Design for Testability

Outline

• Ad Hoc Design for Testability Techniques
 – Method of test points
 – Multiplexing and demultiplexing of test points
 – Time sharing of I/O for normal working and testing modes
 – Partitioning of registers and large combinational circuits

• Scan-Path Design
 – Scan-path design concept
 – Controllability and observability by means of scan-path
 – Full and partial serial scan-paths
 – Non-serial scan design
 – Classical scan designs
Ad Hoc Design for Testability Techniques

Method of Test Points:

Block 1 — Block 2

Block 1 is not observable, Block 2 is not controllable

Improving controllability and observability:

Block 1

1 - controllability:
CP = 0 - normal working mode
CP = 1 - controlling Block 2 with signal 1

Block 1

0 - controllability:
CP = 1 - normal working mode
CP = 0 - controlling Block 2 with signal 0
Ad Hoc Design for Testability Techniques

Method of Test Points:

Block 1 is not observable, Block 2 is not controllable

Improving controllability:

Normal working mode:
CP1 = 0, CP2 = 1
Controlling Block 2 with 1:
CP1 = 1, CP2 = 1
Controlling Block 2 with 0:
CP2 = 0

Normal working mode:
CP2 = 0
Controlling Block 2 with 1:
CP1 = 1, CP2 = 1
Controlling Block 2 with 0:
CP1 = 0, CP2 = 1
Ad Hoc Design for Testability Techniques

Multiplexing monitor points:

To reduce the number of output pins for observing monitor points, multiplexer can be used:

2\(^n\) observation points are replaced by a single output and \(n\) inputs to address a selected observation point.

Disadvantage:

Only one observation point can be observed at a time.

Advantage:

\[
\frac{(n + 1)}{2^n} \ll 1
\]

Number of additional pins: \((n + 1)\)

Number of observable points: \([2^n]\)

Technical University Tallinn, ESTONIA
Multiplexing monitor points:

To reduce the number of output pins for observing monitor points, a multiplexer can be used:

To reduce the number of inputs, a counter (or a shift register) can be used to drive the address lines of the multiplexer

Disadvantage:
Only one observation point can be observed at a time

Reset for counter?

Number of additional pins: 2
Number of observable points: \([2^n]\)

Advantage: \(2 < n << 2^n\)
Ad Hoc Design for Testability Techniques

Demultiplexer for implementing control points:

To reduce the number of input pins for controlling testpoints, demultiplexer and a latch register can be used.

Disadvantage:

N clock times are required between test vectors to set up the proper control values.

Number of additional pins: $(n + 1)$

Number of control points: $2^{n-1} < N \leq 2^n$

Advantage: $(n + 1) \ll N$
Ad Hoc Design for Testability Techniques

Demultiplexer for implementing control points:

To reduce the number of input pins for controlling testpoints, demultiplexer and a latch register can be used.

To reduce the number of inputs for addressing, a counter (or a shift register) can be used to drive the address lines of the demultiplexer.

Disadvantage:

N clock times are required between test vectors to set up the proper control values.

Number of additional pins: 2
Number of control points: N

Advantage: $2 << N$
To reduce the number of output pins for observing monitor points, time-sharing of working outputs can be introduced: no additional outputs are needed.

To reduce the number of inputs, again counter or shift register can be used if needed.

Number of additional pins: 1
Number of control points: N

Advantage: $1 \ll N$
Time-sharing of inputs for controlling

To reduce the number of input pins for controlling test points, time-sharing of working inputs can be introduced.

To reduce the number of inputs for driving the address lines of demultiplexer, counter or shift register can be used if needed.

Number of additional pins: 1
Number of control points: N

Advantage: $1 \ll N$
Example: DFT with MUX-s and DMUX-s

Given a circuit:
- CP1 and CP2 are not controllable
- CP3 and CP4 are not observable

DFT task: Improve the testability by using a single control input, no additional inputs/outputs allowed
Example: DFT with MUX-s and DMUX-s

Given a circuit:
CP3 and CP4 are not observable
→ Improving the observability

Coding:

<table>
<thead>
<tr>
<th>T</th>
<th>Mode</th>
<th>MUX</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Norm.</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Test</td>
<td>1</td>
</tr>
</tbody>
</table>

Result: A single pin T is needed
Example: DFT with MUX-s and DMUX-s

Given a circuit: CP1 and CP2 are not controllable → Improving the controllability

Coding:

<table>
<thead>
<tr>
<th>Q</th>
<th>Mode</th>
<th>DMUX</th>
<th>MUX</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Norm.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>01</td>
<td>Contr</td>
<td>0</td>
<td>x</td>
</tr>
<tr>
<td>10</td>
<td>Test</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Result: A single pin T is needed
Example: DFT with MUX-s and DMUX-s

Result: A single pin T is needed
Ad Hoc Design for Testability Techniques

Examples of good candidates for control points:
- control, address, and data bus lines on bus-structured designs
- enable/hold inputs of microprocessors
- enable and read/write inputs to memory devices
- clock and preset/clear inputs to memory devices (flip-flops, counters, ...)
- data select inputs to multiplexers and demultiplexers
- control lines on tristate devices

Examples of good candidates for observation points:
- stem lines associated with signals having high fanout
- global feedback paths
- redundant signal lines
- outputs of logic devices having many inputs (multiplexers, parity generators)
- outputs from state devices (flip-flops, counters, shift registers)
- address, control and data busses
Ad Hoc Design for Testability Techniques

Logical redundancy:

Redundancy should be avoided:
- If a redundant fault occurs, it may invalidate some test for nonredundant faults
- Redundant faults cause difficulty in calculating fault coverage
- Much test generation time can be spent in trying to generate a test for a redundant fault

Redundancy intentionally added:
- To eliminate hazards in combinational circuits
- To achieve high reliability (using error detecting circuits)

Hazard control circuitry:
- Redundant AND-gate
 - Fault \(\equiv 0 \) not testable
- Additional control input added:
 - \(T = 1 \) - normal working mode
 - \(T = 0 \) - testing mode
Ad Hoc Design for Testability Techniques

Fault redundancy:

Error control circuitry:

\[E = 1 \text{ if decoder is fault-free} \]
\[\text{Fault } \equiv 1 \text{ not testable} \]

Testable error control circuitry:

\[T = 1 \text{ - testing mode} \]

Additional control input added:
\[T \equiv 0 \text{ - normal working mode} \]

\[E \equiv 1 \text{ if decoder is fault-free} \]
Ad Hoc Design for Testability Techniques

Partitioning of registers (counters):

16 bit counter divided into two 8-bit counters:

Instead of \(2^{16} = 65536\) clocks, \(2 \times 2^8 = 512\) clocks needed

If tested in parallel, only 256 clocks needed
Ad Hoc Design for Testability Techniques

Partitioning of large combinational circuits:

The time complexity of test generation and fault simulation grows faster than a linear function of circuit size.

Partitioning of large circuits reduces these costs.

I/O sharing of normal and testing modes is used.

Three modes can be chosen:
- normal mode
- testing C1
- testing C2 (bolded lines)

How many additional inputs are needed?
The complexity of testing is a function of the number of feedback loops and their length. The longer a feedback loop, the more clock cycles are needed to initialize and sensitize patterns.

Scan-register is a register with both shift and parallel-load capability.

- T = 0 - normal working mode
- T = 1 - scan mode

Normal mode: flip-flops are connected to the combinational circuit.

Test mode: flip-flops are disconnected from the combinational circuit and connected to each other to form a shift register.
Design for Testability & Control Points

Two possibilities for improving controllability/observability

Two problems with CP-s: access and minimization
Parallel Scan-Path

In parallel scan path flip-flops can be organized in more than one scan chain

Advantage: time ↓

Disadvantage: # pins ↑
In partial scan instead of full-scan, it may be advantageous to scan only some of the flip-flops.

Example: counter – even bits joined in the scan-register.
Hierarchical test generation with Scan-Path:

Control Part

- Scanning-In: `y_1, y_2 -> R_1`
- Scanning-Out: `y_3, y_4 -> R_2`

Data Part

- `R_1` and `R_2` connected to `M_1`, `M_2`, and `M_3`
- `IN` connected to `M_1`
- `Bus` connecting `R_1`, `IN`, `R_2`, and `IN* R_2`

Hierarchical Test Generation

- `M_1` and `M_2` perform arithmetic operations
- `M_3` combines the outputs
- Scanning-In and Out paths control the test generation process
Testing with Minimal DFT

Hierarchical test generation with Scan-Path:

- Control Part
- Data Part
- Scan-In
- Scan-Out
- Bus

If the control flow sequences are short, only a single or few data-dependent flag-FF-s are included into the scan-path.
Random Access Scan

In random access scan each flip-flop in a logic network is selected individually by an address for control and observation of its state.

Example:
Delay fault testing
DFT for Random BIST & Functional BIST

Random BIST

Test generator → UUT → Signature → Go/NoGo → Reference

Random test

Universal solutions based on DFT measures

Traditional functional testing

SW Based Self-Test for microprocessors

Normal operation

UUT → Result → Go/NoGo → Reference

Deterministic functional test set

Functional BIST

UUT → Result → Go/NoGo → Reference

Dedicated solutions based on Fault Simulation

HW overhead

Technical University Tallinn, ESTONIA
Selection of Test Points

Test point selection approaches

• Improving testability for any set of pseudo-random patterns (Pseudorandom BIST)
 – Testability measures are used to characterize the controllability and observability of the circuit (independently of the test applied)

• Improving testability for a given sequence of vectors (Functional BIST)
 – Fault simulation is used for measuring the fault coverage

Methods that are used:
 – logic simulation,
 – fault simulation,
 – evaluation (measuring) of controllability and observability
The Problem of Safe/Redundant faults

All faults

Application

Functionally to be detected

Not detected

Safe faults

Application software may not use a part of system HW (e.g. Debugging Module, Floating Point Unit), or a part of instruction set (e.g. multiplication)

Safe faults cannot produce any failure due to the specific (HW or SW) constraints the system matches during its normal operation

Safe faults

100% detected

< 100% detected

Are these redundant faults?

Safe faults

Not detected
Adhoc Iterative DFT Improvement

Test sequence

Circuit

Fault Simulation

Not detected faults

Circuit modification

Selection of CPs

Fault coverage 100%

What about safe- or redundant faults?
High-Level Functional BIST

Example: Functional BIST for Pipe-Lined Circuits

Two solutions:
- MISR monitors on every register
- MISR monitors on part of the register (Combine blocks with good coverage)
HL-FBIST Synthesis

Start-From-Big method
HL-FBIST Synthesis

Start-From-Small method
Distributed BIST Synthesis

Concurrent testing:

LFSR, CSTP → M2 → MISR1
M2 → M5 → MISR2 (Functional BIST)
CSTP → M3 → CSTP
LFSR2 → M4 → BILBO
Selection of Test Points

Method: Simulation of given test patterns

- Identification of the faults that are detected
- The remaining faults are classified as
 - A: Faults that were not excited
 - B: Faults at gate inputs that were excited but not propagated to the gate output
 - C: Faults that were excited but not propagated to circuit output
- The faults A and B require control points for their detection
- The faults C may be detected by either by observation points or by control points
- Control points selection should be carried out before observation points selection
Classification of Not-Detected Faults

Class A:
Fault $x_3 \equiv 1$ is not activated

Class B:
Faults at x_5 are not propagated through the gate

Class C:
Faults at x_1 are not propagated to the output

Classes A and B need controllability
Class C needs either controllability or observability
Selection of Test Points

Classification of faults

Given test:

<table>
<thead>
<tr>
<th>No</th>
<th>Test patterns</th>
<th>Fault table</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inputs</td>
<td>Intern. points</td>
</tr>
<tr>
<td>1</td>
<td>1 2 3 4 5 a b c</td>
<td>1 2 3 4 5 a b c</td>
</tr>
<tr>
<td>2</td>
<td>0 1 0 1 1 1 0 1</td>
<td>- - - 0 0 - - 0</td>
</tr>
<tr>
<td>3</td>
<td>0 1 0 1 1 1 0 0</td>
<td>- - 1 - 1 - 1 1</td>
</tr>
</tbody>
</table>

Not detected faults:

<table>
<thead>
<tr>
<th>Class</th>
<th>Faults</th>
<th>Missing signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$x_1/0$: $x_1 = 1$</td>
<td>is missing</td>
</tr>
<tr>
<td>A</td>
<td>$b/0$: $b = 1$</td>
<td>is missing</td>
</tr>
<tr>
<td>B</td>
<td>$x_3/0$: $x_3 a = 11$</td>
<td>is missing</td>
</tr>
<tr>
<td>B</td>
<td>$a/0$: $x_3 a = 11$</td>
<td>is missing</td>
</tr>
<tr>
<td>C</td>
<td>$x_2/0$: $x_1 x_2 = 01$</td>
<td>OK</td>
</tr>
</tbody>
</table>

Technical University Tallinn, ESTONIA
Selection of Test Points

Classification of faults

Given test:

<table>
<thead>
<tr>
<th>No</th>
<th>Test patterns</th>
<th>Fault table</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inputs</td>
<td>Intern. points</td>
</tr>
<tr>
<td></td>
<td>1 2 3 4 5 a b c</td>
<td>1 2 3 4 5 a b c</td>
</tr>
<tr>
<td>1</td>
<td>0 0 1 0 1 0 0 0</td>
<td>1 1 - 1 - 1 1 1</td>
</tr>
<tr>
<td>2</td>
<td>0 1 0 1 1 1 0 1</td>
<td>- - - 0 0 - - 0</td>
</tr>
<tr>
<td>3</td>
<td>0 1 0 1 0 1 0 0</td>
<td>- - 1 - 1 - 1 1</td>
</tr>
</tbody>
</table>

Not detected faults:

Class Faults Missing signals

A \(x_1/0: \) \(x_1 = 1 \) is missing
B \(x_3/0: \) \(x_3 a = 11 \) is missing
C \(x_2/0: \) \(x_1x_2 = 01 \) OK

A \(b/0: \) \(b = 1 \) is missing
A \(x_3/0: \) \(x_3 a = 11 \) is missing
B \(a/0: \) \(x_3 a = 11 \) is missing
C \(x_2/0: \) \(x_1x_2 = 01 \) OK
Selection of Test Points

Classification of faults

Given test:

<table>
<thead>
<tr>
<th>No</th>
<th>Test patterns</th>
<th>Fault table</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inputs</td>
<td>Intern. points</td>
</tr>
<tr>
<td></td>
<td>1 2 3 4 5 a b c</td>
<td>1 2 3 4 5 a b c</td>
</tr>
<tr>
<td>1</td>
<td>0 0 1 0 1</td>
<td>0 0 0</td>
</tr>
<tr>
<td>2</td>
<td>0 1 0 1 1</td>
<td>1 0 1</td>
</tr>
<tr>
<td>3</td>
<td>0 1 0 1 0</td>
<td>1 0 0</td>
</tr>
</tbody>
</table>

Not detected faults:

Class Faults	Missing signals
A | $x_1/0$: $x_1 = 1$ is missing |
A | $b/0$: $b = 1$ is missing |
B | $x_3/0$: $x_3 a = 11$ is missing |
B | $a/0$: $x_3 a = 11$ is missing |
C | $x_2/0$: $x_1 x_2 = 01$ OK |
Classification of faults

Given test:

<table>
<thead>
<tr>
<th>No</th>
<th>Test patterns</th>
<th>Fault table</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inputs</td>
<td>Intern. points</td>
</tr>
<tr>
<td></td>
<td>1 2 3 4 5</td>
<td>a b c</td>
</tr>
<tr>
<td>1</td>
<td>0 0 1 0 1</td>
<td>0 0 0</td>
</tr>
<tr>
<td>2</td>
<td>0 1 0 1 1</td>
<td>1 0 1</td>
</tr>
<tr>
<td>3</td>
<td>0 1 0 1 0</td>
<td>1 0 0</td>
</tr>
</tbody>
</table>

Not detected faults:

<table>
<thead>
<tr>
<th>Class</th>
<th>Faults</th>
<th>Missing signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$x_1/0$: $x_1 = 1$</td>
<td>is missing</td>
</tr>
<tr>
<td>A</td>
<td>$b/0$: $b = 1$</td>
<td>is missing</td>
</tr>
<tr>
<td>B</td>
<td>$x_3/0$: $x_3a = 11$</td>
<td>is missing</td>
</tr>
<tr>
<td>B</td>
<td>$a/0$: $x_3a = 11$</td>
<td>is missing</td>
</tr>
<tr>
<td>C</td>
<td>$x_2/0$: $x_1x_2 = 01$</td>
<td>OK</td>
</tr>
</tbody>
</table>

Diagram:

- x_1, x_2, x_3, x_4, x_5
- a, b, c
- y
- $q = 0$
- $b = 1$
- $x_3a = 11$
- $x_1x_2 = 01$
Selection of Test Points

Classification of faults

Given test:

<table>
<thead>
<tr>
<th>No</th>
<th>Test patterns</th>
<th>Fault table</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inputs</td>
<td>Intern. points</td>
</tr>
<tr>
<td>1</td>
<td>1 2 0 0 1</td>
<td>abc</td>
</tr>
<tr>
<td>3</td>
<td>0 0 0 1 0 0 1</td>
<td>0 0 0</td>
</tr>
<tr>
<td>2</td>
<td>0 1 0 1 0 0 1</td>
<td>0 1 0 1</td>
</tr>
<tr>
<td>1</td>
<td>0 0 1 0 0 1</td>
<td>0 0 0 1</td>
</tr>
</tbody>
</table>

Not detected faults:

Class Faults | Missing signals
A \(x_1/0: \) \(x_1 = 1 \) is missing
A \(b /0: \) \(b = 1 \) is missing
B \(x_3/0: \) \(x_3 a = 11 \) is missing
B \(a /0: \) \(x_3 a = 11 \) is missing
C \(x_2/0: \) \(x_1 x_2 = 01 \) OK, but path activation \(x_3 \) is missing
Selection of Test Points: Procedure

1. Selection of control points:

<table>
<thead>
<tr>
<th>Control point candidates</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
<th>F7</th>
<th>F8</th>
<th>F9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CP2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CP3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CP4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CP5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Faults, not detected

Selected control points
Selection of Test Points: Procedure

1. Selection of control points:

- Once control point candidates are identified for the faults A and B, a minimum number of control points (CP) can be identified.
- This can be formulated as a **minimum coverage problem** where a minimum CPs are selected such that at least one CP candidate is included for each fault in A and B.

<table>
<thead>
<tr>
<th></th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
<th>F7</th>
<th>F8</th>
<th>F9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CP3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CP4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CP5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Faults, not detected

Selected control points

Control point candidates
Selection of Test Points: Procedure

1. Selection of observation points:

<table>
<thead>
<tr>
<th>Observation point candidates</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
<th>F7</th>
<th>F8</th>
<th>F9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP4</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Faults, not detected
Selected observation points
Selection of Test Points: Procedure

2. Selection of observation points

- Once CPs selected, the test patterns are augmented, fault simulation is performed
- The fault class C is updated
- For each fault, in C the circuit lines to which the effect of the fault propagates, are identified as a potential observation point candidates
- A minimum covering problem is formulated and solved to find the observation points to be added

![Diagram showing selection process]
Selection of Test Points

Minimization of control points:
Not detected faults:
Class A: $x_1/0$, $b/0$
Class B: $x_3/0$, $a/0$,

Control point coverage:

<table>
<thead>
<tr>
<th>Potential control points</th>
<th>Not detected faults</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1=1$</td>
<td>$x_1/0$ $x_3/0$ $a/0$ $b/0$</td>
</tr>
<tr>
<td>$x_3=1$</td>
<td>$+$ $+$ $+$ $+$</td>
</tr>
<tr>
<td>$a=1$</td>
<td>$+$ $+$ $+$ $+$</td>
</tr>
<tr>
<td>$b=1$</td>
<td>$+$ $+$ $+$ $+$</td>
</tr>
</tbody>
</table>

Test patterns

<table>
<thead>
<tr>
<th>No</th>
<th>Test patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inputs</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>1 0 0 1 0</td>
</tr>
<tr>
<td>2</td>
<td>0 0 1 1 1</td>
</tr>
<tr>
<td>3</td>
<td>0 1 0 1 0</td>
</tr>
</tbody>
</table>
Insertion of Test Points

Test point for $x_1/0$

All faults detected:
- Class A: $x_1/0, b/0$
- Class B: $x_3/0, a/0$

<table>
<thead>
<tr>
<th>No</th>
<th>Inputs</th>
<th>Intern. points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 0 1 0 1 0 0 0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0 1 0 1 1 1 0 1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0 1 0 1 0 1 0 0</td>
<td></td>
</tr>
</tbody>
</table>

Corrected circuit:

All faults detected:
- Class A: $x_1/0, b/0$
- Class B: $x_3/0, a/0$
Insertion of Test Points

Two test points:

Selected test points:
Class A: $x_1/0 \rightarrow x_1 = 1$ (control point)
Class C: $x_2/0$ (observation point)

<table>
<thead>
<tr>
<th>No</th>
<th>Inputs</th>
<th>Intern. points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 0 0 1 0 1 0 0 0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0 1 0 1 1 1 0 1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0 1 0 1 0 1 0 0 0</td>
<td></td>
</tr>
</tbody>
</table>

This pattern is to be repeated with $T_1 = 1$

Corrected circuit:

$T_1 = 1$ $T_2 = 1$

To be observed
Selection of Test Points – Tradeoff Problem

Minimization of monitoring points:

To reduce the number of output pins for observing monitor points, EXOR gates can be used:

HW cost and time compaction

T – test time

With EXOR
Not accurate

Without MUX

With MUX

To reduce the number of output pins for observing monitor points, EXOR gates can be used:
Selection of Test Points

Minimization of monitoring points:

To reduce the number of output pins for observing monitor points, signature analyzers can be used:

- With MUX: Additional outputs
- With EXOR: Not accurate

Space and time compaction
T – test time

With SA: Accurate

Diagram showing a MUX with a counter and signature analyzer (SA) for scan in and scan out operations.
Boundary Scan Standard
Boundary Scan Architecture

TDI – Test Data IN
TMS – Test Mode Select
TCK – Test Clock
TDO – Test Data OUT
TAP – Test Access Port
Boundary Scan Architecture

- TDI
- TDO
- Boundary Scan Registers
- Internal logic
- Device ID. Register
- Bypass Register
- Instruction Register (IR)
- Data Registers
Boundary Scan Cell

Used at the input or output pins
Boundary Scan Working Modes

SAMPLE mode:

Get snapshot of normal chip output signals *(monitoring mode)*

INPUT CELL

- ShiftDR
- SO
- Mode
- Data paths:
 - D Q → CLK
 - SI ClockDR
 - UpdateDR

OUTPUT CELL

- ShiftDR
- SO
- Mode
- Data paths:
 - D Q → CLK
 - SI ClockDR
 - UpdateDR

Component boundaries:

Data transfer paths activated in SAMPLE mode.
Boundary Scan Working Modes

PRELOAD mode:

Put data on boundary scan chain before next instruction
Boundary Scan Working Modes

Extest instruction:

Test off-chip circuits and board-level interconnections

Component boundaries

Data transfer paths activated in EXTEST mode.
Boundary Scan Working Modes

INTEST instruction

Feeds external test patterns in and shifts responses out

INPUT CELL

- **ShiftDR**
- **SO**
- **Mode**
- **D Q**
- **CLK**
- **UpdateDR**

OUTPUT CELL

- **ShiftDR**
- **SO**
- **Mode**
- **D Q**
- **CLK**
- **UpdateDR**

Component boundaries:

- Used for first phase of INTEST
- Used for second phase of INTEST
- Not used in the INTEST testing mode
Boundary Scan Working Modes

Bypass instruction:

Bypasses the corresponding chip using 1-bit register
Boundary Scan Working Modes

IDCODE instruction:

Connects the component device identification register serially between TDI and TDO in the Shift-DR TAP controller state.

Allows board-level test controller or external tester to read out component ID.

Required whenever a JEDEC identification register is included in the design.

![Diagram showing the IDCODE instruction](diagram)
Fault Detection with Boundary Scan

Assume stuck-at-0
Assume wired AND
Short
Open
Kautz showed in 1974 that a sufficient condition to detect any pair of short circuited nets was that the “horizontal” codes must be unique for all nets. Therefore the test length is $\lceil \log_2(N) \rceil$.
Any Fault Detection with Boundary Scan

Assume stuck-at-0

All 0-s and all 1-s are forbidden codes because of stuck-at faults. Therefore the final test length is \(\lceil \log_2(N+2) \rceil \) (for testing SAF without masking by shorts).
Fault Diagnosis with Boundary Scan

To improve the diagnostic resolution we have to add one bit more.
Synthesis of Testable Circuits

\[y = x_1 x_3 \lor x_1 x_2 \]

Test generation:

\[y = x_1 x_3 \lor x_1 x_2 \]

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

4 test patterns are needed
Synthesis of Testable Circuits

Two implementations for the same circuit:

\[y = x_1 x_3 \lor x_1 x_2 \]

Here:
4 test patterns are needed

Here:
Only 3 test patterns are needed
Synthesis of Testable Circuits

Test generation method:

\[y = 1 \oplus x_3 \oplus x_1 \oplus x_1 x_3 \oplus x_1 x_2 \]

Roles of test patterns:

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>011</td>
<td>110</td>
<td>011</td>
</tr>
<tr>
<td>011</td>
<td>110</td>
<td>101</td>
</tr>
<tr>
<td>101</td>
<td>110</td>
<td></td>
</tr>
</tbody>
</table>

0 & 0 & 0

1 & 0 & 1

1 & 1 & 0
Synthesis of Testable Circuits

Given:
\[y = x_1 x_3 \lor x_1 x_2 \]

\[y = c_0 \oplus c_1 x_3 \oplus c_2 x_2 \oplus c_3 x_2 x_3 \oplus c_4 x_1 \oplus c_5 x_1 x_3 \oplus c_6 x_1 x_2 \oplus c_7 x_1 x_2 x_3 \]

Calculation of constants:

<table>
<thead>
<tr>
<th>(f_i)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(y)</th>
<th>(\Sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1 (C_0 = f_0 = 1)</td>
</tr>
<tr>
<td>(f_1)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1 (C_1 = f_0 \oplus f_1 = 1)</td>
</tr>
<tr>
<td>(f_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0 (C_2 = f_0 \oplus f_2 = 0)</td>
</tr>
<tr>
<td>(f_3)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0 (C_3 = f_0 \oplus f_1 \oplus f_2 \oplus f_3 = 0)</td>
</tr>
<tr>
<td>(f_4)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (C_4 = f_0 \oplus f_4 = 1)</td>
</tr>
<tr>
<td>(f_5)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0 (C_5 = f_0 \oplus f_1 \oplus f_4 \oplus f_5 = 1)</td>
</tr>
<tr>
<td>(f_6)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1 (C_6 = f_0 \oplus f_2 \oplus f_4 \oplus f_6 = 1)</td>
</tr>
<tr>
<td>(f_7)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0 (C_7 = f_0 \oplus f_1 \oplus f_2 \oplus f_3 \oplus f_4 \oplus f_5 \oplus f_6 \oplus f_7 = 0)</td>
</tr>
</tbody>
</table>

New:
\[y = 1 \oplus x_3 \oplus x_1 \oplus x_1 x_3 \oplus x_1 x_2 \]