equivalence class
0 1 1 1 A/1, D/0
1 0 1 1 B/1, D/0 Dominance classes
1 1 0 1 C/1, D/0

4 Chapter 2

fault on the output we see that all the faults on the current path will be

collapsed except for stuck-at-0 fault on the input.

Figure 2-2. Fault collapsing for a combinational circuit

By generalizing this result in inductive way, we can easily show that for

tree-like combinational circuits, only the stuck-at-faults on inputs are the

essential faults for test generation and fault simulation.

2. FUNCTIONAL FAULT MODEL

The efficiency of test generation is highly depending on the system

description and fault models used.

It has been shown that high SAF coverage cannot guarantee high quality

of testing, for example, for CMOS integrated circuits [2]. The reason is that

the SAF model ignores the actual behavior of CMOS circuits, and does not

adequately represent the majority of real IC defects and failure mechanisms

which often do not manifest themselves as stuck-at faults. To handle

physical defects in fault simulation, we still need logic fault models for the

following reasons: to reduce the complexity of simulation (many physical

defects may be modelled by the same logic fault), a single logic fault model

may be applicable to many technologies, logic fault tests may be used for

physical defects whose effect is not well understood. The most important

reason for logical modelling of physical defects is to get a possibility for

moving from the lower physical level to the higher logic level which has less

complexity.

In this subchapter, an approach to modelling physical defects by generic

Boolean differential equations with the goal to map them from the physical

level to the logic level is presented. Different transistor level faults will be

analysed to show that this way of mapping is general and feasible enough. A

new fault model is defined on that basis, called functional fault model. It is

also shown how the functional fault model can be treated as a uniform

interface for mapping faults from a given arbitrary level of abstraction to the

next higher level in test generation processes.

&
&1

 1

1

 0

 1

&
&1

 0

1

 1

 0

Dominance
DominanceEquivalence

Equivalence

&
&1

 1

1

 0

 1

&
&1

 0

1

 1

 0

Dominance
DominanceEquivalence

Equivalence

2. Defects, faults, fault models 5

2.1 Fault modelling with Boolean differential equations

Consider a Boolean function y = f (x1, x2, …, xn) implemented by an

embedded component (complex gate) G in a circuit. Introduce a Boolean

variable d for representing a given physical defect in the component, which

may affect the value y by converting the Boolean function f into another

function

y = f d (x1, x2, …, xn)

where, in fact, some of the arguments xi can fall out, thus simplifying the

function because of the defect.

Let us introduce a generic parametric function

d

n dffddxxxfy ),...,,(** 21 (2-1)

for the component G as a function of the defect variable d, which describes

the behavior of the component simultaneously for both fault-free and faulty

cases. For the faulty case, the value of the defect variable d as a parameter is

equal to 1, and for the fault-free case d = 0. In other words, y* = f d if d = 1,

and y* = f if d = 0.

The solutions of the Boolean differential equation

 1
*







d

y
W d

 (2-2)

describe the conditions which activate the defect d on a line y. The

parametric modelling of a given defect d by equations (2-1) and (2-2)

allow us to use the constraints Wd = 1, either in defect-oriented fault

simulation, to check whether the condition (2-2) is fulfilled, or in defect-

oriented test generation, to solve the equation (2-2) when the defect d should

be activated and tested.

To find Wd for a given defect d we have to create the corresponding logic

expression for the faulty function fd, either by logical reasoning or by

carrying out defect simulation directly, or by carrying out real experiments

to learn the physical behavior of different defects.

Example 2-1. Let us have a transistor circuit as in Figure 2-3

which implements the function

54321 xxxxxy  .

6 Chapter 2

A short defect as shown in Figure 2-3 changes the function of the circuit as

follows:

))((53241 xxxxxyd  .

Using the defect variable d for the short, we can create a generic differential

equation for this defect and simplify the created expression as follows:

5432154315421

5324154321)))(()((*

xxxxxxxxxxxxx

d

dxxxxxdxxxxx

d

y













.

From the equation three possible solutions follow: T = {10x01, 1x001,

01110}. Each of them can be used as a test pattern for the given short. On

this contra-example, it is easy to show the inadequacy of the stuck-at fault

(SAF) model for testing the transistor level faults. For example, the set of

five test patterns 1110x, 0xx11, 01101, 10110, 11010 which test all the

stuck-at faults in the circuit does not include any of the possible test

solutions for detecting the short from the set T.

Figure 2-3. Transistor circuit with a short

Note that for the same purposes of finding the test for the defect d we

also could solve the equation

1))(()(5324154321 



xxxxxxxxxx

ff d

directly without introducing the defect variable d. However, solving the

equation (2-2) will be much easier because of simplification possibilities

resulting from specific properties of Boolean differentials [3].

Short
x1

x2

x3

x4

x5

y

Short
x1

x2

x3

x4

x5

y

2. Defects, faults, fault models 7

2.2 Mapping physical transistor defects to logic level

The described method represents a general approach to map an arbitrary

physical defect onto a higher (in this case, logic) level. By the described

approach an arbitrary physical defect in a component can be represented by a

logical constraint Wd = 1 to be fulfilled for activating the defect (Figure 2-4).

The event of erroneous value on the output y of a functional component

can be described as dy = 1, where dy means Boolean differential. A

functional fault representing a defect d can be described as a couple (dy,

Wd). At the presence of a physical level defect d, we will have a higher level

erroneous signal dy = 1 if the condition Wd = 1 is fulfilled.

Figure 2-4. Transistor circuit with a short

From another point of view, the equation (2-2) can be interpreted as a

mapping of a physical defect d from the transistor level to the logic level as

an erroneous change of a logic value dy = 1 by means of activiting the

physical defect d with condition Wd = 1.

The following examples will show the feasibility of using Boolean

differential equations for mapping faults from physical transistor level to

logic level.

Example 2-2. Transistor level stuck-on faults. The behavior of the

transistor level NOR gate depicted in Figure 2-5 cannot be described

strictly logically. The input vector “10” produces a conducting path from

VDD to VSS, and the corresponding voltage at the output node Y will not be

equal to either VDD or VSS but will instead be a function of the voltage

divider formed by the channel resistances of the conducting transistors:

 y
Component

F(x1,x2,…,xn)

Defect

Activated by W pathd
Wd

Stuck-on

x1 x2

Y

VDD

VSS

x1

x2

Conducting path for “10”

RN

RP

Stuck-on

x1 x2

Y

VDD

VSS

x1

x2

Conducting path for “10”

RN

RP

0011

VY/IDDQ001

0010

1100

ydyx2x1

0011

VY/IDDQ001

0010

1100

ydyx2x1

8 Chapter 2

Figure 2-5. Stuck-on fault in the transistor NOR gate

)(NP

PDD
Y

RR

RV
V


 .

Depending on the ratio of these resistances along with the switching

thresholds of the gates being driven by the output of the faulty gate y, the

output voltage of the faulty gate may or may not be detected at a primary

output. Denote by Z this ambiguous value on the gate output. The faulty

function of the gate can be represented as follows:

If 121 xx then .Zy d  Using now the expressions (1) and (2) we get:

)()(* 212121 Zxxxxdxxdy 

1/* 21  ZxxdyW d
.

Consequently, the condition to activate the defect is .0,1 21  xx

Example 2-3. Transistor level stuck-open faults. For the transistor stuck-

open fault of the NOR gate in

Figure 2-6, there will be no path from the output node to either VDD or

VSS for some input patterns. As a result, the output node will retain its

previous logic value. This creates a situation where a combinational logic

gate behaves like a dynamic memory element.

Figure 2-6. Stuck-off (open) fault in the transistor NOR gate

.2121 Zxxxxy d 

Stuck-off (open)

x1 x2

Y

VDD

VSS

x2

No conducting path

from VDD to VSS for “10”

x1

Stuck-off (open)

x1 x2

Y

VDD

VSS

x2

No conducting path

from VDD to VSS for “10”

x1

0011

Y’001

0010

1100

ydyx2x1

0011

Y’001

0010

1100

ydyx2x1

2. Defects, faults, fault models 9

The faulty function of the gate is: '2121 yxxxxyd  where y’ corresponds

to the output value stored at the output of the faulty gate from the previous

clock cycle. Using now the expressions (2-1) and (2-2) we have:

)'(

)'()(*

12

212121

dyxx

yxxxxdxxdy





1'/* 21  yxxdyW d
.

It follows now that the condition to activate the defect is

.1',0,1 21  yxx In other words, for testing the fault we need a test

sequence of two patterns: “00” to get the value 1 on the output to be stored,

and then “11”.

2.3 Mapping interconnection defects to logic level

Consider now a component C representing a Boolean function y = f (x1,

x2, …,xn) embedded in a surrounding network given by a subset of lines Ec =

{xn+1, … ,xp}. Introduce the same Boolean variable d for representing

physical defects in the subcircuit (C,Ec), given by the block C with its

neighborhood Ec, which may affect the value y. Let the defect d convert the

Boolean function f into another function

y = fd (x1, x2, …, xn, xn+1, … xp).

Let us introduce for modelling physical defects related to the subcircuit

(C,Ec), a generic parametric function

as a function of a defect variable d, which describes the behavior of the

subcircuit for both fault-free and faulty cases simultaneously. For the faulty

case the value of the defect variable d as a parameter is equal to 1, and for

the fault-free case d = 0. In other words, y* = f d if d = 1, and y* = f if d

= 0. The solutions of the Boolean differential equation (2-2) describe the

conditions which activate the defect d on a line y.

Figure 2-7. A bridging fault

)()(

),,...,,,...,,(** 121

d

pnn

fdfd

dxxxxxfy



 

xk

xl

x*k

d
xk

xl

x*k

d

10 Chapter 2

Example 2-4. A short between two lines xk and xl in the circuit in Figure

2-7. The faulty function of xk in the case of the defect d in accordance to the

wired-AND fault model can be represented as
lk

d

k xxx  . Introduce now a

generic parametric function

)(* lklkk

d

kkk xdxxdxxddxxdx 

as a function),,(* dxxfx lkk  of a defect variable d, which describes the

behavior of the interconnection network for both fault-free and faulty cases

simultaneously. The solution of the Boolean differential equation

lkk

d xxdxW  /*

describes the conditions (constraints) which activate the fault d on a line xk

(Figure 2-7). The condition 1 lk

d xxW means that in order to detect the

short between lines xk and xl on xk we have to assign the value 1 to xk and

the value 0 to xl .

Figure 2-8. A Bridging fault with feedback loop

Example 2-5. A short between two lines xk and xl in the circuit which

creates a feedback loop. A circuit with such a loop and its equivalent faulty

circuit corresponding to the wired-AND fault model is shown in Figure 2-8.

The generic parametric function for describing the behavior of the circuit

for both fault-free and faulty cases simultaneously has the following form:

x1

x2

x3

y&
&

x1

x2 x3

y&
&

&

Equivalent faulty circuit:

Bridging fault causes a

feedback loop:

x1

x2

x3

y&
&

x1

x2 x3

y&
&

&

Equivalent faulty circuit:

Bridging fault causes a

feedback loop:

2. Defects, faults, fault models 11

321

321321

)'(

)()(*

xydxx

xyxxdxxxdy




.

The solution of the Boolean differential equation

1'/* 321  yxxxdyW d

describes the conditions (constraints) which activate the fault d on a line y

(Figure 2-8). The apostrophe at y means that the value of y belongs to the

previous time moment. The condition

1'321  yxxxW d

means that we need a sequence of two patterns for testing the short. First, we

have to set the value y = 0 (for example, by assigning x3 = 0), then we have

to apply the pattern x1 = 1, x2 = 1, x3 =1.

We can see from the example that in the general case the constraints for

activating a fault may be spread over different time moments, and represent

sequences of patterns.

We also see that the method for describing faults by generic Boolean

differential equations allows us directly to attack the problem of testing so

called ”sequential faults” which either convert combinational circuits into

sequential ones or increase the number of states in sequential circuits. Test

generators which are able to work with such faults are missing.

The functional fault model described as a couple (dy, Wd) can be regarded

first as a method of mapping arbitrary physical defects onto the logic level,

and second as a universal method of fault modeling in hierarchical

approaches to test generation and fault simulation.

The conditions Wd for activating defects d can be used as constraints at

the higher (logic or register transfer) levels either for fault simulation or for

test pattern generation without paying attention to the physical origins of

defects.

2.4 Hierarchical representing of faults

The method of defining faults by logic conditions Wd allows us to unify

the diagnostic modelling of components of a circuit (or system) without

going into structural details of components and into the diagnostic

simulation of interconnection network of components. In both cases, the

condition Wd = 1 describes how a lower level fault d (either a defect in a

component or a defect in a network) should be activated at a higher level to a

given node in a circuit (or system). The condition Wd = 1 can be used both in

fault simulation and in test generation.

12 Chapter 2

Consider a node k in a circuit in Figure 2-9 as the output of a module Mk,

and represented by a variable xk. Associate with the node k a set of faults Rk

= RF
k  RS

k where RF
k is the subset of faults in the module Mk, and RS

k is a

subset of structural faults (defects) in the “network neighborhood” of Mk.

Denote by Wd the condition when the fault d  Rk will change the value of xk.

Denote by WF
k the set of conditions Wd activating the defects d  RF

k in

components and by WS
k the set of conditions Wd activating the defects d 

RS
k in the interconnection network.

Figure 2-9. Mapping faults from lower level to higher level

By using the sets of conditions WF
k and WS

k we can set up a mapping of

faults from a lower level to a higher level for test generation purposes, and

also in opposite direction, from a higher level to a lower level for fault

simulation or fault diagnosis purposes.

In test generation, to map the lower level fault d  Rk to the higher level

variable xk, a solution of the equation Wd = 1 is needed. In other words, if

the condition Wd = 1 is fulfilled then the presence of the defect d  Rk will

change the value of the variable xk.

In fault simulation (or in fault diagnosis) an erroneous value of xk

(denoted by a Boolean differential dxk = 1) can be formally explained by

implication

where for j = 1,2,…n: dj  Rk . If the condition Wdj = 1 is fulfilled, the higher

level error dxk = 1 implies the lower level defect dj.

For hierarchical testing purposes we should construct for each module Mk

of the circuit a list of faults Rk with logical conditions Wd for each fault d 

Rk. The set of conditions WF
k for the functional faults d  RF

k of the module

Component
Low level

kWF
k

WS
k

Environment

Bridging fault

Mapping

Mapping

High level

Component
Low level

kWF
k

WS
k

Environment

Bridging fault

Mapping

Mapping

High level

dn

n

dd

k WdWdWddx  ...2

2

1

1
(2-3)

2. Defects, faults, fault models 13

can be found by low level test generation for the defects in the module. The

set of conditions WS
k for the structural faults d  RS

k in the environment of

the module can be found by Boolean differential analysis of generic fault-

free/faulty functions as explained in previous Sections 2-1, 2-2 and 2-3.

In Figure 2-10, a hierarchical test conception based on parametric fault

modelling and functional fault model for a 3-level system is illustrated. In

the functional approach, only the information about the functional behaviour

is used. In the structural approach, tests are targeted to detect the faults in the

networked components and in the network interconnections.

Figure 2-10. Hierarchical fault representing

Consider a task of defect oriented fault simulation in a system which is

represented at three levels: register transfer, gate and defect levels.

Formally, if Y is the system variable representing an observable point (a

register) of the system, yM is an output variable of a logic level module and

yG is the output of a logic gate with a physical defect d, then the condition to

detect the defect d on the observable test point Y of the system is

 W = Y/yM   yM /yG  W
d = 1,

where Y/yM means the fault propagation condition calculated by high-level

modeling, yM/yG is the fault propagation condition (Boolean derivative)

calculated by gate-level modeling, and Wd is the functional fault condition

calculated for physical defects from 2-2 during the gate pre-analysis.

Circuit

Module

System

Network

of gates

Gat e

Functional

approach

Fki Test

F k Test

W
F

ki

W
S

ki

F Test

W
F

k

W
S

k

Structural

approach

Network

of modules

W
d

ki

14 Chapter 2

3. DEFECT MODELLING

4. HIGH-LEVEL FAULT MODELS

To increase the speed of fault coverage evaluation, high-level (functional

or behavioral) fault models have been developed. High-level faults represent

the effects of physical defects on the operation of a system represented on

the functional or behavioral level. A high-level fault model can be

considered good if the tests generated using this model provide a high

coverage of stuck-at-faults or physical defects.

The main idea of the high-level fault modelling is to obtain from the

high-level description of the system an incorrect version by introducing a

fault into the description. This approach is called model perturbation [4].

The models can be “perturbed” in certain ways, e.g. by truth-table

modification, micro-operation modification, etc. In some or other way, this

idea is implemented in different high-level fault models, developed, for

example, in a very dedicated way for microprocessors [5,6,7], in a more

general way for systems represented in register-transfer languages [8,9] or

other hardware description language like VHDL [10,11,12], etc. Some

attempts to develop dedicated functional fault models for different data-flow

network units like decoders, multiplexers, memories, PLAs, etc. are

described in [13].
A high-level fault model can be explicit or implicit [1]. An explicit

model identifies each fault individually, and every fault in this model will be

a target for test generation. An implicit model identifies classes of faults

with “similar” properties, so that all faults in the same class can be detected

by similar procedures. The advantage of an implicit fault model is that it

does not require explicit enumeration of faults within a class.

Most of the high-level faults presented in this subchapter can be covered

by so called addressing faults [1]. Typical examples include: addressing a

word in a memory, selecting a register according to a field in the instruction

word of a processor, decoding an op-code to determine the instruction to be

executed.

The common feature of these schemes is the use of a n-bit address to

select one of 2n possible items. Whenever item i is to be selected, the

presence of an addressing fault may lead to: a) selecting no item, b) selecting

item j instead of i, c) selecting item j in addition to i. More generally, a set of

items {j1, j2, … , jk} may be selected instead of, or in addition to, i.

An important feature of this fault model is that it forces the test

generation process to check whether the intended function is performed and

2. Defects, faults, fault models 15

also whether no extraneous operations occur. This fundamental aspect of

functional testing is often overlooked by heuristic methods.

4.1 Microprocessor functional fault model

In [5,6] a fault model for various units of the data processing section and

the control section of microprocessors was presented. Faults affecting the

operation of microprocessor can be divided into the following classes:

- addressing faults affecting the register decoding function;

- addressing faults affecting the instruction decoding and instruction

sequencing functions;

- faults in the data-storage function;

- faults in the data-transfer function;

- faults in the data-manipulation function.

Addressing faults affecting the register decoding function

For multiplexers under a fault, for a given source address any of the

following events may happen:

F1: No source is selected;

F2: A wrong source is selected;

F3: More than one source is selected and the multiplexer output is either a

wired-AND or a wired-OR function of the sources, depending on the

technology.

For demultiplexers under a fault, for a given destination address:

F4: No destination is selected;

F5: Instead of, or in addition to the selected correct destination, one or

more other destinations are selected.

Faults affecting the instruction decoding and instruction sequencing

functions

An instruction I can be viewed as a sequence of micro-instructions,

where every micro-instruction consists of a set of micro-orders, which are

executed in parallel. Micro-orders represent the elementary data transfer and

data manipulation operations.

Addressing faults affecting the execution of an instruction may cause one

or more of the following fault effects:

F6: One or more micro-orders are not activated by the micro-instructions

of I.

F7: Micro-orders are erroneously activated by the micro-instructions of I.

F8: A different set of micro-instructions is activated instead of, or in

addition to, the micro-instructions of I.

16 Chapter 2

This fault model is general, as it allows for partial execution of

instructions and for execution of “new” instructions, not present in the

instruction set of a microprocessor.

Fault model for data storage function

The data storage facility is usually implemented as a memory. Therefore,

here the fault model developed in [7] can be used1. Under a fault any of the

following situations may happen to the memory cell array:

F9: One or more cells are stuck at 0 or 1;

F10: One or more cells fail to make a 01 or 10 transitions;

F11: Two or more pairs of cells are coupled; by this we mean a transition

from x to y in one cell of the pair, say cell i, changes the state of the other

cell, say j, from x to y or from y to x, where x {0,1}, and xy  .

Fault model for data transfer function

The data-transfer function implements all the data transfers along the

buses between the registers and functional units of a microprocessor.

For buses under a fault:

F12: One or more lines can be stuck at 0 or 1;

F13: One or more lines may form a wired-OR or wired-AND function

due to shorts or spurious coupling.

Fault model for data manipulation function (F14)

In the case of the data processing functional units, no specific model has

not been proposed because the wide range of existing designs would only

tend to complicate any general model. It is assumed that a complete test set

can be derived for the functional units by some other techniques.

The main disadvantage of the described approach is that only

microprocessors are handled and the fault classes defined cannot be

extended to cover the general digital systems test problem.

4.2 Register-transfer-level functional fault model

A register-transfer-level (RTL) functional fault model is set up with

respect to certain sets of functional faults considered. The set of faults is

derived from a fault analysis for all distinct RTL statements of the device

under test.

A formal definition of a RTL statement is defined as [4]:

K: (T,C) Rd  f(RS1, RS2,…, RSn),  N,

where K is the RTL statement label, T is the timing, and C is the logic

condition to execute this statement, Rd is the destination register, R Si is

1 Memory faults are profoundly discussed in Chapter 3 in the section devoted to memory test

2. Defects, faults, fault models 17

the i-th source register, f is an operation on source registers,  represents

data transfer, and  N represents a jump to statement N.

Based on the above notation, nine categories of functional faults can be

identified for the register transfer level as follows:

RT1: label faults denoted by (K/K’), which means that the label K will

be changed to K’ due to the low-level faults such as SAF,

bridging or pattern sensitive faults,

RT2: timing faults (T/T’),

RT3: logic condition faults (C/C’),

RT4: register decoding faults (Ri/Ri’),

RT5: function decoding faults (f/f’),

RT6: control faults ( N/ N’),

RT7: data storage faults ((Ri)/(Ri)’), which means that the content of the

register R is changed from (R) to (R)’ due to the low-level faults,

RT8: data transfer faults (/’), which means that the fault occurs in

the transfer path between the sources and the destination,

RT9: data manipulation (function execution) faults ((f)/(f)’, which

means the operation execution fault – the operation f is executed,

but the result of the operation is wrong.

This set of derived functional faults is comprehensive because the

internal functional behavior of any digital system can be described by a

sequence of RTL statements. Functional fault dominance and fault collapse

analysis may be applied to shrink the size of the fault set.

It can be justified that the above functional faults are the manifestation of

physical faults (e.g., stuck at faults, bridging faults, etc.) at circuit level into

functional faults at the RTL level. Using the above functional fault model,

the RTL technique can be comprehensively developed to consider more

practical functional faults.

4.3 Fault Modelling by Decision Diagrams

All the approaches described above lead to using very specific fault

models dedicated to special classes of systems or components, and hence, to

different mathematics and test generation procedures for each fault model.

The diversity of fault types makes it difficult to develop test generation

algorithms with possibility to treat all faults by standard procedures as it is

done for stuck-at faults in the gate-level case. Test generation based on a lot

of different types of fault models will be more complicated compared to the

case when only one generic fault model is used. Such a general and uniform

fault model can be defined when a digital system will be represented by

decision diagrams [18,19].

18 Chapter 2

Figure 2-11. A data-path of a digital system

Table 2-1. Behaviour of the components in Figure 2-11.

MUX DMUX1 ALU DMUX2

y1 Function y2 Function y3 Function y4 Function

0 MUX = R0 0 B = MUX 0 ALU = B 0 R0 = ALU

1 MUX = R1 1 R = MUX 1 ALU = B + R 1 R1 = ALU

2 MUX = R2 2


2 ALU = B + 1 2 R2 = ALU

3  3 3  3 OUT = ALU

Decision diagrams. Consider a digital system represented in Figure 2-11.

with functionalities of its components in Table 2-1. The behavior of the

register R0 is represented by the decision diagram in Figure 2-12.

Figure 2-12. Decision Diagram for the register R0 in Figure 2-11.

MUX

DMUX2

IN

DMUX1

ALU

R0

R1

R2

R

OUT

y1

y4

y2

y3

B

MUX

DMUX2

IN

DMUX1

ALU

R0

R1

R2

R

OUT

y1

y4

y2

y3

B

y4 y2 y3 y1 R1

R2

IN

y1 R + R0

R + R1

R0 + 1

R0

R0 0 0 0 1

2

3

0

1

1

2

R + R2
2

y4 y2 y3 y1 R1

R2

IN

y1 R + R0

R + R1

R0 + 1

R0

R0 0 0 0 1

2

3

0

1

1

2

R + R2
2

2. Defects, faults, fault models 19

The non-terminal nodes of the DDs are labeled by control variables,

whereas the terminal nodes are labeled by functional expressions or data

variables. The edges of non-terminal nodes are marked by the values of the

node variables. Missing of the value on the edge means “all other values”.

The data-path is controlled by microinstructions consisting of 4 fields: y1

- for decoding of the source register, y2 - for loading data to the buffer

register R, y3 - for controlling ALU (selecting a microoperation), and y4 - for

selecting the destination register.

The graph represents the functional behavior of the register R0 for a given

clock cycle whereas the terminal nodes show how the new content of the

register is calculated. To calculate a new value for the register in the current

clock cycle means to traverse a path in the DD from the root node to a

terminal node. The values of the node variables for the current

microinstruction decide the directions of tracing the nodes. As an example,

the calculation of the new content of R0 for the microinstruction y1 y2 y3 y4 =

2010 is illustrated by bold lines in Figure 2-12 which corresponds to a

microperation R0 = R + R2.

Each path in a DD describes the behavior of the system in a specific

mode of operation. The faults having effect on the behavior can be

associated with nodes along the given path whereas each node represents a

structural unit or subcircuit of the system. A fault of the node causes an

incorrect leaving the path activated by a test.

Fault model for Decision Diagrams

Using DDs it is possible to introduce a simple generic fault model of

nodes for digital systems represented at different levels in a similar way as

the logic level stuck-at-1 and stuck-at-0 faults are related to Boolean

variables in corresponding logical expressions.

The fault model for DDs can be represented as a set of 3 different fault

types D1, D2 and D3 described as follows:

D1 - the output edge of a node is always activated;

D2 - the edge of a node is always broken;

D3 - instead of the activated edge, another edge or a set of edges is

activated.

This model can be easily interpreted for non-terminal nodes of the

decision diagram. It can be used also for terminal nodes, however it will be

not very practical for these nodes because of the high number of possible

values of the data variables. The faults related to terminal nodes of DDs can

be managed hierarchically by the functional fault model as discussed in

Section 2.2.

Different fault models for different representation levels of digital

systems can be covered by this uniform node fault model defined for DDs.

20 Chapter 2

The physical meaning of faults associated with a particular node depends on

the meaning of the node.

For example, the fault model of nodes labeled by Boolean variables

covers the classical stuck-at fault model in gate-level representations. The

fault model for non-terminal nodes represents uniformly decoding faults,

instruction decoding or sequencing faults of microprocessors [5,6,7], label,

timing, condition, register, function or control decoding faults in RTL

models [8,9], case construction faults in procedural models of systems

[10,11,12], or simply the functional faults of decoders, multiplexers and

demultiplexers [13].

Relationships between different fault models

In Table 2-2. the correspondence of the DD-based fault model to RT-

level and microprocessor fault classes discussed in Sections 2.4.1 and 2.4.2

is shown.

 Table 2-2. RT level and microprocessor faults covered by DD-model

DD-model

faults

RT level

faults

Microprocessor faults

Instruction level
Microinstruction

level

D1

RT1-RT6

F1, F1,F6

D2 F2,F4 F2,F4

D3 F3,F5 F3,F5,F7,F8

Terminal

nodes

RT7-RT9 F9-F13 F9-F13

For RTL faults the classes RT2-RT5 correspond directly to the faults of

non-terminal nodes in DDs, which easily can be interpreted as timing and

logic conditions or as decoding of registers or operations. For example, in

Figure 2-12, the node y1 represents source register decoding, y3 represents

(micro) operation decoding, y2 and y4 can be easily interpreted as a condition

(timing or logic).

The fault classes RT1 (label faults) and RT6 (control faults) refer to the

errors in the control unit which can be also represented as a decision

diagram. An example of a FSM state transition and output table with the DD

of this FSM is shown in Figure 2-13. The graph represents a vector function

q.Y =  (x, q’). (x, q’) of the FSM, where x – is the Boolean input variable,

q’ is the current state variable, q is the next state variable, and Y is the output

2. Defects, faults, fault models 21

variable (microinstruction). The fault classes RT1 and RT6 are covered by

the faults of the node q’ in the DD.

Figure 2-13. Finite State Machine and its Decision Diagram

The correspondence of faults in the terminal nodes of the DD in Figure

2-12 to the fault classes RT7, RT8 and RT9 is shown in Table 2-3.

Table 2-3. Relationship between RT fault classes and DD faults

RTL faults Terminal nodes in the DD

RT7 R0, R1, R2

RT8 R1, R2, IN

RT9 R + R0, R + R1, R + R2, R0 + 1

In Figure 2-14 a simple instruction set of 10 instructions of a

hypothetical microprocessor and the corresponding DD representing the

behavior of the register A of the microprocessor are given. The

microprocessor fault classes are related to the faults of nodes in the DD.

Figure 2-14. Microprocessor instruction set and DD-model

q’
q.Y 0

1.Ø

x 1 0
2.Y1

3.Y2
1

4.Y3
2

4.Y4
3

0.Y5
4

State Next

state

q’

Logic

condition
q

Micro-

instruction

0 1 

1 x = 0 2 Y1

1 x = 1 3 Y2

2 4 Y3

3 4 Y4

4 0 Y5

I1: MVI A,D A = IN

I2: MOV R,A R = A

I3: MOV M,R OUT = R

I4: MOV M,A OUT = A

I5: MOV R,M R = IN

I6: MOV A,M A = IN

I7: ADD R A = A + R

I8: ORA R A = A  R

I9: ANA R A = A  R

I10:CMA A,D A =  A

I IN
1,6A

A
2,3,4,5

A + R
7

A  R
8

A  R
9

 A
10

F1, F4

F2, F5

F3, F5

F12, F13

F14

F9 - F11

I IN
1,6A

A
2,3,4,5

A + R
7

A  R
8

A  R
9

 A
10

F1, F4

F2, F5

F3, F5

F12, F13

F14

F9 - F11

22 Chapter 2

Assume that the edge 7 of the internal node labelled by the instruction

variable I is activated. The faults at the node I cover the microprocessor fault

classes F1 - F5. For example, the fault classes F1 (no sorce is selected) and

F4 (no destination is selected) correspond to the broken edge 7. The fault

classes F2 (wrong source is selected) and F5 (wrong destination is selected)

correspond to the activated edge 8. The fault classes F3 or F5 (more than one

source or destination is selected) correspond to the activated edges 9 and 10.

The faults of the terminal node IN cover the fault classes of buses F12 and

F13, and the faults of the node A cover the data storage fault classes F9 -

F11. The faults of other terminal nodes belong to the general data

manipulation fault class F14 of microprocessors.

The fault classes F6 - F8 correspond to the microinstruction level, and

can be discussed on the example of Figure 2-12. All the broken edges in the

DD correspond to the fault class F6 (microinstructions are not activated).

Erroneously activated edges in the DD correspond to the fault classes F7 and

F8.

From above it follows that the fault model defined on DDs can be

regarded as a generalization of the classical gate-level stuck-at fault model

for higher level representations of digital systems. The SAF model is defined

for Boolean variables whereas the generalized DD fault model is defined for

the nodes of DDs as a high-level model of digital systems.

REFERENCES

1. Abramovici M., Breuer M.A., Friedman A.D. Digital Systems Testing &
Testable Designs. Computer Science Press, 1995, 653 p.

2. Maly W., Shen J.P., and Ferguson J. System. Characterization of

Physical Defects for Fault Analysis of MOS IC Cells. Proc. Int. Test

Conf., 1984, pp. 390-399.

3. Thayse A. Boolean Calculus of Differences. Springer Verlag, 1981.

4. Gupta A.K., Armstrong J.R. Functional Fault modelling and Simulation

for VLSI Devices. 22nd Design Automation Conference, 1985, pp.720-

726.

5. Thatte S.M., Abraham J.A.. Test Generation for Microprocessors, IEEE

Trans. On Computers, Vol. C-29, No. 6, pp.429-441, June 1980.

6. Brahme D., Abraham J.A. Functional Testing of Microprocessors. IEEE

Trans. On Computers, Vol. C-33, No.6, pp.475-485, June 1984.

7. Thatte S.M., Abraham J.A. Testing of Semiconductor Random Access

Memories. Proc. of 7th Int. Symp. on Fault-Tolerant Computing, Los

Angeles, June 1977, pp. 81-87.

2. Defects, faults, fault models 23

8. Su S.Y.H., Lin T. Functional Testing Techniques for Digital LSI/VLSI

Systems. 21st Design Automation Conference, 1984, pp.517-528.

9. Shen L., Su S.Y.H. A Functional Testing Method for Microprocessors.

IEEE Transactions on Computers, Vol.37, No. 10, 1988, pp.1288-1293.

10. Ward P.C., Armstrong J.R. Behavioral Fault Simulation in VHDL. 27th

ACM/IEEE Design Automation Conference, 1990, pp.587-593.

11. Ghosh S., Chakraborty T.J. On Behavior Fault Modelling for Digital

Designs. Kluwer Academic Publishers.J. of Electronic testing: Theory

and Applications, 2, 1991, pp. 135-151.

12. Giambiasi N. et. al. Test pattern generation for behavioral descriptions in

VHDL. Proc. of the VHDL conference, Stockholm, 1991, pp. 228-234.

13. Abraham J.A. Fault modeling in VLSI. VLSI testing. North-Holland

1986, pp.1-27.

14. Nigh P.and Maly W. Layout - Driven Test Generation. Proc. ICCAD,

1989, 154-157.

15. Jacomet M. and Guggenbuhl W. Layout-Dependent Fault Analysis and

Test Synthesis for CMOS Circuits. IEEE Trans. on CAD, 1993, 12, 888-

899

16. Lee J. and Patel J.H. Architectural level test generation for

microprocessors. IEEE Trans. CAD, vol.13, no.10, pp.1288-1300, Oct.

1994.

17. Santucci J.F. et al. Speed up of behavioral ATPG, 30th ACM/IEEE DAC,

pp. 92-96, 1993.

18. Ubar R. Test Synthesis with Alternative Graphs. IEEE Design and Test

of Computers. Spring, 1996, pp.48-59.

19. Ubar R., Moraviec A., Raik J. Cycle-based Simulation with Decision

Diagrams. IEEE Proc. of Design Automation and Test in Europe.

Munich, March 9-12, 1999, pp.454-458.

