
Turbo Tester
Reference Manual

Version 02.10

Department of Computer Engineering
Tallinn Technical University

Estonia
October 2002

Restrictions
This version of Turbo Tester software (Software) is provided "as is" with no
claims or warranties whatsoever. Department of Computer Engineering of Tallinn
Technical University (DCE) will not be responsible for any damages of any kind
associated with the use, misuse or distribution of this Software. Use of the
Software constitutes your agreement to these terms.

The Software is available as a freeware. The following terms govern your use of
the Software unless you have a separate written agreement with DCE. This license
agreement pertains only to the Shareware Version of this Software.

License Terms

The Software is made available for use by end users according to the License
Agreement. Distributing, renting or selling the Software or any of its parts to third
parties is strictly prohibited. You may modify the Software only within your
corporation or organization. A Package modified in such a way shall still be
considered the Software.

If you publish any results obtained with the Software, you should acknowledge
the following paper in the list of references.

"G.Jervan, A.Markus, P.Paomets, J.Raik, R.Ubar. A CAD System for Teaching
Digital Test. Proc. of the 2nd European Workshop on Microelectronics
Education, Kluwer Academic Publishers, pp. 287-290, Noordwijkerhout, the
Netherlands, May 14-15, 1998."

Termination

DCE may terminate your license upon notice for failure to comply with any of
these Terms. Upon termination, you must immediately destroy the Software
together with all copies, adaptations and merged portions in any form.

Table of Contents

1 INTRODUCTION ... 5

AUDIENCE... 5
CONVENTIONS.. 5
GETTING HELP ... 5

2 INSTALLING TURBO TESTER .. 6

WIN NT .. 6
LINUX AND SOLARIS 2.X .. 6
DIRECTORY STRUCTURE ... 6

3 SYSTEM OVERVIEW ... 7

3.1 DATA FLOW OF TEST TOOLS .. 7
3.2 TOOLS FOR FAULT DIAGNOSIS.. 8
3.3 DESIGN REPRESENTATION.. 9
3.4 DESIGN INTERFACE ... 11

4 TURBO TESTER COMMANDS .. 12

4.1 DESIGN INTERFACE ... 12
Netlist Interface .. 12
Error Messages and Warnings... 13
Library Generator... 14

4.2 TEST PATTERN GENERATION.. 15
Common Features .. 15
Deterministic Test Pattern Generator .. 16
Genetic Algorithm for Test Pattern Generation .. 17
Genetic ATPG Command-Line .. 19
Random Test Pattern Generator .. 20
Random ATPG for Sequential Circuits ... 21

4.3 BUILT-IN SELF-TEST EMULATION ... 22
Built-In Self Test Architectures ... 22
BIST Emulator ... 24

4.4 FAULT SIMULATION.. 26
Fault Simulator for Combinational Circuits ... 26
Fault Simulator for Sequential Circuits .. 27

4.5 MULTI-VALUED SIMULATION ... 28
Hazard Analysis Basing on 5-Valued and 8-Valued Alphabets.. 28
Multi-Valued Simulator ... 29

4.6 TEST SET OPTIMIZATION... 30
4.7 UTILITIES ... 31

Report Generator .. 31
Test Pattern Insertion Tool .. 32
Test Pattern Insertion Format ... 32

5 TOOLS FOR LABORATORY COURSE ON DIAGNOSIS .. 33

5.1 INTRODUCTION .. 33
5.2 FAULT DIAGNOSIS COMMANDS ... 35

xtimport – Extended Netlist Interface .. 35
xtimport - Error Messages and Warnings ... 36
prediag – Tool for Preliminary Diagnosis ... 37
verify – Tool for Verification.. 38
decrypt – Tool for Checking the Student’s Work .. 39
vecmanager – Tool for Test Pattern Insertion... 40

APPENDIXES... 41

APPENDIX A SSBDD MODEL FORMAT (.AGM) .. 41
APPENDIX B TEST VECTORS FORMAT (.TST) .. 43
APPENDIX C LIBRARY SOURCE FORMAT ... 46
APPENDIX D TECHNOLOGY LIBRARY FORMAT... 47
APPENDIX E SYNOPSYS DESIGN INTERFACE .. 48
APPENDIX F CADENCE DESIGN INTERFACE... 49

1 Introduction

Audience
We assume that the reader of this manual has the basic knowledge in the field of
digital test and design. The document provides for a reference of the Turbo Tester
tools. Theoretical aspects are covered only for the features that are specific to our
system.

Conventions
Throughout the document following conventions are used:

 monospace Indicates strings entered at the command prompt or
displayed by the system. Also file names.

 italics Indicates variables, e.g. numeric parameters, working
directories, design names.

 <chevrons> Same as previous.

 [square brackets] Denotes optional constructs.

 ! Emphasizes important notes.

Getting Help
If you encounter problems while installing or using the Turbo Tester system,
please contact the Turbo Tester support group by sending an e-mail to
tt@pld.ttu.ee. Any suggestions and remarks will be appreciated.

2 Installing Turbo Tester

Win NT
In order to install Turbo Tester under Windows NT operating system, copy the
file ttv0210.zip to the directory you want to set up the system (refered to as
installation_directory) and unzip the file.

Add the following line to your autoexec.bat file:

SET PATH=%PATH%;installation_directory\TT\bin

Subsequently restart the computer.

Linux and Solaris 2.X
In order to install Turbo Tester under Solaris 2.X operating system, copy the file
ttv0210.tar.gz to the directory you want to set up the system (refered to as
installation_directory) and enter the following commands:
gunzip ttv0210.tar.gz

tar xvf ttv0210.tar

Add the following line to your .cshrc file:

setenv PATH installation_directory/TT/bin:$PATH

Subsequently type
source ~/.cshrc

or log out and log in again.

Directory Structure
Turbo Tester installation contains the following directories:

 doc user documentation

 lib technology library files for the EDIF interface

 examples sample SSBDD models of ISCAS85 benchmarks

 bin executables

3 System Overview

3.1 Data Flow of Test Tools
Figure 1 presents the data flow of the Turbo Tester system. The system consists of
tools for Automatic Test Pattern Generation (ATPG), Built-In Self-Test (BIST)
emulation, fault simulation, test set optimization and multi-valued simulation.
Different methods for test pattern generation, simulation and BIST emulation can
be applied. Test pattern generators and fault simulators are available for both,
sequential and combinational circuits. Combinational circuits can be tested by
deterministic, random and genetic algorithm based methods, while for sequential
designs a random ATPG is available. In addition to fault simulators, the
simulation tools include multi-valued simulation for hazard analysis in
combinational circuits. For BIST emulation, BILBO (Built-In Logic Block
Observer) and CSTP (Circular Self-Test Path) approaches can be chosen. Test set
optimization tool implementing static compaction of generated tests and a report
generator displaying statistics about the results of different tasks are also included
to the installation.

Figure 1 System Flow of Turbo Tester

test
patterns

test patterns
w fault table

ATPG

optimized
test set

hazard
analysis

statistics

test
patterns

test patterns w
covered faults list

BIST
emulator

ATPG for
sequential

circuits

fault
simulator optimizer

multi-valued
simulator

fault simulator
for sequential

circuits

report
generator

test pattern
insertion tool

3.2 Tools for Fault Diagnosis
In addition to the test generation and fault simulation tools, Turbo Tester package
includes tools for design error localization and diagnosis. A subset of these tools
can be used for solving real-world diagnostics tasks, while others are dedicated to
a special laboratory course on design error diagnosis. More detailed information
about the diagnostics tools is available in Chapter 5.

3.3 Design Representation

Figure 3 Combinational Circuit and Its SSBDD

All the tools in Turbo Tester system operate on the design model of Structurally
Synthesized Binary Decision Diagrams (SSBDD). SSBDDs are a special case of
Binary Decision Diagrams (BDD). However, unlike BDDs, they are capable of
representing gate-level structural faults.

SSBDD models for combinational circuits can be synthesized by a simple
superposition procedure. We generate an SSBDD for a circuit output by starting
from the output, substituting recursively all the gates by their respective
elementary BDDs until primary inputs are reached. In order to avoid repetitive
occurences of subgraphs in the model, the recursion is terminated in fanout stems
and SSBDDs can be synthesized for each primary output and fanout point
separately. In that case the circuit will be described as a system where for each
fanout-free region an SSBDD corresponds.

As an example, Figure 3 shows an SSBDD representation for a combinational
circuit. For simplicity, values of variables on branches are omitted (by convention,
the rightward branch corresponds to 1 and the downward branch to 0). In addition,
terminal nodes with constants 0 and 1 are omitted (exiting the SSBDD rightwards
corresponds to y = 1, and downwards to y = 0). The diagram contains 6 nodes
whereas each of them represents a signal path in the circuit. The node labels in the
SSBDD correspond to input branches of the circuit shown in Figure 3.

The worst case complexity of SSBDD synthesis by the superposition procedure is
linear in respect to the number of logic gates in the model and is therefore fast
even for very large circuits.

In Turbo Tester, two possible options for generating SSBDDs exist:

1. Macro-level SSBDDs

2. Gate-level SSBDDs

In the case of gate-level SSBDDs, each gate is represented by corresponding BDD
and the circuit model does not differ from ordinary gate-level model.

All the Turbo Tester tools run slower on the gate-level model than on the macro-
level. Therefore, in order to achieve higher performance, macro-level model
should be chosen. However, if non-collapsed gate-level fault coverage is required,
gate-level model can be selected.

3.4 Design Interface
In Figure 4 the design interface of Turbo Tester system is presented. It is an EDIF
2.0.0 netlist interface, which links the system to most of the commercial VLSI
CAD tools: Synopsys, Cadence, Mentor Graphics, ViewLogic, Compass, ASYL+,
OrCAD, etc. Since the EDIF format does not include information of the behavior
of the library cells, the interface requires corresponding target technology library
file. This can be generated from an easy-to-describe library source format by
Turbo Tester library generator. A set of pre-generated technology libraries are
also provided with the installation.

Figure 4 Turbo Tester Design Interface

In addition to EDIF 2.0.0 input, the interface supports the ISCAS’89 benchmark
format. EDIF and ISCAS netlists can be converted into following optional file
formats:

• SSBDD model

• Turbo Tester technology library

• ISCAS’85

• ISCAS’89

4 Turbo Tester Commands
4.1 Design Interface

Netlist Interface

command: import

Converts EDIF 2.0.0 or ISCAS’89 netlists into the following file formats:

• SSBDD model
• Turbo Tester technology library
• ISCAS’85
• ISCAS’89

input: EDIF or ISCAS’89 netlist file

output: SSBDD model file (.agm), technology library file or ISCAS’85 model
file (.cir) or ISCAS’89 model file (.bench + file LineNames).

syntax: import [options] <EDIF file> <library file*>

options:

-read_iscas89 Read ISCAS’89 format.

-gate_level Generate gate-level SSBDD model. Default output
is macro-level SSBDD.

-lib_cell Generate TT technology library format.
(Do not use with -read_iscas89 option)

-iscas89 Generate ISCAS’89 format.
(Do not use with -read_iscas89 option)

-iscas85 Generate ISCAS’85 format.
(Do not use with -read_iscas89 option)

-tool <application> Options for application are orcad and
cadence.

-gnd <gnd name> gnd name is the name of the GND net.

-vdd <vdd name> vdd name is the name of the VDD net.

* - library_file must be omitted when selecting -read_iscas89 option.

Error Messages and Warnings
The design interface displays error messages and warnings about possible failures
while parsing the EDIF netlist file. Line numbers of the input netlist file where
errors occurred are provided. Pay attention to ALL of the displayed errors and
warnings if the program terminates abnormally!

Note that some of the warnings should be ignored, however. For example, one of
the most common warnings during reading a hierarchical design is as follows:

Design: COMPONENT_1

Parsing macro

Warning at line 1917: Gate not in library

This warning shows that there exists a cell named COMPONENT_1 in the EDIF
description. It either means that COMPONENT_1 is a block in the hierarchy, or it
is a cell, which is not specified in the technology library. In the first case, the
warning should be ignored. In the latter case, EDIF parsing fails due to an
incompletely specified technology library and the cell COMPONENT_1 should be
included to the library.

Library Generator

command: libgen

Generates user-specified technology libraries for the EDIF interface.

input: library source file (See ‘Library Source Format’).

output: technology library file (.lib)

syntax: libgen <library source> <library file>

4.2 Test Pattern Generation

Common Features
All of the Turbo Tester Automated Test Pattern Generators (ATPG) and the
sequential fault simulator are capable of reading information about already
detected faults from a test pattern file. This means that the ATPGs of the system
can be run in an arbitrary sequence, where one ATPG generates test patterns
covering a set of faults, and another test pattern generator continues to target the
faults not detected by the previous one. In addition, this feature makes it possible
to select a set of manually inserted, or functional, test patterns, fault simulate
them, and feed the data about detected faults to an ATPG.

The ATPGs of Turbo Tester include the –infile <file> option, where file is the
name of the test pattern file specified in TT test pattern format.

Note that, in order to obtain the information about covered faults, test patterns
must be fault simulated prior to feeding them to an ATPG using the –infile option.

Deterministic Test Pattern Generator

command: generate

Generates deterministic tests for combinational circuits implementing the
PODEM algorithm.

input: SSBDD model file (.agm)

output: test pattern file (.tst), list of redundant faults (.red)

syntax: generate [options] <design>

design: Name of the design file without .agm
extension.

options:

-backtracks <number> Maximal number of backtracks. Default is
10.

-test_per_fault Generates test for every fault in the circuit.
Preserves don’t care values.

-vector_limit <limit> Maximal number of generated patterns.
Default is 1000.

-fault_table Perform fault simulation for the final
patterns.

-infile <file> Read data about covered faults from test
patterns file file. (See ‘4.2 Common
Features’).

Genetic Algorithm for Test Pattern Generation

1) Representation

In a genetic framework, one possible solution to the problem is called an
individual. Similarly as we have different persons in society, we also have
different solutions to a problem (one is more optimal than the others). All
individuals together form a population. In the context of test generation, test
vector will be the individual and the set of test vectors will correspond to
population.

2) Initialization

Initially, a random set of test vectors is generated. Subsequently, this set is given
to a simulator tool for evaluation. Following steps of algorithm are carried out
repeatedly.

3) Evaluation of test vectors

Evaluation is used to measure the fitness of the individuals, i.e. the quality of
solutions, in a population. Better solutions will get a higher score. Evaluation
function is supposed to direct the population towards progress because “good”
solutions (with high score) will be selected during selection process and “poor”
solutions will be rejected.

We use fault simulation in order to evaluate the test vectors. Test vectors fitness
value will be equal to the number of previously undetected faults that the vector
covers. The best vector in the population is determined and added to the selected
test vector depository. The depository consists of test vectors that will form the
final test set.

4) Fitness scaling

As a population converges on a definitive solution, the difference between fitness
values may become very small. Best solutions can not have significant advantage
in reproductive selection. We use square values for test vector’s fitness values in
order to differentiate “good” and “bad” test vectors.

5) Selection of candidate vectors

Selection is needed for finding two candidates for crossover. Based on quality
measures (fitness values), better test vectors in a test set are selected. Roulette
wheel selection mechanism is used here. Number of slots on the roulette wheel
will be equal to population size. Size of the roulette wheel slots is proportional to
the fitness value of the test vectors. That means that better test vectors have a
greater possibility to be selected. Assuming that our population size is N, and N is
an even number, we have N/2 pairs for reproduction. Candidates in pair will be
determined by running roulette wheel twice. One run will determine one
candidate. With such a selection scheme it can happen that same candidate is
selected two times, i.e. reproduction with itself is possible. This means the
selected vector is a good test vector and it carries its good genetic potential into
new generation.

6) Crossover

Exchanging corresponding genetic material from two parents allow useful genes
on different parents to be combined in their offspring. Crossover is the key to
genetic algorithm's power. Most successful parents reproduce more often.
Beneficial properties of two parents combine.

From pair of candidate vectors selected by roulette wheel mechanism, two new
test vectors are produced by one-point crossover as follows:

1) we determine a random position m in a test vector by generating a random
number between 1 and L, where L is the number of bits in the test vector

2) first m bits from the first candidate vector are copied to the first child vector

3) first m bits from the second candidate vector are copied to the second child
vector

4) bits m + 1 … L from the first candidate vector are copied to the second child
vector (into bits m + 1…L)

5) bits m + 1 … L from the second candidate vector are copied to the first child
vector (into bits m + 1…L)

7) Mutation

In order to encourage genetic algorithm to explore new regions in space of all
possible test vectors, we apply mutation operator to the test vectors produced by
crossover. In all the test vectors, every bit is inverted with a certain probability p.
Random mutation provides background variation and occasionally introduces
beneficial individuals. Without the mutation all the individuals in population will
sooner or later be the same. We will be stuck in a local maximum and there will
be no progress anymore.

Steps 2 –5 are repeated until all the faults from the fault list are detected or a
predefined limit of evolutionary generations is exceeded. Test generation
terminates also when the number of noncontributing populations exceeds a certain
value that can be set by the user.

In current implementation, the test generation works in two stages, with different
mutation rates.

1) In the first stage, when there are many undetected faults and fitness of vectors
is mostly greater than zero (in each evolutionary generation many faults are
detected), a smaller mutation rate is used (Default p = 0.1).

2) In the second stage, when there are only few undetected faults and none of the
vectors in population detects these faults, the fitness values of the vectors will all
be zeros. We can not say which vector is actually better than others. Now the
mutation rate is increased (Default p = 0.5) to bring more diversity into
population, and permit to explore new areas of the search space.

Genetic ATPG Command-Line

command: genetic

Generates tests for combinational circuits basing on fault simulation and string
manipulation (genetic operators).

input: SSBDD model file (.agm)

output: test pattern file (.tst)

syntax: genetic [options] <design>

design: Name of the design file without .agm
extension.

options:

-mutation_rate1 <float> Initial mutation rate. Default is 0.1.
Recommended range 0.01 … 0.1.

-popul_size <number> Number of vectors in a population. Must be
an even value! Default is 32.

-timeout <number> Timeout value. The greater the value the
more thoroughly we search. Default timeout
is 10. Recommended range 10 … 100.

-mutation_rate2 <float> Mutation rate applied when fitness value
becomes zero. Default is 0.5. Recommended
range 0.1 … 0.5.

-max_generations <number> Maximum number of generations. Default is
1000. Suggested range 1 … 10,000.

-infile <file> Read data about covered faults from test
patterns file file. (See ‘4.2 Common
Features’).

Random Test Pattern Generator

command: random

A random test pattern generator for combinational circuits. Generates random
patterns in packages of 32 vectors. Best vectors (covering bigger number of
previously undetected faults) are included to the final test set.

input: SSBDD model file (.agm)

output: test pattern file (.tst)

syntax: random [options] <design>

design: Name of the design file without .agm
extension.

options:

-failure_limit <limit> Maximal number of consecutive failed
packages. Default is 64.

-pack_size <size> The number of vectors in a package is size
multiplied by 32. Default for size is 1.

-criterion <faults> Vectors detecting more previously
undetected faults than specified by faults
will be selected. Default for faults is 1.

-packages <packages> Maximal number of packages to be
simulated. Default is 1000.

-select_max <vectors> Maximal number of vectors selected from a
package. Default is 32.

-fault_table Perform fault simulation for the final
patterns.

-infile <file> Read data about covered faults from test
patterns file file. (See ‘4.2 Common
Features’).

Random ATPG for Sequential Circuits

command: sbgen

Random test pattern generator for sequential circuits. Generates and fault
simulates random test sequences. The user can specify the number of test vectors
in the sequences (-sequence_length option). Test generation will terminate
automatically when certain number of subsequent test sequences fail to detect any
new faults. However, minimum and maximum limits for the number of simulated
sequences can be set by the user (-min_simulations and
-max_simulations options, respectively).

input: SSBDD model file (.agm)

output: test pattern file (.tst)

syntax: sbgen [options] <design>

design: Name of the design file without .agm
extension.

options:

-reset_index <index> Index of the primary input variable
corresponding to global reset in the SSBDD
model.

-sequence_length <seq> seq is the number of vectors in each test
sequence. Default is 128.

-max_simulations <max> Maximum number of simulated sequences.
Default is 1000.

-min_simulations <max> Minimum number of simulated sequences.
Default is 0.

-fault_table Perform fault simulation for the final
patterns.

-infile <file> Read data about covered faults from test
patterns file file. (See ‘4.2 Common
Features’).

4.3 Built-In Self-Test Emulation

Built-In Self Test Architectures
Turbo Tester supports two types of BIST (Built-In Self-Test) architectures:
BILBO (Built-In Logic Block Observer) and CSTP (Circular Self-Test Path). In
BILBO the vector generator and signature analyzer are separate LFSRs (Linear
Feedback Shift Registers), while CSTP uses a single shift register. The advantage
of the BILBO approach lies in the fact that the generated pseudo-random vectors
do not depend on the circuit output values. On the other hand, CSTP requires less
overhead in terms of silicon area, since only one LFSR is required. The two types
of BIST architectures are shown in Figure 5.

Figure 5 Built-In Self-Test Architectures

Turbo Tester BIST emulators allow the user to specify the feedback polynomials,
initial states and bitwidths of the LFSRs. Figure 6 explains these concepts on a
generator LFSR example. The generator has an initial value of 011011 in the
register and its feedback polynomial is 101101.

Figure 6 Generator LFSR

In the example, the LFSR bitwidth (6 bits) is greater than the number of circuit
inputs (5 inputs). In that case the circuit inputs are connected to the side of more
significant bits of the generator LFSR (See Figure 6). Generator bitwidth has to
be greater or equal to the number of circuit inputs.

Figure 7 presents an example of the analyzer LFSR with an initial state of 10110
and a feedback polynomial of 11001.

Figure 7 Analyzer LFSR

In the case of analyzer, if the LFSR bitwidth is greater than the number of circuit
outputs then the outputs are by default connected to the side of more significant
bits of the LFSR. However, this can be overridden by the –lsb option. Analyzer
bitwidth must be greater or equal to the number of circuit outputs.

BIST Emulator

command: bist

Emulation tool for Built-In Logic Block Observer (BILBO) and Circular Self-Test
Path (CSTP) architectures.

input: SSBDD model file (.agm)

output: test pattern file (.tst)

syntax: bist –rand –glen <generator_length> [-alen
<analyzer_length>] [options] <design>

or

bist –gpoly <generator_poly> -ginit <generator_init>

[–apoly <analyzer_poly> -ainit <analyzer_init>] [options] <design>

generator_length: Length of the generator LFSR in bits.
(Use only with –rand option!).

analyzer_length: Length of the analyzer LFSR in bits.
(Use only with –rand and –simul bilbo options!).

generator_poly: Feedback polynomial of the generator LFSR in binary
digits. (Do not use with –rand option!).

generator_init: Initial value of the generator LFSR in binary digits.
(Do not use with –rand option!).

analyzer_poly: Feedback polynomial of the analyzr LFSR in binary digits.
(Do not use with –rand and -simul cstp option!).

analyzer_init: Initial value of the analyzer LFSR in binary digits.
(Do not use with –rand and -simul cstp option!).

design: Name of the design file without .agm
extension.

options:

-rand Generate random LFSR feedback
polynomials and initial states.

-aliasing With this option selected, exact fault
coverage values will be reported. BIST
emulation will be slower but it will take into
account possible fault aliasing in the
analyzer LFSR.

-simul < bilbo | cstp > Choses between BILBO and CSTP
architectures. (Default is BILBO).

-count <cycles> The length of the test in clock cycles.
Default is 1000.

-optimize Dismiss test patterns at the end of the test
sequence that do not detect any additional
faults.

-lsb Design outputs are connected to the side of
less significant bits of the analyzer LFSR.
(Default is the side of more significant bits).

LFSR bitwidth is determined by the number of binary digits in the specified initial
state and polynomial. The number of digits in initial state must be equal to the
number of digits in polynomial.

4.4 Fault Simulation

Fault Simulator for Combinational Circuits

command: analyze

Stuck-at fault simulator for combinational circuits.

input: SSBDD model file (.agm), test pattern file

output: test patterns with fault table (.tst)

syntax: analyze [options] <design>

design: Name of the design file without .agm extension.

options:

-extension <extension> extension is the file name extension of the
test pattern file. Default extension is tst.

Fault Simulator for Sequential Circuits

commands: sequential, sequential_fast

Stuck-at fault simulators for sequential circuits. sequential includes the
–nodrop option but runs slower than sequential_fast.

input: SSBDD model file (.agm), test pattern file (.tst)

output: test pattern file (.tst)

syntax: sequential [options] <design> |

sequential_fast [options] <design>

design: Name of the design file without .agm
extension.

options:

-fault_free Perform fault-free simulation.

-nodrop Don’t perform fault dropping.
(sequential only!).

-extension <extension> extension is the file name extension of the
test pattern file. Default extension is tst.

-infile <file> Read data about covered faults from test
patterns file file. (See ‘4.2 Common
Features’).

4.5 Multi-Valued Simulation

Hazard Analysis Basing on 5-Valued and 8-Valued
Alphabets

In Turbo Tester, multi-valued simulation is applied to model the possible hazards that can
occur in logic circuits. In this approach each waveform type has a corresponding symbol
of the given alphabet. Turbo Tester’s multi-valued simulator implements 5-valued and 8-
valued alphabets:

A 5 = {0,1,E,H,x},

A 8 = {0,1,E,H,o,i,e,h}.

The meaning of these symbols is explained in the following:

0 - constant zero

1 - constant one

E - rising transition

H - falling transition

o - static zero hazard

i - static one hazard

e - rising transition hazard

h - falling transition hazard

x - hazard of unspecified

The dynamic behavior of a logic network during one single transition period is the
corresponding representative waveform of the output or simply its corresponding logic
value. Every logic gate in a network can be regarded as an operator, which computes the
output value of the gate if the values of the input variables taken from the set A are given.
The operators for logic OR, logic AND and INVERSION in the case of five-valued
simulation are presented in the following table.

 OR 0 1 E H x AND 0 1 E H x NOT 0

 0 0 1 E H x 0 0 0 0 0 0 0 1
 1 1 1 1 1 1 1 0 1 E H x 1 0
 E E 1 E x x E 0 E E x x E H
 H H 1 x H x H 0 H x H x H E
 x x 1 x x x x 0 x x x x x x

From this table and its transivity we can compute the logic value of any line in the
network.

Multi-Valued Simulator

command: multival

Performs multi-valued simulation on 5-valued and 8-valued alphabets.

input: SSBDD model file (.agm), test pattern file

output: hazard analysis (.mvl)

syntax: multival [options] <design>

design: Name of the design file without .agm extension.

options:

-values <alphabet> if alphabet is 5 then 5-valued simulation is
performed (default). 8 selects 8-valued
simulation.

-extension <extension> extension is the file name extension of the
test pattern file. Default extension is tst.

4.6 Test Set Optimization

command: optimize

Minimizes the number of test patterns in the test set by means of static
compaction.

input: SSBDD model file (.agm), test pattern file

output: test pattern file of the minimized test set (.tst)

syntax: optimize [options] <design>

design: Name of the design file without .agm extension.

options:

-extension <extension> extension is the file name extension of the
test pattern file. Default extension is flt.

4.7 Utilities

Report Generator

command: report

Displays various statistics.

 input: SSBDD model file (.agm), test pattern file

 output: Report file or display

 syntax: report [options] <design>

 design: Name of the design file without .agm extension.

 options:

-file <ReportFile> Report is written in a file ReportFile.
(By default the report is displayed on the
screen).

-coverage Shows the fault coverage data.

-patterns Shows the number of test patterns.

-tested Shows the list of tested faults.

-not_tested Shows the list of not tested faults.

-untestable Shows the list of untestable faults. (For
deterministic ATPG only).

-signals Shows model variable names and their
values at every clock cycle.

-ports Same as previous but includes I/O ports
only.

-table Shows the fault table information.

-cycle <t> Displays data for clock cycle t.
Use with -table, -ports or -signals options
only.

-progress Shows achieved stuck-at fault coverages
after each pattern. (Useful for BIST
emulation tools for determining optimal test
length in clock cycles).

-block <instance> Processes only nodes associated with
subinstance instance in a hierarchical design.

-extension <extension> extension is the file name extension of the
test pattern file. Default extension is .tst.

Test Pattern Insertion Tool

command: vec_insert

A utility that allows the user to manually insert test stimuli.

input: test vectors in test pattern insertion format. (File or screen input).

output: test pattern file (.tst).

syntax: vec_insert [options] <design>

design: Name of the design file without .agm extension.

options:

-file <ReportFile> Test patterns are read from file ReportFile.
(By default the patterns are read
interactively from the screen).

Test Pattern Insertion Format

Test patterns must be specified as follows. For each primary input variable a row
corresponds, where the name of the variable is followed by ‘:’ and logic values (0
or 1) at each time step (pattern) are separated by spaces.

Example

Consider the test pattern insertion file for a circuit with five primary inputs (i_1,
i_2, i_3, i_4, i_5) and six test patterns specified.

i_1: 0 1 0 1 0 1
i_2: 0 1 1 0 1 0
i_3: 0 1 0 1 1 0
i_4: 0 1 1 0 0 1
i_5: 0 1 0 1 0 1

5 Tools for Laboratory Course on
Diagnosis

5.1 Introduction
The diagnostic tools were primarily worked out for teaching diagnostics using the
design error diagnosis problem as an example. The basic tool in this set is
prediag. It uses test patterns to compare the specification and the
implementation and defines some rough suspected erroneous area within the
circuit. The diagnosis refinement is left for students' practicing. They use
verification tool (verify) which shows the difference in output responses
between the specification and the implementation.

The implementation and the specification can be obtained from the initial design
using the xtimport tool which is an extended version of the design interface
(import). As the specification should be generated from the same original
design, we do it by insertion of an error into the design. The type of the error and
its location are saved into the report file and encrypted in order to provide the
possibility for the teacher to check the student's work but to prevent the student to
obtain this information easily. The teacher can use the decryption tool
(decrypt) to get the information.

The test patterns for the diagnostic tools can be generated by an ATPG or inserted
manually with the test pattern insertion tool (vecmanager).

Figure 2 Data Flow of Laboratory Course on Diagnosis

EDIF

implementation

ATPG

gate-level
paths

specification

test patterns

gate names
and types

xtimport

vecmanager

report file

decrypt

Teacher’s info
(gate name and type)

prediag

verify

5.2 Fault Diagnosis Commands

xtimport – Extended Netlist Interface

command: xtimport

xtimport is an extended version of the import tool. It has all the
functionality of import but includes some additional features. It has been
designed specially for "Design Error Diagnosis" practical work. It allows to create
an implementation and a specification. Where the specification is the same design
as implementation but with randomly changed function of a randomly chosen
gate. Specification can be created using -spec option. Specification is always a
gate-level SSBDD model. When creating the specification, the xtimport tool
creates also a report file (<design>.rep), where stores the information about the
gate, whose function had been changed as encrypted data. Thus, students do not
know which gate is erroneous but the teacher can finally decrypt the information
and check the student's work. Some data about gate-level signal paths should be
reserved during generation of the implementation in order to allow the
prediagnostic (see below) tool work. The data is saved using the flag -paths.

input: EDIF or ISCAS’89 netlist file

output: specification (.spec), implementation (.agm), gate-level paths (.gat), gate
names and types (.pat), test patterns (.tst).

syntax: xtimport [options] <EDIF file> <library file*>

options:

-paths Preserve information about gate-level signal paths.

-spec Create a specification (insert a design error).

-read_iscas89 Read ISCAS’89 format.

-gate_level Generate gate-level SSBDD model. Default output
is macro-level SSBDD.

-tool <application> Options for application are orcad and
cadence.

-gnd <gnd name> gnd name is the name of the GND net.

-vdd <vdd name> vdd name is the name of the VDD net.

* - library_file must be omitted when selecting -read_iscas89 option.

xtimport - Error Messages and Warnings
The design interface displays error messages and warnings about possible failures
while parsing the EDIF netlist file. Line numbers of the input netlist file where
errors occurred are provided. Pay attention to ALL of the displayed errors and
warnings if the program terminates abnormally!

Note that some of the warnings should be ignored, however. For example, one of
the most common warnings during reading a hierarchical design is as follows:

Design: COMPONENT_1

Parsing macro

Warning at line 1917: Gate not in library

This warning shows that there exists a cell named COMPONENT_1 in the EDIF
description. It either means that COMPONENT_1 is a block in the hierarchy, or it
is a cell, which is not specified in the technology library. In the first case, the
warning should be ignored. In the latter case, EDIF parsing fails due to an
incompletely specified technology library and the cell COMPONENT_1 should be
included to the library.

prediag – Tool for Preliminary Diagnosis

command: prediag

The tool for obtaining the intermediate diagnosis. The diagnosis is a set of several
gates of the implementation, which are suspected to be faulty. It applies test
patterns generated by an ATPG, and detects the differences in output responses
between the implementation and the specification. Using this information and the
fault table it produces the prediagnostic results. By default it shows the
information concerning suspected gates and suspected SSBDD nodes. It is also
capable of showing the data about the outputs where the errors were observed. By
default it updates the report file (<design>.rep) with the chosen information.

input: specification (.spec), implementation (.agm), gate-level paths (.gat), gate
names and types (.pat), test patterns (.tst).

output: report file (.rep).

syntax: prediag [options] <design>

design: Name of the design file without .agm extension.

options:

-f Show failing outputs.

-n Do not show suspected nodes.

-g Do not show suspected gates.

-v <extension> extension is the file name extension of the
input test pattern file. Default extension is
tst.

-s <extension> extension is the file name extension of the
specification model file. Default extension is
spec.

-o <extension> extension is the file name extension of the
output file. Default extension is rep.

-scr Print everything on the screen only.

verify – Tool for Verification

command: verify

verify compares the outputs of the implementation and the specification and
gives the information about the outputs where errors were observed. It applies
some test vectors in order to obtain this information. By default it also updates the
report file (<design>.rep) with this data.

input: specification (.spec), implementation (.agm), test patterns (.tst).

output: report file (.rep).

syntax: verify [options] <design>

design: Name of the design file without .agm extension.

options:

-v <extension> extension is the file name extension of the
input test pattern file. Default extension is
tst.

-s <extension> extension is the file name extension of the
specification model file. Default extension is
spec.

-o <extension> extension is the file name extension of the
output file. Default extension is rep.

-scr Print everything on the screen only.

decrypt – Tool for Checking the Student’s Work

command: decrypt

The teachers tool is used to check the results of students' work. It decrypts the
name of the gate, which was replaced by the xtimport tool. It works in several
following modes. In the interactive mode (simply type decrypt) the encrypted
message is read from the screen. The message is a single word of ASCII
characters without spaces. In the command line mode (usage: decrypt
 -m <message>) the message in the same format is read from the command
line. In these modes the decrypted message is printed to the screen. In the third
mode (usage: decrypt -f <filename>) the message is read from a text file.
The file can contain an arbitrary number of words consisting of ASCII characters.
The output in this mode is written into a file.

input: encrypted name and type of the erroneous gate. (Can be read from file
<design>.rep).

output: decrypted name and type of the erroneous gate.

syntax: decrypt [options] [-f <InFile>| -m <message>]

InFile: File containing the encrypted message.

message: String of printable ASCII characters (encrypted
message).

options:

-o <file> file is the output file.

-s Print output also on the screen.
 (default: if -f specified - don't, otherwise -

yes).

vecmanager – Tool for Test Pattern Insertion

command: vecmanager

vecmanager is an interactive tool for manual insertion, deletion or update of
input patterns in a test pattern file(s). It can work in an interactive as well as in a
command line modes. In interactive mode (usage: vecmanager) the program asks
for the name of the design, the name of the test pattern file, and finally gives the
following menu:

 S. Show existing test patterns
 N. Insert completely New test
 A. Add vectors
 D. Remove some vectors*
 R. Automatically geneRate some random sequence
 E. Automatically genErate the exhaustive test*
 F. PerForm fault simulation
 X. Save patterns and eXit

In the command line mode you can add only a single test vector.

input: SSBDD file (.agm), test patterns file (.tst).

output: test patterns file (.tst).

syntax: vecmanager [options] <design>

design: Name of the design file without .agm extension.

options:

-new Create completely new test set.

-add <vector> Add test pattern vector.

-i <extension> extension is the file name extension of the
input file. Default extension is tst.

-o <extension> extension is the file name extension of the
output file. Default extension is tst.

-ftable Perform fault simulation.

* - not implemented in current version

Appendixes

Appendix A SSBDD Model Format (.agm)

SSBDD format is a line-based format. The Maximum length of a line is 255
characters. Lines starting with ';' character are considered to be comments.

'STAT# <nodecount> Nods, <variablecount> Vars, <graphcount>
Grps, <inputcount> Inps, <outputcount> Outs '

Reflects the number of nodes, variables, graphs, primary inputs (PI) and primary
outputs (PO) of the circuit, respectively.

'MODE# ' <mode>
- Where mode can be one of the following:

 STRUCTURAL - SSBDD model.
FUNCTIONAL – Traditional BDD model. (Not supported in present
implementation).

The graph model is described as follows:

{Lines of variables}
{<Line of a variable>
<Line of a graph>
{Lines of nodes}}

Line of a variable in AG model:

'VAR# ' <index> ':' ['VAL =' '0'|'1']- Where index is the index of
the variable in the SSBDD model. SSBDD variables have the following ordering:
1. Primary inputs
2. Constants
3. Internal lines (fanouts) or flipflops
4. Primary outputs

'(' <flags> ')' - Flags. When a flag is not set, an underscore '_' will be
placed to its position. At present, six flags are implemented:

 'i' variable is an input variable
 'o' variable is an output variable
'c' variable is a constant input. In the case of constants, the logic value
is determined by the following construct:

 'VAL =' '0'|'1'
 'd' one clock cycle delay at the variable (e.g. flipflops)

'"' <string> '"' - Variable name

Line of a graph:

'GRP# ' <index> ':' - The index of a graph in the SSBDD model.

'BEG = <index>, LEN = <length> -----'
- index is the global index of the first node in the graph, and length is the number
of nodes in the graph, respectively.

Line of a node:

' <index1> <index2>:' - index1 shows the global index of the node in the
SSBDD model. index2 is the relative index of the node inside the graph.

'(' <flags> ')' - Flags. When a flag is not set, an underscore '_' will be
placed to its position. At present only one flag is implemented:

 'I' Denotes that the node is inverted

'(<successor1> < successor2>)' - Relative indexes of the nodes down and
right from current node, respectively.

'V = <index>' - Index of the variable weighing the node.

'"' <string> '"' - Node name

Appendix B Test Vectors Format (.tst)

Test patterns file has a line-based format. The length of the lines is not limited.
Comments start with ';' character.

The format has the following syntax:

vectorCount
nodeCount
variableCount
[LFSR]
testPatterns
[faultTable]
[faultList]
[faultCoverage]

vectorCount := .VECTORS <integer>

integer shows the total number of all patterns.

testPatterns :=
.PATTERNS
<patterns>

patterns are rows containing the test patterns. Each character in a row represents a
variable in the SSBDD model. The order of the variables is the same as in the
SSBDD model file (.agm). The following notation is used:

For input variables: '1' - logical one, '0' - logical zero.
For internal variables: 'h' - logical one, 'l' - logical zero.
For output variables: 'H' - logical one, 'L' - logical zero.

Internal and output variables can be omitted.

 faultTable :=
 .TABLE
<table>

Each row in table corresponds to a test pattern and each column to a node in
SSBDD model. The order of the nodes is the same as in SSBDD model file
(.agm). The following notation is used:

For stuck-at fault model:
 'X' - no faults detected at the node by the test pattern
 '0' - stuck-at zero detected
 '1' - stuck-at one detected

For delay fault model:

'X' - no faults detected at the node by the test pattern
'/' - rising edge fault detected at the node
'\' - falling edge fault detected at the node

faultList :=
.FAULTS
<faults>

faults is a row of characters. Each character corresponds to a node in SSBDD
model. The order of the nodes is the same as in SSBDD model file (.agm). The
following notation is used:

 For stuck-at fault model:

 'X' - no faults detected at the node by the test set
 '0' - stuck-at zero detected
 '1' - stuck-at one detected
 '&' - both, sa-0 and sa-1 detected

 For delay fault model:

 'X' - no faults detected at the node by the test set
 '/' - rising edge fault detected
 '\' - falling edge fault detected
 '&' - both, rising edge and falling edge delay faults detected

faultCoverage :=
.COVERAGE
<numberOfDetectedFaults> / <numberOfFaults> = <Percentage> %

numberOfDetectedFaults - is an integer indicating the number of faults under
consideration.
numberOfFaults - indicates the number of detected faults.
Percentage - is a floating point number, showing the fault coverage.

LFSR :=
generator
[analyzer]

This section is used for describing linear feedback shift-registers in BIST
structures.

Generator :=
.GENERATOR
initialState
feedbackPolynomial

Used to describe the LFSR in CSTP and generator LFSR in BILBO.

Analyzer :=
.ANALYZER
initialState
feedbackPolynomial

Used to describe the analyzer LFSR in BILBO.

initialState :=
.INITIAL_STATE <bitVector>

Shows the initial state of an LFSR.

feedbackPolynomial :=
.POLYNOMIAL <bitVector>

Shows the feedback polynomial of an LFSR.

signature :=
.SIGNATURE <bitVector>

Shows the signature of an LFSR.

Appendix C Library Source Format
The library source format is used to generate custom technology libraries for the
EDIF interface. The syntax of the source is as follows.

GATE <cellName> <BooleanExpression> ;

, where cellName is the name of library cell

and BooleanExpression is:

<outputPin> = <BooleanFunction>

, where BooleanFunction is Boolean function of input pins.

Operators used in Boolean functions in order of priority:

 () brackets (for priority),

 ! inversion,

 * conjunction,

 + disjunction.

If BooleanFunction is CONST0 or CONST1, the library cell will correspond to
logical zero or logical one signal.

Example
The following is an example of a source description for a library cell my_nand2.
It describes a two input nand gate with output pin y and input pins a and b:

GATE my_nand2 y=!(a*b);

Appendix D Technology Library Format
The technology library is required by the EDIF interface in order to get
information about the functionality of current technology library cells. This
information is not implicitly described in the EDIF netlist itself. The syntax of the
technology library is as follows.

“ cellName ” numberOfRows

{<Row>}

, where cellName is the name of library cell;

 numberOfRows is the number of rows in the cell;

and row consists of:

lineNumber name type numberOfOutputs numberOfInputs

[listOfInputs]

, where lineNumber is the index of row in the library cell, name is the name of the
gate in the cell and type can be one of the following:

inpt cell input

from fanout branch

and and gate

nand nand gate

or or gate

nor nor gate

not inverter

buff cell output

flipflop D-flipflop

numberOfOutputs is the number of fanout branches of the gate

numberOfInputs is the number of gate inputs

listOfInputs contains an array of indexes separated by spaces to indicate the line
numbers of pins connected to corresponding gate inputs.

Appendix E Synopsys Design Interface
In order to generate EDIF compatible to the EDIF Interface, select File/Save
As…from Synopsys Design Analyzer window. Set File Format field to EDIF.

Note that the following Synopsys variables must be set!
edifout_netlist_only = “true”

edifout_numerical_array_members = “true”

It is required to use similar names in Synopsys EDIFOUT ground and power
variables as with the EDIF interface –gnd and –vdd options.

For example, if you set
edifout_ground_net_name = “gnd”

edifout_ground_net_pin = “gnd”

edifout_power_net_name = “vdd”

edifout_power_net_pin = “vdd”

then Turbo Tester EDIF interface must be run with options
 -gnd gnd –vdd vdd

Please use only letters while naming the ground and power variables! For
example, names like gnd! or vdd+ are not valid.

Appendix F Cadence Design Interface

In order to generate an EDIF output compatible to the EDIF Interface select
File/Export/EDIF 200…. Please note that:

1. Design Name must be specified!

The name can be arbitrary. It is only needed to force EDIFOUT to identify the cell
containing the top-level design.

2. External Libraries field should be left blank.

3. Ripper Library Name, Ripper Cell Name and Ripper View Name should be set
to basic, patch and symbol, respectively. These are also default values
for EDIFOUT.

4. Netlist Only option should be turned on to exclude all graphic information and
to reduce the size of output file.

5. Generate Scalar EDIF must be selected.

Both, hierarchical and flattened netlists are supported.

See the Cadence documentation for more information on how to fill the ‘EDIF
200 Out’ form window.

Cadence schematic editor is not case sensitive. However, the EDIF Interface is.
Therefore do not use names such as e.g. A1 and a1 while describing ports and/or
instances in the schematic!

	Version 02.10
	Restrictions
	
	
	
	Table of Contents

	1 Introduction
	Audience
	Conventions
	Getting Help

	2 Installing Turbo Tester
	Win NT
	Linux and Solaris 2.X
	Directory Structure

	3 System Overview
	3.1 Data Flow of Test Tools
	3.2 Tools for Fault Diagnosis
	3.3 Design Representation
	3.4 Design Interface

	4 Turbo Tester Commands
	4.1 Design Interface
	Netlist Interface
	Error Messages and Warnings
	Library Generator

	4.2 Test Pattern Generation
	Common Features
	Deterministic Test Pattern Generator
	Genetic Algorithm for Test Pattern Generation
	Genetic ATPG Command-Line
	Random Test Pattern Generator
	Random ATPG for Sequential Circuits

	4.3 Built-In Self-Test Emulation
	Built-In Self Test Architectures
	
	
	Turbo Tester supports two types of BIST (Built-In Self-Test) architectures: BILBO (Built-In Logic Block Observer) and CSTP (Circular Self-Test Path). In BILBO the vector generator and signature analyzer are separate LFSRs (Linear Feedback Shift Re

	BIST Emulator

	4.4 Fault Simulation
	Fault Simulator for Combinational Circuits
	Fault Simulator for Sequential Circuits

	4.5 Multi-Valued Simulation
	Hazard Analysis Basing on 5-Valued and 8-Valued Alphabets
	Multi-Valued Simulator

	4.6 Test Set Optimization
	4.7 Utilities
	Report Generator
	Test Pattern Insertion Tool
	Test Pattern Insertion Format

	5 Tools for Laboratory Course on Diagnosis
	5.1 Introduction
	5.2 Fault Diagnosis Commands
	xtimport – Extended Netlist Interface
	xtimport - Error Messages and Warnings
	prediag – Tool for Preliminary Diagnosis
	verify – Tool for Verification
	decrypt – Tool for Checking the Student’s Work
	vecmanager – Tool for Test Pattern Insertion

	Appendixes
	Appendix A SSBDD Model Format (.agm)
	Appendix B Test Vectors Format (.tst)
	Appendix C Library Source Format
	Appendix D Technology Library Format
	Appendix E Synopsys Design Interface
	Appendix F Cadence Design Interface

